北师大——圆相关练习(七)
北师大版七年级(上)数学第20讲:多边形和圆的初步认识(教师版)——王琪

多边形和圆的初步认识一、多边形1. 由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。
2. 连接不相邻两个顶点的线段叫做多边形的对角线。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。
过n边形一个顶点有(n-3)条对角线,n边形共(n-3)×n / 2条对角线.n边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800/ n。
二、圆平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。
固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
类型一:多边形及其对角线1.下列说法中,错误的是()A.平行四边形的对角线互相平分 B.菱形的对角线互相垂直C.矩形的对角线相等 D.正方形的对角线不一定互相平分解:A、平行四边形的对角线互相平分,此选项正确,不合题意;B、菱形的对角线互相垂直,此选项正确,不合题意;C、矩形的对角线相等,此选项正确,不合题意;D、正方形的对角线一定互相平分,此选项错误,符合题意.故选:D。
2.在平面中,下列说法正确的是()A.四个角相等的四边形是矩形 B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形 D.四边相等的四边形是正方形解:A.四个角相等的四边形是矩形,正确; B.对角线垂直的平行四边形是菱形,故错误;C.对角线相等的平行四边形是矩形,故错误;D.四边相等的四边形应是菱形,故错误;故选:A。
3.平行四边形、矩形、正方形之间的关系是()A.B.C.D.解:平行四边形、矩形、正方形之间的关系是:.故选:A。
《圆的标准方程(第一课时)》课件7 (北师大版必修2)

小结:
本课研究了圆的标准方程推导过 程,对于这个方程必须熟记并能灵活 应用. 从三道例题的解题过程,我们 不仅仅要理解和掌握解题的思想方法, 也要学会从中发现和总结出规律性的 内在联系.
作业
1.《数学之友》T7.23. 2. 阅读教材P75—76.
3. 教材P77 练习第1—4题及P81 习题7. 6第1—4题 (书上).
(3) 经过点P(5,1),且圆心在 C(8, 3). (x 8)2 + ( y + 3)2 = 25
例3 求圆心在C(1, 2),半径为 2 5 的圆被x 轴所截得的弦长 . 法1(方程法) 圆的方程为 (x 1)2 + ( y + 2)2 = 20, 令y = 0,x 1 = 4,可得弦长为8. 法2(几何法) 根据半弦、半径、弦心 距组成直角三角形求(这里,弦心距 等于圆心C的纵坐标的绝对值).
3. 特殊位置的圆的方程: 圆心在原点: x2 + y2 = r2 圆心在x轴上:
圆心在y轴上:
(x a)2 + y2 = r2
x2+ (y b)2 = r2
回答问题:
1. 说出下列圆的方程:
(1) 圆心在原点,半径为3.
(2) 圆心在点C(3, 4), 半径为7.
2. 说出下列方程所表示的圆的圆 心坐标和半径: (1) (x + 7)2 + ( y 4)2 = 36 圆心C( 7, 4), r = 6 (2) x2 + y2 4x + 10y + 28 = 0 圆心C(2, 5), r = 1 (3) (x a)2 + y 2 = m2 圆心C(a, 0), r = |m|
小结: 点和圆之间存在有三种位置关系: 若已知圆的半径为r,点P(x0,y0) 和圆心C 之间的距离为d,则 P在圆上 d=r (x0 a)2 +( y0 b)2 =r2 P在圆外 d>r (x0 a)2 +(y0 b)2 >r2 P在圆内d<r (x0 a)2 +(y0 b)2 < r2
《圆的标准方程(第一课时)》课件7 (北师大版必修2)

3. 特殊位置的圆的方程: 圆心在原点: x2 + y2 = r2 圆心在x轴上:
圆心在y轴上:
(x a)2 + y2 = r2
x2+ (y b)2 = r2
回答问题:
1. 说出下列圆的方程:
(1) 圆心在原点,半径为3.
(2) 圆心在点C(3, 4), 半径为7.
2. 说出下列方程所表示的圆的圆 心坐标和半径: (1) (x + 7)2 + ( y 4)2 = 36 圆心C( 7, 4), r = 6 (2) x2 + y2 4x + 10y + 28 = 0 圆心C(2, 5), r = 1 (3) (x a)2 + y 2 = m2 圆心C(a, 0), r = |m|
小结: 点和圆之间存在有三种位置关系: 若已知圆的半径为r,点P(x0,y0) 和圆心C 之间的距离为d,则 P在圆上 d=r (x0 a)2 +( y0 b)2 =r2 P在圆外 d>r (x0 a)2 +(y0 b)2 >r2 P在圆内d<r (x0 a)2 +(y0 b)2 < r2
小结:
本课研究了圆的标准方程推导过 程,对于这个方程必须熟记并能灵活 应用. 从三道例题的解题过程,我们 不仅仅要理解和掌握解题的思想方法, 也要学会从中发现和总结出规律性的 内在联系.
作业
1.《数学之友》T7.23. 2. 阅读教材P75—76.
