中考数学探索题训练—找规律总结

合集下载

初三数学规律题归纳总结

初三数学规律题归纳总结

初三数学规律题归纳总结数学是一门需要逻辑思维和规律总结的科学,而初三数学规律题是培养学生分析问题、归纳总结的重要方式之一。

在这篇文章中,将对初三数学规律题进行全面的归纳总结,帮助同学们更好地理解和应用规律题。

一、数字规律题数字规律题是初三数学中常见的题型,通过观察和分析数字的变化规律来推测接下来的数字。

在解答该类题目时,同学们可以根据以下几个方面来总结规律:1. 顺序规律:观察数字的排列顺序,比较数字之间的差异,如果发现数字之间存在等差或等比关系,则可以推测出接下来的数字。

2. 位数规律:关注数字的位数,观察数字位上的变化规律。

有时候数字会在个位、十位、百位等不同位置上产生规律性变化,同学们需要灵活应用数学运算和进制知识来推测接下来的数字。

3. 运算规律:观察数字之间的运算规律,有时候数字之间存在加法、减法、乘法或除法等规律。

同学们需要通过运算规律推测出接下来的数字。

二、图形规律题图形规律题是初三数学中另一个常见的题型,通过观察图形的形状、大小、颜色等特征来总结规律。

在解答该类题目时,同学们可以从以下几个方面入手:1. 形状规律:观察图形的形状变化规律,有时候图形会在数个几何形状之间轮换,同学们可以通过观察和比较来推测接下来的图形。

2. 大小规律:注意观察图形的大小变化规律,有时候图形会在数个大小之间交替变化,同学们需要通过比较来找出规律。

3. 颜色规律:关注图形的颜色变化规律,有时候图形会在几种颜色之间循环出现。

同学们可以通过观察和分析来总结出接下来的图形颜色。

三、函数规律题函数规律题是初三数学中较为复杂的题型,涉及到多个变量的关系。

在解答该类题目时,同学们可以通过以下几个步骤进行推测:1. 建立函数关系:首先要明确给定的变量之间存在什么函数关系,可以通过列出函数表达式或者绘制函数图像来进行分析。

2. 推测函数值:根据函数关系,推测给定变量对应的函数值。

可以通过计算、观察图像或者多组数据的对比来确定函数值。

专题13数字图形规律探索问题(解析版) -2021年中考数学必考的十五种类型大题夺分技巧再训练

专题13数字图形规律探索问题(解析版) -2021年中考数学必考的十五种类型大题夺分技巧再训练

专题13 数字图形规律探索问题1. 数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1-.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:,所以,+++…+=.拓广应用:计算+++…+.【答案】见解析【解析】探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,根据第n次分割图可得等式:+++…+=1﹣,两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+…+1﹣,=n ﹣(+++…+),=n ﹣(﹣),=n ﹣+.2.如图1,抛物线2(0)yax bx c a 的顶点为M ,直线y=m 与x 轴平行,且与抛物线交于点A ,B ,若三角形AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高。

中考规律探索题与答案

中考规律探索题与答案

探索规律题类型一数字规律1、下面是按一定规律排列的一列数:,那么第n个数是.解析∵分子分别为1、 3 、5 、 7 ,⋯,∴第 n 个数的分子是2n ﹣ 1 。

∵4 ﹣ 3=1=1 2 ,7﹣3=4=2 2 ,12﹣3=9=3 2 ,19﹣3=16=42,⋯,∴第n 个数的分母为n 2 +3。

∴第n个数是。

2、观察下列等式:,,,,,,。

试猜想,的个位数字是 __ ___。

解析本题主要考查规律探索。

观察等式:,,,,,可得,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,个位数字的变化是以、、、为周期,即周期为,又因为,所以的个位数字与的个位数字相同为。

