12-3,4积分基本公式,调和函数
复变函数第10讲

由于f (z)有各阶导数,故有
uxx v yx , uyy v xy .
由解析函数高阶导数定理, u( x , y ), v( x , y )具有 任意阶的连续导数,从而v xy v yx ,由此可得
uxx +uyy =0,
同理有 v xx v yy 0.
11
法四 全微分法
v x u y 2 x 2 y , v y u x 2 x 2 y , dv v x dx v y dy ( 2 y 2 x )dx ( 2 x 2 y )dy ,
2 ydx 2 xdy 2 xdx 2 ydy
1
例1 验证u( x, y ) x 3 3 xy 2 9是z平面上 的调和函数.
解: 显 然u( x , y ) x 3 3 xy2 9在z平 面 上 有二阶连续偏导数 .
又 ux 3 x 2 3 y 2 , u xx 6 x ,
u y 6 xy, u yy 6 x;
5
3、 构造解析函数
已知一个调和函数u( x , y ), 利用C R方程可求 得共轭调和函数v( x , y ), 从而构成解析函数 f ( z ) u iv .
由调和函数,构造解析函数的方法如下: (1) 不定积分法; (3) 曲线积分法;
注意
(2)利用导数公式; (4)全微分法.
作此类题时,首先一定要验证给定的函数 是否是调和函数.
6
2 2 设 u x 2 xy y , 求 以u为 实 部的 例2 解 析 函数 f ( z ).
法一 不定积分法
v y 2 x 2 y v 2 xy y 2 ( x),
第三章柯西积分公式3-5

L = 2 ∆z
ML d3
1 f (z) f ′( z ) = ∫C ( z − z ) 2 dz 2πi 0
即n = 1时,结论成立.对于任意的正整数n都是成立的.
例4.1 求下列积分的值,其中C为正向圆周: = r > 1. z
(1)∫ cosπz ( z − 1)
C
dz,. 5
( 2) ∫
且满足拉普拉斯(Laplace )方程 ∂ 2ϕ ∂ 2ϕ + 2 =0 2 ∂x ∂y
则称ϕ ( x , y )为区域D内的调和函数 .
定理5.1 如果f ( z ) = u( x , y ) + iv ( x , y )在区域D内解析,
函数u( x , y ), v ( x , y )均为区域D内的调和函数 .
?
C
δ
z0
B
f (z) f (z) dz ∫C z − z0 dz = ∫Cδ z − z0 dz = f ( z0 )∫Cδ z − z0 = 2πif ( z0 )
定理3.1 (柯西积分公式)
如果f ( z )在区域D内解析,C为D内任意一条正向简单闭曲线, 它的内部全部含于D内, z 0为C任意一点,则 f (z) 1 f ( z0 ) = ∫C z − z0 dz 2πi f (z) f ( z ) − f ( z 0 )dz ( z ) f 证明 ∫C z − z 0= K dz dz K z−z z−z
2 2
∂ ∂u ∂ ∂v ∂ 2u ∂ 2v [ ] = − [ ]⇒ =− 2 ∂x ∂y ∂x ∂x ∂x∂y ∂x ∂ 2u ∂ 2v ∂ ∂u ∂ ∂v [ ] = − [ ]⇒ 2 = − ∂y ∂ y ∂ y ∂x ∂x∂y ∂y
4.2调和函数的基本性质

第四章 调和方程一、小结本章讨论了调和方程、泊松方程的边值问题和调和函数的基本性质。
以三维情形为主。
1.边值问题调和方程和泊松方程通常描述平衡和稳定的自然现象,所以一般只讨论它的边值问题。
按边界条件的不同类型分别称为第一、第二、第三边值问题,又依区域的不同分为内问题和外问题。
这里只涉及到第一、第二边值问题的解法,给出了用分离变量法求解的例子,对有些简单情形可依据具体情况求解。
对调和方程的第一边值问题0()(I)()u u f∆=Ω⎧⎨=∂Ω⎩在内在上的求解着重介绍了格林函数法。