3. 教材P77 练习第1—4题及P81 习题7. 6第1—4题 (书上).
练习:点(2a, 1 a)在圆x2 + y2 = 4 的内部,求实数 a 的取值范围. 3 <a<1 5 例2 求满足下列条件的圆的方程: (1) 圆心在 x 轴上,半径为5,且过 点A(2, 3). (x 6)2 + y2 = 25或(x + 2)2 + y2 = 25
《圆的标准方程(第一课时)》课件7 (北师大版必修2)

(3)求以点C(1,3)为圆心,并且和 直线3x 4y 7 = 0相切的圆的方程. (x 1)2 + (y 3)2
256 = 25
练习
求满足下列条件的圆的方程:
(1) 经过点A(3,5)和B(3,7), 并且圆心在 x 轴上. (x + 2)2 + y2 = 50 (2) 经过点A(3,5)和B(3,7), 并且圆心在 y 轴上. x2 + ( y 6)2 = 10
例4 (教材P76.例3) 如图表示某圆拱桥 的一孔圆拱的示意 图. 该圆拱跨度AB = 20m, 拱高OP = 4m,在建造时每隔 4m需用一个支柱支 撑 , 求 支 柱 A2P2 的 长度(精确到0.01m).
y
P P 2
A A1 A2 O A3 A4 B
x
约为3.86m
例5 (教材P75 例2)已知圆的方 程x2 + y2 = r2,求经过圆上一点 M(x0,y0)的切线方程. 看书,并思考P76旁批“想一 想”. 一般地,过圆(x a)2 + ( y b)2 = r2 上一点M(x0,y0)的切线方程为 (x0 a)(x a) + ( y0 b)( y b) = r2.
问题:
(1) 求到点C(1, 2)距离为2的点的 轨迹方程. (x 1)2 + ( y 2)2 = 4
(2) 方程(x 1)2 + ( y 2)2 = 4表 示的曲线是什么?
以点C(1, 2)为圆心, 2为半径的圆.
1.圆的定义: 平面内与定点的距离等于定长的 点的集合(轨迹)叫做圆. 2.圆的标准方程: 求圆心为C(a, b), 半径为r的圆 的方程. (x a)2 + ( y b)2 = r2 称之为圆的标准方程.
《圆的标准方程(第一课时)》课件7 (北师大版必修2)

(1) 求到点C(1, 2)距离为2的点的 轨迹方程. (x 1)2 + ( y 2)2 = 4
(2) 方程(x 1)2 + ( y 2)2 = 4表 示的曲线是什么?
以点C(1, 2)为圆心, 2为半径的圆.
1.圆的定义: 平面内与定点的距离等于定长的 点的集合(轨迹)叫做圆. 2.圆的标准方程: 求圆心为C(a, b), 半径为r的圆 的方程. (x a)2 + ( y b)2 = r2 称之为圆的标准方程.
练习:点(2a, 1 a)在圆x2 + y2 = 4 的内部,求实数 a 的取值范围. 3 <a<1 5 例2 求满足下列条件的圆的方程: (1) 圆心在 x 轴上,半径为5,且过 点A(2, 3). (x 6)2 + y2 = 25或(x + 2)2 + y2 = 25
(2) 过点A(3,1)和B( 1,3), 且圆心在直线3x y 2 = 0上.
(x 2)2 + ( y 4)2 = 10
(3)求以点C(1,3)为圆心,并且和 直线3x 4y 7 = 0相切的圆的方程. (x 1)2 + (y 3)2
256 = 25
练习
求满足下列条件的圆的方程:
(1) 经过点A(3,5)和B(3,7), 并且圆心在 x 轴上. (x + 2)2 + y2 = 50 (2) 经过点A(3,5)和B(3,7), 并且圆心在 y 轴上. x2 + ( y 6)2 = 10
例4 (教材P76.例3) 如图表示某圆拱桥 的一孔圆拱的示意 图. 该圆拱跨度AB = 20m, 拱高OP = 4m,在建造时每隔 4m需用一个支柱支 撑 , 求 支 柱 A2P2 的 长度(精确到0.01m).