故本题正确答案为。

考点规律探索。

3 、古希腊数学家把数1,3,6,10,15,21,叫做三角形数, 它有一定的规律性 , 若把第一个三角形数记为, 第二个三角形数记为,第n个三角形数记为, 则.答案解 :,═,,═,═, ⋯,,则,因此,本题正确答案是:.解析根据三角形数得到,,,,, 即三角形数为从 1 到它的顺号数之间所有整数的和, 即、,然后计算可得 .4 、按一定规律排列的一列数:,,,,,,,,请你仔细观察,按照此规律对应的数字应为_____。

答案解析本题主要考查规律探索。

将中间两个化为分数之后为:,,,,,,,,观察可知分子是从开始不断递增的奇数,分母是从开始不断递增的质数,那么根据这个规律即可得到。

故本题正确答案为。

考点规律探索。

5 、如图 , 下列各图形中的三个数之间均具有相同的规律, 依此规律 , 那么第 4个图形中的,一般地 , 用含有 m,n 的代数式表示 y, 即.答案解:观察,发现规律:,,,,因此,本题正确答案是:63;解析观察给定图形 , 发现右下的数字=右上数字( 左下数字, 依此规律即可得出结论 .6 、观察下列数据:,,,,,,它们是按一定规律排列的,依照此规律,第个数据是 _____ 。

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

中考数学总复习专题5规律探索题

中考数学总复习专题5规律探索题
为(x1,2),则x1=
;图2013的对称中心的横坐标为
.
12/9/2021
第十七页,共三十七页。
题型分类突破
类型
类型
类型
(lèixíng)
(lèixíng)
(lèixíng)



分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一次,特征点
增加5个,由此得出图4中特征点的个数为17+5=22个,进一步猜想出:在图n中,
类型
类型
类型
(lèixíng)
(lèixíng)
(lèixíng)



类型三
直角坐标系下点的坐标变化规律
例5(2013·安徽,18)我们把正六边形的顶点及其对称中心称作如图1所
示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制
并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…
∴x1= 3.
由题意,可得题图 2 的对称中心的横坐标为 3 + 3=2 3,
图 3 的对称中心的横坐标为 3+2× 3=3 3,
图 4 的对称中心的横坐标为 3+3× 3=4 3,

∴图 2013 的对称中心的横坐标为
3+2012× 3=2 013 3.
答案:(1)22 5n+2 (2) 3 2 013 3
【解决问题】
12/9/2021
.
.
图2
12 +22 +32 +…+2 0172
根据以上发现,计算
的结果.
1+2+3+…+2

2023年九年级数学中考专题:规律探索题(含简单答案)

2023年九年级数学中考专题:规律探索题(含简单答案)