这个方法的基本思想是把问题(I )的求解转化为格林函数001(,)(,)4ppG p p g p p r π=-其中g 满足00()1(II)()4p pu p u p r π∆=∈Ω⎧⎪⎨=∈∂Ω⎪⎩这时(I )的解为00(,)()()p G p p u p f p d S n∂Ω∂=-∂⎰⎰而问题( II)是一个具特定边界值的调和方程的第一边值问题,所以格林函数G 只与区域Ω有关,对某些规则的特殊区域,如上半空间、球(或上半平面、圆)可用镜像法求得,从而得到这类区域的问题(I )的解的积分表达式(泊松公式)。
2.调和函数的性质利用格林公式和基本积分公式得出了调和函数的球面平均值性质和沿任何闭曲面的法向导数积分为零。
这两条性质也是连续函数成为调和函数的充分条件。
由球面平均值性质证明了刘维尔定理和调和函数的极值性质,利用法向导数的积分为零得到了第二边值问题可解得必要条件。
重点: 调和方程第一、第二边值问题的求解 ;基本积分公式;格林公式;格林函数;调和函数的性质。
难点:调和方程第一、第二边值问题的求解;如何找格林函数 二、习题及解答4.1 定解问题和基本解1. 试验证: 1211,(u u r r===在单位球面上都等于1,在球外都满足调和方程.证:2. 举例说明:二维调和方程的第一边值外问题,若在无穷远处不加有界的限制,则解可能不唯一.解:考虑单位圆外的调和函数,它在圆的边界上等于常量1.即⎪⎪⎩⎪⎪⎨⎧=>+=∂∂+∂∂=+1)1(0122222222y x u yxyu x u显之然1=u 是问题的解,又221ln1yxu ++=也是问题的解。
数理方程第四章 格林函数法

则 u(M 2 ) u(M1 ) 。以 M 2 为中心,以小于 d 的数为半径
在 内作球 k 2 ,在 k 2上u(M ) u(M 2 ) u(M1 ) ,…, n 次后,
点 N 一定包含在以某点 M n 为中心 ,半径小于 d 的球
kn 内 , 因而 u( N ) u(M n ) u(M1 ) , 由 N 的
性质1. 设 u(x, y, z) 是区域 内的调和函数,它在
上有一阶连续偏导数,则
udS n
0,
其中
,
n
是 的外法线方向。
证明 只要在Green公式中取 v 1即证。
注:此性质表明调和函数的法向导数沿区域边界的积分为零。 对稳定的温度场,流入和流出物体界面的热量相等,否则就 不能保持热的动态平衡,而使温度场不稳定。
3
下午9时12分
HUST 数学物理方程与特殊函数
第4章格林函数法
对二维拉普拉斯方程 u uxx uyy 0 ,其极坐标形式为:
2u r 2
1 r
u r
1 r2
2u
2
0
(4.1.2)
求方程(4.1.2)的径向对称解 u V (r) (即与 无关的解) ,则有:
d 2V dr 2
1 r
dV dr
任意性 ,就得到整个 上有 u( N ) u( M 1 ) ,这与 u 不为
常数矛盾.
10
下午9时12分
HUST 数学物理方程与特殊函数
第4章格林函数法
K1 M2 l M1 K2 M3
S1 S2
Kn N Mn Sn
图4.1
11
下午9时12分
HUST 数学物理方程与特殊函数
第4章格林函数法
第三章,复变函数的积分(1)

(4) 设曲线C的长度为L, 函数f (z)在C上满足
f (z) M , 则
C
f ( z )dz f ( z ) ds ML.
C
19
估值不等式
事实上,
f (
k 1
n k 1
n
k
)zk f ( k ) zk
k 1
n
n
f ( k ) sk M sk ML,
C C
10
定 理 2 设光滑曲线C由参数方程给出: C : z z ( t ) x( t ) iy( t ) ( t ),
z ( ) 是起点, z ( ) 是终点,f ( z ) u( x , y ) iv ( x , y )
在包含C的区域D内连续,则
C
f ( z )dz
C
f ( z )dz 存在,
C f ( z )dz C udx vdy iC vdx udy
8
证 设 ζ ξ iη k k k 明
,则
zk zk zk 1 ( xk iyk ) ( xk 1 iyk 1 ) ( x k x k 1 ) i ( y k y k 1 ) x k i y k
β α
12
i v[ x( t ), y( t )] x( t ) u[ x( t ), y( t )] y ( t )dt .