2022年必考点解析北师大版九年级数学下册第三章 圆专项练习试卷(含答案详解)

北师大版九年级数学下册第三章圆专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,Rt△ABC中,∠A=90°,∠B=30°,AC=1,将Rt△ABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()B C D.(πA2、如图,O是正方形ABCD的外接圆,若O的半径为4,则正方形ABCD的边长为()A.4 B.8 C.D.3、如图,⊙O中,半径OC⊥AB于D,且CD=2,弦AB=8,则⊙O的半径的长等于()A .3B .4C .5D .64、到三角形三个顶点距离相等的点是此三角形( )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点5、已知半径为5的圆,直线l 上一点到圆心的距离是5,则直线和圆的位置关系为( )A .相切B .相离C .相切或相交D .相切或相离6、如图,已知O 中,50AOB ∠=︒,则圆周角ACB ∠的度数是( )A .50°B .25°C .100°D .30°7、如图,直径AB =6的半圆,绕B 点顺时针旋转30°,此时点A 到了点A ',则图中阴影部分的面积是( )A .3πB .34πC .πD .3π8、下列说法正确的是( )A .等弧所对的圆周角相等B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .过弦的中点的直线必过圆心9、如图,菱形ABCD 中,60C ∠=°,2AB =.以A 为圆心,AB 长为半径画BD ,点P 为菱形内一点,连PA ,PB ,PD .若PA PB =,且120APB ∠=︒,则图中阴影部分的面积为( )A .23y π= B .23y π= C .23y π= D .23y π=10、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A .6,B .6,C . 6D .6,3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知圆锥的母线AB 长为40 cm ,底面半径OB 长为10 cm ,若将绳子一端固定在点B ,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是______________.2、如图,AB 是半圆O 的直径,AB =4,点C ,D 在半圆上,OC ⊥AB ,2BD CD =,点P 是OC 上的一个动点,则BP +DP 的最小值为______.3、已知正六边形的周长是24,则这个正六边形的半径为_____ .4、在半径为3的圆中,60°的圆心角所对的劣弧长等于_____.5、如图,五边形ABCDE是⊙O的内接正五边形,则ODC的度数是____.三、解答题(5小题,每小题10分,共计50分)1、如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB 上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.2、如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求AC长.3、如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且:CF是⊙O的切线.(1)求证:∠DCF=∠CAD.(2)探究线段CF,FD,FA的数量关系并说明理由;(3)若cos B35=,AD=2,求FD的长.4、在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB 是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有;(2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标y M的取值范围为12≤y M136≤,求S.(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点M,N是在以(2,0MN=MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.5、在平面直角坐标系xOy 中,已知抛物线212y x bx =+. (1)求抛物线顶点Q 的坐标;(用含b 的代数式表示)(2)抛物线与x 轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A ,B ,与x 轴交于点K .①判断△AOB 的形状,并说明理由;②已知E (2,0),F (4,0),设△AOB 的外心为M ,当点K 在线段EF 上时,求点M 的纵坐标m 的取值范围.-参考答案-一、单选题1、C【分析】根据题意,画出示意图,确定出点A 的运动路径,再根据弧长公式即可求解.【详解】解:根据题意可得,Rt △ABC 的运动示意图,如下:Rt △ABC 中,∠A =90°,∠B =30°,AC =1,∴60ACB ∠=︒,2BC =,AB =由图形可得,点A 的运动路线为,先以C 为中心,顺时针旋转120︒,到达点1A ,经过的路径长为120121803ππ⨯=,再以1B 为中心,顺时针旋转150︒,到达点2A ,顶点A 所经过的路径的长为23π=故选:C【点睛】 此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点A 的运动路线.2、D【分析】连接OB ,OC ,过点O 作OE ⊥BC 于点E ,由等腰直角三角形的性质可知OE =BE ,由垂径定理可知BC =2BE ,故可得出结论.【详解】解:连接OB ,OC ,过点O 作OE ⊥BC 于点E ,∴OB =OC ,∠BOC =90°,∴∠OBE =45°,45BOE ∠=︒∴OE =BE ,∵OE 2+BE 2=OB 2,∴BE =∴BC =2BE =ABCD 的边长是故选:D【点睛】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.3、C【分析】根据垂径定理得出AD =BD =118422AB ,设⊙O 的半径的长为x ,根据勾股定理222OB OD BD =+,即()22224x x =-+,解方程即可.【详解】解:∵半径OC ⊥AB 于D ,弦AB =8, ∴AD =BD =118422AB , 设⊙O 的半径的长为x ,∴OD =OC -CD =x -2,在Rt△ODB 中,根据勾股定理222OB OD BD =+,即()22224x x =-+,解得x =5,∴⊙O的半径的长为5.故选择C.