2023年九年级数学中考专题:规律探索题一、单选题1.将一些相同的“O”按如图所示摆放,观察每个图形中的“O”的个数,若第n个图形中“O”的个数是78,则n的值是()……第1个图形第2个图形第3个图形第4个图形A.11B.12C.13D.142.桌子上有8只杯口朝上的茶杯,每次翻转3只,经过n次翻转可使这8只杯子的杯口全部朝下,则n的最小值为().A.3B.4C.5D.63.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70B.71C.72D.734.如下表,从左到右在每一个小格中都填入一个整数,使任意三个相邻的格子所填的整数之和都相等,则第2017个格子中的整数是()A.-2B.6C.-4D.125.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A.6 个B.7个C.8个D.9 个6.将正整数1至2016按一定规律排列如表:平移表中带阴影的方框,方框中三个数的和可能是()A.2000B.2019C.2100D.21487.把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2};{1,4,7};我们称之为集合,其中的每一个数称为该集合的元素.规定:当整数x是集合的一个元素时,100-x也必是这个集合的元素,这样的集合又称为黄金集合,例如{-1,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数m,且1180<m<1260,则该黄金集的元素的个数是()A.23B.24C.24或25D.268.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列.根据图中的排列规律可知,有理数-5 在“峰1”中D的位置.则有理数-2021在“峰”中A,B,C,D,E中的位置.题中两空分别代表()A.403D B.404D C.403A D.404E二、填空题9.幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为____________.10.下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.11.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 2020的坐标为________________.12.在一次猜数字游戏中,小红写出如下一组数:1,69415,,,57311…,小军猜想出的第六个数字是1813,也是正确的,根据此规律,第n 个数是_____. 13.一列数按如下的规律排列:1213214321,,,,,,,,,1121231234,则从左边第一数开始数,34为第______个数. 14.下列单项式:-x 、2x 2、-3x 3、4x 4…-19x 19、20x 20…根据你发现的规律,第2015个单项式是___________.15.根据以下图形变化的规律,第2016个图形中黑色正方形的数量是______.16.如图,C 在直线BE 上,∠ABC 与∠ACE 的角平分线交于点1A ,∠A=m,若再作∠1A BE 、∠1A CE 的平分线,交于点2A ;再作∠2A BE 、∠2A CE 的平分线,交于点3A ;……;依次类推,则A n 为_______.三、解答题17.仔细观察下列等式:第1个:52﹣12=8×3第2个:92﹣52=8×7第3个:132﹣92=8×11第4个:172﹣132=8×15…(1)请你写出第6个等式:;(2)请写出第n个等式,并加以验证;(3)运用上述规律,计算:8×7+8×11+…+8×399+8×403.18.图∠是一个三角形,分别连接这个三角形三边的中点得到图∠;再分别连接图∠中间小三角形三边的中点,得到图∠.(1)图∠有个三角形;图∠有个三角形;(2)按上面的方法继续下去,第n个图形中有多少个三角形(用n的代数式表示结论).19.如图,是用三角形(黑色)和六边形(白色)按一定规律拼成的图案.(1)图∠中六边形与三角形的个数各是多少?(2)如果按这样的规律继续拼下去,第n个图案中,六边形的个数是多少?三角形的个数又是多少?(用含n的代数式表示)(3)能否拼成一个同时含有108个六边形和228个三角形的图案?20.观察下列有规律的数:111111,,,,,2612203042⋯根据据规律可知:(1)第7个数,第n个数是(n是正整数);(2)1132是第个数;(3)计算:1111111 261220304220182019+++++++⨯.参考答案:1.B2.B3.B4.C5.C6.D7.C8.D9.210.311.(1010,0)12.3 21n n+13.1914.-2015x201515.302416.2nm17.(1)252﹣212=8×23;(2)第n个等式是:(4n+1)2﹣(4n﹣3)2=8(4n﹣1),验证见解析;(3)164000.18.(1)5,9;(2)43n-19.(1)观察图形发现有3个六边形,8个三角形;(2)第n个图形有n个六边形,有(22n+)个三角形;(3)不能20.(1)156,1n(n1)+;(2)11;(3)20182019.答案第1页,共1页。