f z ( t ) z ( t )dt
如果C是由C1, C2, …, Cn年等光滑曲线段依 次相互连接所组成的按段光滑曲线,那么定义
o
3 2
x
27
§3 基本定理的推广—复合闭路定理
复变函数ppt第三章

移向得
∫C0 f ( z)dz = ∫C1 f ( z)dz + ∫C2 f ( z)dz + L+ ∫Cn f ( z)dz
完
27
例3 设C为一简单闭光滑曲线, a∈C.计算积分 ∫ C
page47
dz . z−a
参考解答 a
C
r
a
C
Cr
(1)
(2)
完
28
dz 例4 计算积分 ∫ C 2 . 积分按逆时针方向,沿曲线 逆 z −z C进行,C是包含单位圆周|z|=1的任意一条光
31
定理3 定理3 设w=f(z) 在单连通区域D内解析,则由
F(z) = ∫ f (ξ )dξ
z0
z
z ∈ D (Th3-1)
定义的函数F(z)在D内解析,且
F ′( z ) = f ( z )
参考证明
完
32
牛顿-莱布尼兹公式
定理4 定理4 设w=f(z) 在单连通区域 单连通区域D内解析, Φ ( z )是f(z) 单连通区域 的任一原函数,那么
都含在C0内部,这n+1条曲线围成了一个多连通区域 多连通区域 D,D的边界 ∂D 称为复闭路 复闭路. 复闭路 左手法则定正向: 左手法则定正向 沿着D的边界走, 区域D的点总在 左手边.
C0
C3
C2 C1
∴当C0取逆时针, C1 , C2 ,L , Cn都取顺时针.
24
∂D = C 0 + C1 + C 2 +
第三章 复变函数的积分 复变函数
引言 复变函数积分的概念 柯西—古萨定理 柯西 古萨定理 柯西积分公式、 柯西积分公式、 解析函数的高阶导数公式 解析函数与调和函数的关系
大学物理-二维调和函数与平面场 保角变换法
平面上区域 D 内解析的复变函数 w = u + i v 的实部或虚部。
例如,可以令 U 等于 w 的实部:
U u
(3-6-6)
设已给定了平面静电场的电势 U ,也就是给定了 w 的
实部 u,利用 (1-3-14) 可以求出 w 的虚部 v 。这样得到的
复变解析函数 w 称为静电场的复电势。
在 w 平面上,两个方程
[u = C1 ] 成为
y2 4C12 (C12 x)
(3-6-13)
这于是一族抛物线,如图 3-6-1 中的虚线。这是带电平板边
沿所产生的电场。
备忘:平面静电场等势线和电场线的共轭关系 因为解析函数的实部与虚部均为调和函数,所以当
用解析函数的实部 u 表示平面静电场的等势线时,其虚 部 v 表示电场线。具体说明如下:
w az b ,
a
b 0
cz d c d
(3-6-25)
式中,a,b,c,d 为常数 (若 ad – bc = 0,则 w 将恒等于常数)。 我们来讨论由它实现的保角变换。若 c ≠ 0,式 (3-6-25)
可改写为
a (cz d ) b ad
w c
c A
B
cz d
zC
(3-6-26)
2v y 2
0
(3-6-1b)
即 v = v (x,y) 也是调和函数。
我们证明了,在区间 D 内解析的复变函数的实部和虚 部都是该区间内的二维调和函数。这两个二维调和函数之 间有关系 (3-6-2)。通常称它们是相互共轭的调和函数。
(二) 平面场的复电势——解析函数的应用
定理一 (教材 p20) 可以用来研究平面上的拉普拉斯方 程。考虑在 xy 平面的区域 D 内的平面静电场,其场强为
数理方法资料1
课程介绍数学物理方法是物理类专业的必修课和重要基础课,也是一门公认的难道大的课程。
该课程通常在本科二年级开设,既会涉及到先行课高等数学和普通物理的内容,又与后续课程密切相关。
故这门课学习情况的好坏,将直接关系到后继课四大力学和专业课程的学习问题,也关系到学生分析问题解决问题的能力的提高问题。
如何将这门“难教、难学、难懂”的课变为“易教、易学、易懂”的课,一直是同行教师十分关注的问题。
本课程包括复变函数论、数学物理方程、特殊函数、非线性方程和积分方程共四篇的内容。
其中,第一篇复变函数论又含解析函数、解析函数积分、无穷级数、解析延拓·Г函数和留数理论五章;第二篇数理方程又包括:定解问题、行波法、分离变量法、积分变换法和格林函数法五章;第三篇特殊函数又包括勒让德多项式、贝塞耳函数、斯特姆-刘维本征值问题三章;而第四篇包括非线性方程、积分方程两章。