【点睛】本题考查垂径定理,勾股定理,解拓展一元一次方程,掌握垂径定理,勾股定理,解拓展一元一次方程是解题关键.4、D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等.【详解】解:∵垂直平分线上任意一点,到线段两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边中垂线的交点.故选:D.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等.5、C【分析】根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.【详解】解:∵半径为5的圆,直线l上一点到圆心的距离是5,∴圆心到直线的距离等于或小于5,∴直线和圆的位置关系为相交或相切,故选:C . 【点睛】本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,①直线l 和⊙O 相交⇔d <r ;②直线l 和⊙O 相切⇔d =r ;③直线l 和⊙O 相离⇔d >r .6、B 【分析】根据圆周角定理,即可求解. 【详解】解:∵1,502ACB AOB AOB ∠=∠∠=︒ ,∴25ACB ∠=︒ . 故选:B 【点睛】本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键. 7、D 【分析】阴影面积为旋转后'A B 为直径的半圆面积加旋转后扇形面积减去旋转前AB 为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可. 【详解】∵直径AB =6的半圆,绕B 点顺时针旋转30° ∴A'B ABA'AB S S S S =+-阴影为直径的半圆扇形为直径的半圆 又∵'AB A B =∴A'B AB S S =为直径的半圆为直径的半圆∴ABA'S S =阴影扇形 ∵AB =6,∠ABA ’=30° ∴223063360360ABA'n r S S π︒⋅π⋅====π︒︒阴影扇形 故答案为:D . 【点睛】本题考查了扇形面积公式的应用,扇形面积公式为2360n r π︒,由旋转的性质得出阴影面积为扇形面积是解题的关键. 8、A 【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可. 【详解】解:A . 同弧或等弧所对的圆周角相等,所以A 选项正确;B .平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B 选项错误;C 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C 选项错误;D .圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D 选项错误.故选A. 【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键. 9、C【分析】过点P 作PM AB ⊥交于点M ,由菱形ABCD 得60DAB C ∠=∠=︒,2AB AD ==,由PA PB =,120APB ∠=︒得112AM AB ==,1602APM APB ∠=∠=︒,故可得30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,根据SAS 证明ABP ADP ≅,求出PM =ABPADPABD S S SS=--阴扇形.【详解】如图,过点P 作PM AB ⊥交于点M , ∵四边形ABCD 是菱形,∴60DAB C ∠=∠=︒,2AB AD ==, ∵PA PB =,120APB ∠=︒, ∴112AM AB ==,1602APM APB ∠=∠=︒, ∴30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒, 在ABP △与ADP △中,AB ADPAB PAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴()ABP ADP SAS ≅, ∴ABP ADP S S =△△,在Rt AMP △中,30PAM ∠=︒, ∴2AP PM =,222AP PM AM =+,即2241PM PM =+,解得:PM =∴260211222360223ABP ADPABD S S S Sππ⋅=--=-⨯⨯=阴扇形 故选:C . 【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键. 10、B 【分析】如图1,⊙O 是正六边形的外接圆,连接OA ,OB ,求出∠AOB =60°,即可证明△OAB 是等边三角形,得到OA =AB =6;如图2,⊙O 1是正六边形的内切圆,连接O 1A ,O 1B ,过点O 1作O 1M ⊥AB 于M ,先求出∠AO 1B =60°,然后根据等边三角形的性质和勾股定理求解即可. 【详解】解:(1)如图1,⊙O 是正六边形的外接圆,连接OA ,OB , ∵六边形ABCDEF 是正六边形, ∴∠AOB =360°÷6=60°, ∵OA =OB ,∴△OAB 是等边三角形, ∴OA =AB =6;(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,∵六边形ABCDEF是正六边形,∴∠AO1B=60°,∵O1A= O1B,∴△O1AB是等边三角形,∴O1A= AB=6,∵O1M⊥AB,∴∠O1MA=90°,AM=BM,∵AB=6,∴AM=BM,∴O 1M 故选B . 【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键. 二、填空题1、【分析】根据底面圆的周长等于扇形的弧长求解扇形的圆心角90,BAB '∠=︒ 再利用勾股定理求解即可. 【详解】解:圆锥的侧面展开图如图所示:设圆锥侧面展开图的圆心角为n °, 圆锥底面圆周长为210=20,40=20,180n BB 则n =90,∵40,AB AB224040402,BB即这根绳子的最短长度是,故答案为:【点睛】本题考查的是圆锥的侧面展开图,弧长的计算,掌握“圆锥的底面圆的周长等于展开图的弧长求解圆心角”是解本题的关键.2、【分析】如图,连接AD,PA,PD,OD.首先证明PA=PB,再根据PD+PB=PD+PA≥AD,求出AD即可解决问题.【详解】解:如图,连接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵2BD CD,∴∠DOB=23×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD∵PB+PD=PA+PD≥AD,∴PD+PB∴PD+PB的最小值为故答案为:【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.3、4【分析】由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.