中考数学复习指导:探索规律型问题归类解析

探索规律型问题归类解析探索规律型问题是历年中考数学试题中的重要题型之一,其特点是给出一组变化了的数字、式子、表格、图形等,要求学生通过观察、归纳、猜想、验证、类比,探求其内在规律.1.通用的解题策略解答规律型问题一般要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.这种“特殊——一般——特殊”的解题模式,体现了总结归纳的数学思想,也正是人们认识新事物的一般过程.具体来说,就是先写出开头几个数式的基本结构,然后通过横比或纵比找出各部分的特征,写出符合要求的结果.例1 如图1,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“L”形由3个正方形组成,第2个黑色“L”形由7个正方形组成,…那么组成第6个黑色“L”形的正方形个数是( )(A)22 (B)23 (C)24 (D)25解析从特例入手:如图1.纵比正方形的个数3,7,11,15中,后一个数比前一个大4(即相邻两数的差为4),猜想与4有关.横比3与1,7与2,11与3,15与4之间有何关系?联想到与4有关,故改写为:3=4×1-1,7=4×2-1.11=4×3-1,15=4×4-1.猜想组成第6个黑色L形的正方形个数是4 ×6-1=23个.故选B.点评考察相邻两数的差(或商)是探究数字规律的常用手段.常见的类型有:相邻两数的差(或商)相等或成倍数关系,相邻两数的差相等与商相等交替出现等.2.关注特殊数列(1)斐波那契数列:1,1,2,3,5,8,13,21…(其规律为:从第三项开始,每一项都等于前两项之和);(2)平方数数列:1,4,9,16,25,36…(其规律为:n2,即每一项都等于项数的平方).例2 有一组数:1,2,5,10,17,26…请观察这组数的构成规律,用你发现的规律确定第8个数为_______.解析规律为:n2+1(n=0,1,2…).答案:50.点评此类题要注意n2,n2+1,n2-1等(3)三角形数列:1,3,6,10,15,21,…(其规律为1+2+3+…+n)例3 世界上著名的莱布尼茨三角形如图2所示,则排在第10行从左边数第3个位置上的数是:( )(A)(B)(C)(D)解析从第3行起,从左边数第3位置上的数分别为,,,,…它们的分母可分别改写为:1×3,3×4,6×5,10×6,15×7,21×8,…,而1,3,6,10,15,21,…,正是三角形数,故答案为:.选B.(4)杨辉三角形,杨辉三角形斜边上1以外的各数,都等于它“肩上”的两数之和,如图3.(5)与等差等比数列有关的数列.如例1中3,7,11,15…就是一个等差数列.例4 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数应是_______.解析第二个加数1,2,4,8…规律为2n(为一等比数列,也要关注这一数列),第一个加数2,3,5,9…比第二个加数大1.所以第六个数为(25+1)+25=65.例5 一组按规律排列的数:…请你推断第9个数是________.解析这列数的分母为2,3,4,5,6…的平方数,分子形成二阶等差数列,依次相差2,4,6,8…故第9个数分子为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为.(6)与循环有关的问题例6 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a3;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;……依此类推,则a2008=_______.解析根据题意可算出a1=26,a2=65,a3=122,a4=26,a5=65,a6=122,…发现每3个数就出现一次循环.所以由2008=669×3+1,可得a2008=a1=26.点评一列数由某m个数循环出现组成,可依据同余等值(由n=p·m+r得a n=a r)实施转换.(7)分奇数项偶数项的问题例7 一组按规律排列的式子:,…(a b≠0),其中第7个式子是________,第n个式子是_(n为正整数).解析6的指数2,5,8,11…,相邻两数差为3,是等差数列,其规律为3n-1;再注意到奇数项为负,偶数项为正,则第n个式子为第七个式子为3.特殊数列的迁移例8 把数字按如图4所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围的一列,从上至下依次为1.5.13.25.…,则第10个数为_______.解析1 中间框出的一列数的规律为:第n个数为1+4+8+12+…+4(n-1).所以第10个数为1+4+8+12+…+36=.解析2 用虚线圈出的一列数1,5,13,25可改写为:02+12,12+22,22+32,32+42,猜想第10个数为92+102=181.点评此列数可看成是平方数数列的迁移.例9 图5中是与杨辉三角有类似性质的三角形数垒.a,b,c,d是相邻两行的前四个数,那么当a=8时,c=_______,d=_______.解析除两边外,中间的每个数等于肩上两数的和.答案:9;32.点评此列数可看成是杨辉三角形的迁移.4.关注中考新题型例10 观察图6所示表格,依据表格数据排列的规律,数2008在表格中出现的次数共有_______次.解析从特例入手,通过扩充表格可得:数1,2,3,4,5,6,7,8,9,10出现次数分别为1,2,2,3,2,4,2,4,3,4.出现的次数恰为给定数的所有因数的个数,而2008的因数为1,2,4,8,251,502,1004,2008等8个.故答案为8.点评本例中新产生的数为自然数的倍数,因此,其出现的次数与其因数的多少有关,仔细观察便会发现,其出现次数就是给定数所有因数的个数,本题规律的隐蔽性较强,因而有一定的难度.。