第一、二、三篇为传统数学物理方法课程所含内容,而第四篇是为了适应学科发展需要所引入的传统同类教材中没有的与前沿科学密切相关的新内容。
《数学物理方法》是物理系本科各专业学生必修的重要基础课,是在"高等数学"课程基础上的又一重要的基础数学课程,它将为进行下一步的专业课程学习提供基础的数学处理工具。
所以,本课程受到物理系学生和老师的重视。
对一个物理问题的处理,通常需要三个步骤:一、利用物理定律将物理问题翻译成数学问题;二、解该数学问题;三、将所得的数学结果翻译成物理,即讨论所得结果的物理意义。
因此,物理是以数学为语言的,而"数学物理方法"正是联系高等数学和物理专业课程的重要桥梁。
本课程的重要任务就是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法,如分离变数法、付里叶级数法、幂级数解法、积分变换法、保角变换法、格林函数法、电像法等等。
近十几年来,负责厦门大学物理系"数学物理方法"课程教学的教师共有三位(朱梓忠教授,张志鹏,李明哲副教授),他们都是中青年教师,均获得物理方面的理学博士学位。
【复变函数】第三章 复变函数的积分(工科2版)
n
c
f ( z )dz f ( z )dz
c
C=C1+C2(其中C,C1,C2同方向)
c
f ( z )dz f ( z )dz f ( z )dz
c1 c2
目录
上页
下页
返回
结束
推广
C Ck (其中C,C1,…,Cn同方向)
k 1
n
④ 有界性
7 I 12i C1 C2 2
目录
上页
下页
返回
结束
结论: 积分 C f ( z )dz 与路径无关
由例3 积分 C zdz 与路径无关
f (z) 解析
zdz ( xdx ydy) i ( xdy ydx)
c
积分与路径无关
f ( z ) z x iy u iv
· 0·
2. I
C1
C2
C1 : (0,0) (3,0); 其中 C2 : (3,0) (3, 4)
dy 0
dx 0
y 0, dy 0 y 0, dy 0
C1
3
0
9 xdx 2
· 3
x
C2
4
0
( y 3i )dy 8 12i
z0 z z
Proof(1) F ( z) f ( )d
f ( z)dz (udx vdy) i (udy vdx)
c
积分与路径无关
C-R条件
u v , x y
v u 且偏导数连续 x y
目录
第3章 复变函数的积分
f
(n)
n! f ( z) ( z0 ) d z (n 1, 2,) n 1 2 π i C ( z z0 )
其中C为在函数 f (z)的解析区域D内围绕 z0的任何一条正
向简单曲线, 而且它的内部全含于D.
[证] 设z0为D内任意一点, 先证n=1的情形, 即
f ( z0 ) 1 f ( z) f ( z Δ z ) f ( z ) 0 0 d z 按定义 f ( z0 ) lim , 2 Δ z 0 2 π i C ( z z0 ) Δz
在复平面内必有零点。
1 证明: 反设P( z)在复平面内无零点。故 在全平面解析。 P( z ) 1 因lim P( z ) , lim 0. 存在充分大的R, 当 | z | R时,有 1 1. z z P( z ) P( z ) 1 又因 在 | Z | R有界, 从而在全平面有界。 P( z ) 1 由Liouviue定理知, 是常数。 P( z )
C
f ( z )dz i( )A
C
f ( z )dz
C
A dz za
C
( z a) f ( z ) A dz za
C
( z a) f ( z ) A ds za
取 ,
C
ds ( ) ( ) .
f ( z0 Δ z ) f ( z0 ) 1 f ( z) dz Δz 2 π i C ( z z0 )( z z0 Δ z )
因此
f ( z0 Δ z ) f ( z 0 ) 1 f ( z) dz 2 2 π i C ( z z0 ) Δz 1 f ( z) 1 f ( z) dz dz 2 2 π i C ( z z0 ) 2 π i C ( z z0 )( z z0 Δ z )