【详解】解:∵正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,又∵正六边形的周长为24,∴正六边形边长为24÷6=4,∴正六边形的半径等于4.故答案为4.【点睛】此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.4、π【分析】弧长公式为l =n 180rπ,把半径和圆心角代入公式计算就可以求出弧长. 【详解】解:半径为3的圆中,60°的圆心角所对的劣弧长=603180π⨯=π, 故答案为:π. 【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式. 5、54︒ 【分析】根据圆内接正五边形的定义求出∠COD ,利用三角形内角和求出答案. 【详解】解:∵五边形ABCDE 是⊙O 的内接正五边形, ∴∠COD=360725︒=︒, ∵OC=OD ,∴ODC ∠=(180)5412COD ︒-∠=︒, 故答案为:54︒. 【点睛】此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键. 三、解答题1、(1)45°;(2)AE +CE ,理由见解析;(3【分析】(1)连接AC,证A、B、E、C四点共圆,由圆周角定理得出∠AEB=∠ACB,证出△ABC是等腰直角三角形,则∠ACB=45°,进而得出结论;(2)在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,证△ABF≌△CBE(SAS),得出∠ABF=∠CBE,BF=BE,由等腰三角形的性质得出FH=EH,由三角函数定义得出FH=EH,进而得出结论;(3)分两种情况,由(2)得FH=EH,由三角函数定义得出AH=3BH=32BE,分别表示出CE,进而得出答案.【详解】解:(1)连接AC,如图①所示:∵α=90°,∠ABC=α,∠AEC=α,∴∠ABC=∠AEC=90°,∴A、B、E、C四点共圆,∴∠AEB=∠ACB,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∴∠ACB=45°,∴∠AEB=45°;(2)AE+CE,理由如下:在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图②所示:∵∠ABC =∠AEC ,∠ADB =∠CDE ,∴180°﹣∠ABC ﹣∠ADB =180°﹣∠AEC ﹣∠CDE ,∴∠A =∠C ,在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△CBE (SAS ),∴∠ABF =∠CBE ,BF =BE ,∴∠ABF +∠FBD =∠CBE +∠FBD ,∴∠ABD =∠FBE ,∵∠ABC =120°,∴∠FBE =120°,∵BF =BE ,∴∠BFE =∠BEF =11(180)(180120)3022FBE ︒︒︒︒⨯-∠=⨯-=, ∵BH ⊥EF ,∴∠BHE =90°,FH =EH ,在Rt△BHE中,1,2BH BE FH EH ====,∴22EF EH ===, ∵AE =EF +AF ,AF =CE ,∴.AE CE=+;(3)分两种情况:①当点D在线段CB上时,在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示,由(2)得:FH=EH,∵tan∠DAB=13 BHAH=,∴332AH BH BE==,∴32CE AF AH FH BE==-==,∴CEBE=;②当点D在线段CB的延长线上时,在射线AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图③所示,同①得:3,32FH EH AH BH BE ====,∴32CE AF AH FH BE==+==,∴CE BE综上所述,当α=120°,1tan3DAB∠=时,CEBE【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理、三角函数定义等知识;本题综合性强,构造全等三角形是解题的关键.2、(1)见解析;(2)15 2【分析】(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论. 【详解】(1)如图,∵DC⊥OA,∴∠1+∠3=90°,∵BD为切线,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)如图,作DF⊥AB于F,连接OE,∵DB=DE,∴EF=12BE=3,在Rt△DEF中,EF=3,DE=BD=5,∴DF4=∴sin∠DEF=DFDE=45,∵∠AOE90A A AEC+∠=︒=∠+∠,AEC DEF∠=∠,∴∠AOE=∠DEF,∴在Rt△AOE 中,sin∠AOE =45AE AO = , ∵AE =6,∴AO =152. 【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.3、(1)见解析;(2)2·FC FD FA =,见解析;(3)187【分析】(1)连接OC ,根据直径所对的圆周角为直角及切线的性质和各角之间的等量关系即可证明;(2)根据相似三角形的判定定理可得ΔΔΔΔ~ΔΔΔΔ,依据相似三角形的性质:对应边成比例即可得出;(3)根据同弧所对的圆周角相等可得:B ADC ∠=∠,3cos cos 5ADC B ∠=∠=,在Rt ACD ∆中,利用锐角三角函数可得65CD =,由勾股定理确定85AC =,由此得出34CD AC =,即为(2)中的相似比,设3FD x =,则4FC x =,32AF x =+,将其代入(2)中结论求解即可.【详解】解:(1)连接OC ,如图所示:∵AD 为O 直径,∴90ACD ∠=︒,90CAD ADC ∠+∠=︒,∵CF 为O 的切线,∴90OCF ∠=︒,即90OCD DCF ∠+∠=︒,∵OC OD =,∴OCD ADC ∠=∠,∴DCF CAD ∠=∠;(2)在ΔΔΔΔ与AFC ∆中,∵DCF CAD ∠=∠,F F ∠=∠,∴ΔΔΔΔ~ΔΔΔΔ, ∴FCFDAF FC =,∴2·FC AF FD =;(3)∵B ADC ∠=∠, ∴3cos cos 5ADC B ∠=∠=,在Rt ACD ∆中,2AD =,3cos 5CDADC AD ∠==, ∴6·cos 5CD AD ADC =∠=,∴85AC ==, ∴34CDAC =,由(2)结论可得:ΔΔΔΔ~ΔΔΔΔ,∴34FC FD CD AF FC AC ===, 设3FD x =,则4FC x =,32AF x =+,将其代入结论(2)可得:()()24332x x x =+, 解得:67x =或0x =(舍去), ∴1837FD x ==. 