中考数学复习:规律探索

一.选择题(共27小题)1.按一定规律排列的单项式:a 2,4a 3,9a 4,16a 5,25a 6,…,第n 个单项式是中考数学复习:规律探索()A .n 2a n +1B .n 2a n ﹣1C .n n a n +1D .(n +1)2a n2.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A .10B .15C .18D .213.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m ,最大的“正方形数”为n ,则m +n 的值为()A .33B .301C .386D .5714.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A .B .C .D .5.根据图中数字的规律,若第n个图中出现数字396,则n=()A.17B.18C.19D.206.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.97.观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18B.19C.20D.218.将一列有理数﹣1,2,﹣3,4,﹣5,6,…,按如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数,2008应排在A、B、C、D、E中的位置.其中两个填空依次为()A.﹣28,C B.﹣31,E C.﹣30,D D.﹣29,B9.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34B.35C.37D.4010.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22022的末位数字是()A.2B.4C.6D.811.用火柴棍按如图所示的方式摆大小不同的“E”,依此规律,摆出第n个“E”需要火柴棍的根数是()A.2n+3B.4n+1C.3n+5D.3n+212.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把一个三角形数记为a1,第二个三角形数记为a2,…第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…,此推算,a100﹣a99=()A.99B.1C.101D.10013.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.201914.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为()A.75B.89C.103D.13915.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用棋子()A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚16.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1B.3C.7D.917.将一些完全相同的三角形按如图所示的规律排列,第①个图形中有2个三角形,第②个图形中有5个三角形,第③个图形中有10个三角形,第④个图形中有17个三角形,…,按此规律排列,则第⑥个图形中三角形的个数为()A.26B.37C.50D.6518.我们把一些有理数按照一定的顺序排成一列,将第1个数记作a1,第2个数记作a2,…,第n个数记作a n.这样得到a1,a2,…,a n,如果这n个数满足:从第2个数开始,每个数都等于1与它前面的那个数的倒数的差,且a1=﹣2,那么a2016=()A.B.C.﹣2D.19.如图,观察这组图形中五角星的个数,其中第①个图形中共有4个五角星,第②个图形中共有10个五角星,第③个图形中共有18个五角星…,按此规律,则第⑥个图形中五角星的个数为()A.64B.34C.40D.5420.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,…,按此规律,则第⑥个图形中的鲜花盆数为()A.26B.37C.38D.5121.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.5122.下列图形都是由同样大小的★按照一定规律组成的,其中第①个图形中共有5个★,第②个图形中共有8个★,第③个图形中共有11个★,…,按此规律排列下去,第⑥个图形中的★个数为()A.18个B.20C.22D.2423.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.14B.20C.24D.2724.将一些完全相同的梅花按如图所示的规律摆放,第1个图形有5朵梅花,第2个图形有8朵梅花,第3个图形有13朵梅花,…,按此规律,则第11个图形中共有梅花的朵数是()A.121B.125C.144D.14825.下列图形都是由三角形按一定规律组成的,其中第①个图形共有3个顶点,第②个图形共有6个顶点,第③个图形共有10个顶点,…,按此规律排列下去,第⑦个图形顶点的个数为()A.66个B.55个C.45个D.36个26.下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A.252B.209C.170D.13527.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12二.填空题(共11小题)28.观察下列各项:1,2,3,4,…,则第n项是.29.观察以下一列数:3,,,,,…则第20个数是.30.如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有个菱形……,第n个图中共有个菱形.31.将一些圆按照如图方式摆放,从上向下有无数行,其中第一行有2个圆,第二行有4个圆,第三行有6个圆…按此规律排列下去,则前50行共有圆个.32.如图,用灰白两色正方形瓷砖铺设地面,则第10个图案中白色瓷砖块数为.33.将一些相同的“〇”按如图所示摆放,观察每个图形中的“〇”的个数,若第n个图形中“〇”的个数是78,则n的值是.34.用同样大小的小圆按下图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n个图形需要小圆个(用含n的代数式表示).35.观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…,则第15个图形中有个三角形.36.按照下列图形反映出的规律,那么第8个图形中有个点.37.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第98个图形中花盆的个数为.38.正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是.三.解答题(共4小题)39.用火柴棒按图中的方式搭图形:按图示规律填空:图形标号①②③④⑤火柴棒根数5913a b(1)a=,b=;(2)按照这种方式搭下去,则搭第n个图形需要火柴棒的根数为;(用含n 的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2021个图形需要的火柴棒根数.40.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)摆成第4个图案需要个三角形,摆成第6个图案需要个三角形.(2)摆成第n个图案需要个三角形.(3)摆成第203个图案需要几个三角形?41.如图所示:搭1条、2条、3条“金鱼”各用几根火柴棒?(1)根据上面的图形填写如表:金鱼条数123…n火柴根数…(2)搭100条金鱼需要多少根火柴棒?(3)搭多少条金鱼需要500根火柴棒?42.用若干个“〇”与“▲”按如图方式进行拼图:(1)观察图形,寻找规律,并将下面的表格填写完整:图1图2图3图4〇的个数3921▲的个数1410(2)根据你所观察到的规律,分别写出图n中“〇”与“▲”的个数(用含n的代数式表示).。