【点睛】题目主要考查圆周角定理、相似三角形的判定和性质、锐角三角函数解三角形、勾股定理等,理解题意,综合运用这些知识点是解题关键.4、(1)2;(2)①1(0,)2M ;②02S ≤≤;(3)1916π⎛ ⎝⎭;(4)1y >或1y <- 【分析】(1)O 的半径为1,则O 的最长的弦长为2,根据两点的距离可得2,EF CD EF ===而即可求得答案;(2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得M 的坐标;②由①可得当0S =时,y M 1=2,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,根据余弦求得11cos cos QO PO MOQ O OP OM OO ∠=∠==进而代入数值列出方程,解方程即可求得S 的最大值,进而求得S 的范围;(3)根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴,反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线,求得半径为1算即可; (4)根据(2)的方法找到MN 所在的圆心3O ,当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,即3OO 的中点1A 在以S l 与y 轴交点的纵坐标y 的取值范围【详解】(1)O 的半径为1,则O 的最长的弦长为2根据两点的距离可得2,EF CD EF ===2,2,2EF CD EF ∴<<>故符合题意的“反射线段”有2条;故答案为:2(2)①如图,过点B 作BO y '⊥轴于点O ',连接11A BA 点坐标为(0,2),B 点坐标为(1,1),∴AB ==45BAO '∠=︒,(0,1)O 'O 的半径为1,1190AOB ∠=︒11A B ∴1145B A O =︒线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,()00O ,,(0,1)O ' 1(0,)2M ∴ ②由①可得当0S =时,y M 1=2如图,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =, (0,1)O '1(,1)O S S ∴+()222211221OO S S S S ∴=++=++ 过1OO 中点Q ,作直线l 1OO ⊥交y 轴于点M ,则l 即为反射轴1(,)22S S Q +∴ 12≤y M 136≤,136OM ∴= 11cos cos QO PO MOQ O OP OM OO ∠=∠== 即11112136OO S OO += 即()21113126OO S =+⨯ ∴()2113126S S S ++=+ 解得1252,6S S ==-(舍)02S ∴≤≤(3)1MN =∴1M N ''= O 的半径为1,则M N O ''是等边三角形, 根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴, ∴反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线222OO ∴==2112OR OO ∴==∴当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积为2191=16ππ⎛⎛ ⎝⎭⎝⎭. (4)如图,根据(2)的方法找到MN 所在的圆心3O ,设(2,0)T则TM =2MN =3O MN 是等腰直角三角形3O L ML ∴,TL ∴==3TO ∴=当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,1SA ∴是3OO T 的中位线1312SA O T ∴==,13SA TO ∥即3OO 的中点1A 在以S∴若MN 是⊙O 的以直线l 为对称轴的“反射线段”,则l 为S 的切线设S 与y 轴交于点,C D 112OS OT ==,1SC SA =1OC ∴=同理可得1OD =∴反射轴l 与y 轴交点的纵坐标y 的取值范围为1y >或1y <-【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.5、(1)(-b ,-12b 2);(2)①直角三角形,见解析;②94≤Δ≤3 【分析】(1)y =12x 2+bx =12(x +b )2-12b 2,即可求解;(2)①求出抛物线的表达式为y=12x2,联立y=12x2和y=kx+2并整理得:x2-2kx-4=0,证明△ADO∽△OEB,即可求解;②△AOB的外心为M,则点M是AB的中点,MP是梯形BADG的中位线,则m=k2+2,进而求解.【详解】解:(1)∵y=12x2+bx=12(x+b)2-12b2,∴抛物线的顶点Q坐标为(-b,-12b2);(2)①∵抛物线与x轴只有一个公共点,∴△=b2-4×12×0=0,解得b=0,∴抛物线的表达式为y=12x2,如下图,分别过点A、B作x轴的垂线,垂足分别为D、G,设经过点(0,2)的直线的表达式为y=kx+2,联立y=12x2和y=kx+2并整理得:x2-2kx-4=0,则x1+x2=2k,x1x2=-4,∴y1=12x12,y2=12x22,则y1y2=14x12x22=4=-x1x2,∵AD=y1,DO=-x1,BE=y2,OE=x2,∴AD OD OE BE,∴∠ADO=∠BEO=90°,∴△ADO∽△OEB,∴∠AOD=∠OBE,∵∠OBG+∠BOG=90°,∴∠BOG+∠AOD=90°,即AO⊥BO,∴△AOB为直角三角形;②过点A作x轴的平行线交EB的延长线于点H,过点M作MN与y轴平行,交AH于N,∵△AOB的外心为M,MN∥y轴∥BH,∴点M是AB的中点,MP是梯形ABGD的中位线,∴MP=12(AD+BG)=12(y2+y1),则m=MP=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=k2+2,令y=kx+2=0,解得x=-2k,即点K的坐标为(-2k,0),由题意得:2≤-2k≤4,解得-1≤k≤12且k≠0,∴94≤k2+2≤3,即点M的纵坐标m的取值范围94≤m≤3.【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
课时训练 圆的方程(北师大版)