初中找规律题型总结

规律探究(1次课)1、二级数列这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。

例1:2 6 12 20 30 ( 42 )(2002年考题)A.38B.42C.48D.56解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。

例2:20 22 25 30 37 ( ) (2002年考题)A.39B.45C.48D.51解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。

例3:2 5 11 20 32 ( 47 ) (2002年考题)A.43B.45C.47D.49解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要选的答案与32的差应该是15,所以答案应该是C。

例4:4 5 7 1l 19 ( 35 ) (2002年考题)A.27B.31C.35D.41解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要选的答案与19的差应该是16,所以答案应该是C。

例5:3 4 7 16 ( 43 ) (2002年考题)A.23B.27C.39D.43解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应该是27,所以答案应该是D。

例6:32 27 23 20 18 ( 17 ) (2002年考题)A.14B.15C.16D.17解析:后一个数与前一个数的差分别为:-5,-4,-3,-2这显然是一个等差数列,因而要选的答案与18的差应该是-1,所以答案应该是D。

例7:1,4,8,13,16,20,( 25 ) (2003年考题)A.20B.25C.27D.28解析:后一个数与前一个数的差分别为:3,4,5,3,4这是一个循环数列,因而要选的答案与20的差应该是5,所以答案应该是B。

3.7中考专题——找规律


动到点 A1,第二次移动到点 A2……第 n 次移动到点 An,则点 A2019 的坐标是( )
A.(1010,0)
B.(1010,1)
C.(1009,0)
D.(1009,1)
4
初中极速数学
(二)相似:
19.(2019 雅安中考)如图,在平面直角坐标系中,直线 l1 :y
3 3
x
1 与直线
l2
(一)可转化为数字:
12. (2019 大庆中考)归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规
律摆下去,摆成第 n 个“T”字形需要的棋子个数为

13. (2019 天水中考)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第
2019 个图形中共有
个〇.
3 x
(x
0)
上,点
B1
的坐标为
(2,0).过 B1 作 B1A2 // OA1 交双曲线于点 A2 ,过 A2 作 A2 B2 // A1B1 交 x 轴于点 B2 ,得到第二个
等边△ B1A2B2 ;过 B2 作 B2 A3 // B1 A2 交双曲线于点 A3 ,过 A3 作 A3 B3 // A2 B2 交 x 轴于点 B3 ,得到第
1+3n
2 8 11 14 17 1. (2017 遵义中考)按一定规律排列的一列数依次为:,1,, , , ,…,按此规律,这列数中的第
3 7 9 11 13
100 个数是

2.(2019 百色中考)观察一列数:﹣3,0,3,6,9,12,…,按此规律,这一列数的第 21 个数是

(二)平方数:
例如:观察一列数:1,4,9,16,25,…,按此规律,这一列数的第 n 个数是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学找规律题专项训练 1、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。 2、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:

输入 … 1 2 3 4 5 … 输出 … … 那么,当输入数据是8时,输出的数据是( )

A、 B、 C、 D、 3、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子. 4、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n个小房子用了 块石子。

5、如下图是用棋子摆成的“上”字:

第一个“上”字 第二个“上”字 第三个“上”字 如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n个“上”字需用 枚棋子。