A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1.(2012·长春模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是().A.x2+y2=2 B.x2+y2= 2C.x2+y2=1 D.x2+y2=4解析AB的中点坐标为:(0,0),|AB|=[1-(-1)]2+(-1-1)2=22,∴圆的方程为:x2+y2=2.答案 A2.(2011·咸阳检测(二))圆心在y轴上,半径为1,且过点(1,2)的圆的方程为().A.x2+(y-2)2=1 B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1解析设圆心坐标为(0,b),则由题意知(0-1)2+(b-2)2=1,解得b=2,故圆的方程为x2+(y-2)2=1.答案 A3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为().A.(x-2)2+y2=5 B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5解析由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x2+(y+2)2=5.答案 D4.(2011·北京海淀检测)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是().A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎪⎨⎪⎧x =4+x 02,y =-2+y 02,解得⎩⎨⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1. 答案 A5.(2011·合肥模拟)已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( ). A.95 B .1 C.45 D.135解析 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 答案 C二、填空题(每小题4分,共12分)6.(2011·辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为________.解析 线段AB 的中垂线方程为2x -y -4=0,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为|CB |=10,所以圆C 的方程为(x -2)2+y 2=10. 答案 (x -2)2+y 2=107.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线的方程是________.解析 易知点C 的坐标为(-1,0),而所求直线与x +y =0垂直,所以所求直线的斜率为1,故所求直线的方程为y =x +1,即x -y +1=0. 答案 x -y +1=08.(2012·成都检测)已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析 由题意得C 上各点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去半径,即|1-1+4|2-2= 2.答案2三、解答题(共23分)9.(11分)(2012·盐城一调)经过三点A (1,12),B (7,10),C (-9,2)的圆的标准方程.解 法一 设圆的一般方程为:x 2+y 2+Dx +Ey +F =0,则⎩⎨⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0,解得D =-2,E =-4,F =-95,∴所求圆的方程为x 2+y 2-2x -4y -95=0, 即圆的标准方程为:(x -1)2+(y -2)2=100.法二 由A (1,12),B (7,10),得A 、B 的中点坐标为(4,11), k AB =-13,则AB 的中垂线方程为:3x -y -1=0.同理得AC 的中垂线方程为x +y -3=0, 联立⎩⎨⎧ 3x -y -1=0,x +y -3=0得⎩⎨⎧x =1,y =2.即圆心坐标为(1,2),半径r =(1-1)2+(2-12)2=10. ∴所求圆的标准方程为:(x -1)2+(y -2)2=100.10.(12分)已知一等腰三角形的顶点A (3,20),一底角顶点B (3,5),求另一底角顶点C (x ,y )的轨迹. 解 由|AB |=|AC |,得(x -3)2+(y -20)2=(3-3)2+(20-5)2, 整理得:(x -3)2+(y -20)2=225(x ≠3),故底角顶点C 的轨迹是以点(3,20)为圆心,半径为15的圆,除去点(3,35)和(3,5).B 级 综合创新备选(时间:30分钟满分:40分)一、选择题(每小题5分,共10分)1.(2011·杭州调研)若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y-2=0的距离等于1,则半径r的取值范围是().A.(4,6) B.[4,6) C.(4,6] D.[4,6]解析因为圆心(3,-5)到直线4x-3y-2=0的距离为5,所以当半径r=4时,圆上有1个点到直线4x-3y-2=0的距离等于1,当半径r=6时,圆上有3个点到直线4x-3y-2=0的距离等于1,所以圆上有且只有两个点到直线4x-3y -2=0的距离等于1时,4<r<6.答案 A2.(2011·江西)如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是z小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是().解析如图,建立直角坐标系,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧的长与小圆圆弧的长之差为0或2π.切点A在三、四象限的差为0,在一、二象限的差为2π.以切点A在第三象限为例,记直线OM与此时小圆O1的交点为M1,记∠AOM =θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×2=2θ,小圆圆弧的长为l2=2θ×1=2θ,则l1=l2,即小圆的两段圆弧与的长相等,故点M1与点M′重合.即动点M 在线段MO 上运动,同理可知,此时点N 在线段OB 上运动.点A 在其他象限类似可得,故M ,N 的轨迹为相互垂直的线段. 观察各选项知,只有选项A 符合.故选A. 答案 A二、填空题(每小题4分,共8分)3.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值为________.