6、观察下面的点阵图和相应的等式,探究其中的规律: (1)在④和⑤后面的横线上分别写出相应的等式;

第4题 (2)通过猜想写出与第n个点阵相对应的等式_____________________。 7. 观察下列算式:122,224,328,4216,5232,6264,72128,通过观察,用你所发现的规律确定272的个位数字是( ) A. 2 B. 4 C.6 D. 8

8. 观察下列各式:1×3=21+2×1,

2×4=22+2×2, 3×5=23+2×3, 请你将猜想到的规律用自然数n(n≥1)表示出来: 。 9. 观察下列各式,你会发现什么规律?

3×5=42-1 5×7=62-1 ……11×13=122-1 请将你发现的规律用只含一个字母的表达式表示出来: 。 10. 观察下面一列数:2,5,10,x,26,37,50,65,……,根据规律,其中x表示的

数 是 。 11. 观察数列1,1,2,3,5,8,x,21,y,…,则2x-y=______________.

12. 观察下列等式:10122 、 31222 、 52322、73422 ……

用含自然数n的等式表示这种规律为 。 13. 已知:3223222,8338332,154415442,…若

bab

a21010

(a、b为正整数),则a+b= 。 14. 如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、

2、1……的规律报数,那么第2007名学生所报的数是 .

…… …… ①1=12; ②1+3=22; ③1+3+5=32; ④ ; ⑤ ; (1(2(3

(4

11、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_______________cm(用含n 的代数式表示)。

12、如图,都是由边长为1的正方体叠成的图形。例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。依此规律。则第(5)个图形的表面积 个平方单位。

13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块

第1次 第2次 第3次 第4次 ··· ··· ⑴ ⑵ ⑶

叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( ) A 25 B 66 C 91 D 120

14、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,…… 按这样的规律叠放下去, 第8个图中小立方体个数是 .

15、图1是棱长为a的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n层,第n层的小正方体的个数为s.解答下列问题:

(1)按照要求填表: (2)写出当n=10时,s= . n 1 2 3 4 …

s 1 3 6 …

图1 图2 图3 第18题图

16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即10n)时,需要的火柴棒总数为 根;

17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是 _______ (n为正整数).

18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n个图形中需用黑色瓷砖 ____ 块.(用含n的代数式表示)

19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空: 当黑色瓷砖为20块时,白色瓷砖为 块;当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为 块.

17题图 20、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有 个。 21、下面的图形是由边长为l的正方形按照某种规律排列而组成的.

(1)观察图形,填写下表: 图形 ① ② ③ 正方形的个数 8 图形的周长 18 (2)推测第n个图形中,正方形的个数为________,周长为______________(都用含n的代数式表示). 22、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。

23、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求....的是( )

A D C B A B C D 24、如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是( ) 25、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是( ) A. <1>和<2> B. <2>和<3> C. <2>和<4> D. <1>和<4>

26、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块块数为 . (n为正整数)

27、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案: ⑴ 第4个图案中有白色地面砖 块; ⑵ 第n个图案中有白色地面砖 块。 28、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分. 初中数学规律题集锦 一、棋牌游戏问题 1. 4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)

所示,那么她所旋转的牌从左数起是( ) A.第一张 B.第二张 C.第三张 D.第四张

2.小明背对小亮,让小亮按下列四个步骤操作:

第一步 分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步 从左边一堆拿出两张,放入中间一堆; 第三步 从右边一堆拿出一张,放入中间一堆; 第四步 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆. 这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是 . 3.如图(3)所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮

位于点( ) A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2) 4.图(4)是跳棋盘,其中格点上的黑色点为棋子, 剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A为已方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) A.2步 B.3步 C.4步 D.5步 二、空间想象问题 3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.

如右图(7),是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的

5. 图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的

第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。如此继续作下去,则在得到的第6个图形中,白色的正三角形的个数是

…….. 7. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方

形A1B1C1D1、A2B2C2D2、A3B3C3D3……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有 个.

程 前

似 锦 图(7)

图(1) 图(2) 图(3)

相关文档
最新文档