解析 l AB :x -y +2=0,圆心(1,0)到l AB 的距离d =|3|2=32,∴AB 边上的高的最小值为32-1.∴S min =12×(22)×⎝ ⎛⎭⎪⎫32-1=3- 2.答案 3- 24.(2012·重庆三校联考)已知A ,B 是圆O :x 2+y 2=16上的两点,且|AB |=6,若以AB 的长为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是________.解析 设圆心坐标为M (x ,y ),则(x -1)2+(y +1)2=⎝⎛⎭⎪⎫|AB |22,即为(x -1)2+(y +1)2=9.答案 (x -1)2+(y +1)2=9 三、解答题(共22分)5.(10分)求与x 轴相切,圆心在直线3x -y =0上,且被直线x -y =0截得的弦长为27的圆的方程.解 法一 设所求的圆的方程是(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线x -y =0的距离为|a -b |2, ∴r 2=⎝ ⎛⎭⎪⎫|a -b |22+(7)2,即2r 2=(a -b )2+14,①由于所求的圆与x 轴相切,∴r 2=b 2.② 又因为所求圆心在直线3x -y =0上,∴3a -b =0.③ 联立①②③,解得a =1,b =3,r 2=9或a =-1,b =-3,r 2=9. 故所求的圆的方程是(x -1)2+(y -3)2=9或(x +1)2+(y +3)2=9.法二 设所求的圆的方程是x 2+y 2+Dx +Ey +F =0, 圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为12D 2+E 2-4F . 令y =0,得x 2+Dx +F =0,由圆与x 轴相切,得Δ=0,即D 2=4F .又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2到直线x -y =0的距离为⎪⎪⎪⎪⎪⎪-D 2+E 22. 由已知,得⎝ ⎛⎭⎪⎪⎫⎪⎪⎪⎪⎪⎪-D 2+E 222+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F )⑤ 又圆心⎝ ⎛⎭⎪⎫-D2,-E 2在直线3x -y =0上, ∴3D -E =0.⑥ 联立④⑤⑥,解得D =-2,E =-6,F =1或D =2,E =6,F =1.故所求圆的方程是x 2+y 2-2x -6y +1=0,或x 2+y 2+2x +6y +1=0.6.(★)(12分)(2011·北京西城模拟)已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |.(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.思路分析 第(2)问画出曲线C 及l 1的图象,结合条件断定|QM |取最小值的情况.解 (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2.化简可得(x-5)2+y2=16,此即为所求.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图,由直线l2是此圆的切线,连接CQ,则|QM|=|CQ|2-|CM|2=|CQ|2-16,当CQ⊥l1时,|CQ|取最小值,|CQ|=|5+3|2=42,此时|QM|的最小值为32-16=4.【点评】解决有关圆的最值问题一般要“数”与“形”结合,根据圆的知识探求最值时的位置关系.解析几何中数形结合思想主要表现在以下两方面:(1)构建解析几何中的斜率、截距、距离等模型研究最值问题;(2)研究图形的形状、位置关系、性质等.。
《圆的标准方程(第一课时)》课件7 (北师大版必修2)
(x 2)2 + ( y 4)2 = 10
(3)求以点C(1,3)为圆心,并且和 直线3x 4y 7 = 0相切的圆的方程. (x 1)2 + (y 3)2
256 = 25
练习
求满足下列条件的圆的方程:
(1) 经过点A(3,5)和B(3,7), 并且圆心在 x 轴上. (x + 2)2 + y2 = 50 (2) 经过点A(3,5)和B(3,7), 并且圆心在 y 轴上. x2 + ( y 6)2 = 10
小结: 点和圆之间存在有三种位置关系: 若已知圆的半径为r,点P(x0,y0) 和圆心C 之间的距离为d,则 P在圆上 d=r (x0 a)2 +( y0 b)2 =r2 P在圆外 d>r (x0 a)2 +(y0 b)2 >r2 P在圆内d<r (x0 a)2 +(y0 b)2 < r2
例4 (教材P76.例3) 如图表示某圆拱桥 的一孔圆拱的示意 图. 该圆拱跨度AB = 20m, 拱高OP = 4m,在建造时每隔 4m需用一个支柱支 撑 , 求 支 柱 A2P2 的 长度(精确到0.01m).
y
P P 2
A A1 A2 O A3 A4 B
x
约为3.86m
例5 (教材P75 例2)已知圆的方 程x2 + y2 = r2,求经过圆上一点 M(x0,y0)的切线方程. 看书,并思考P76旁批“想一 想”. 一般地,过圆(x a)2 + ( y b)2 = r2 上一点M(x0,y0)的切线方程为 (x0 a)(x a) + ( y0 b)( y b) = r2.
小结:
本课研究了圆的标准方程推导过 程,对于这个方程必须熟记并能灵活 应用. 从三道例题的解题过程,我们 不仅仅要理解和掌握解题的思想方法, 也要学会从中发现和总结出规律性的 内在联系.
《圆的标准方程(第一课时)》课件7 (北师大版必修2)
例4 (教材P76.例3) 如图表示某圆拱桥 的一孔圆拱的示意 图. 该圆拱跨度AB = 20m, 拱高OP = 4m,在建造时每隔 4m需用一个支柱支 撑 , 求 支 柱 A2P2 的 长度(精确到0.01m).
y
P P 2
A A1 A2 O A3 A4 B
x
约为3.86m
例5 (教材P75 例2)已知圆的方 程x2 + y2 = r2,求经过圆上一点 M(x0,y0)的切线方程. 看书,并思考P76旁批“想一 想”. 一般地,过圆(x a)2 + ( y b)2 = r2 上一点M(x0,y0)的切线方程为 (x0 a)(x a) + ( y0 b)( y b) = r2.
小结:
本课研究了圆的标准方程推导过 程,对于这个方程必须熟记并能灵活 应用. 从三道例题的解题过程,我们 不仅仅要理解和掌握解题的思想方法, 也要学会从中发现和总结出规律性的 内在联系.
作业
1.《数学3. 教材P77 练习第1—4题及P81 习题7. 6第1—4题 (书上).
(3) 经过点P(5,1),且圆心在 C(8, 3). (x 8)2 + ( y + 3)2 = 25
例3 求圆心在C(1, 2),半径为 2 5 的圆被x 轴所截得的弦长 . 法1(方程法) 圆的方程为 (x 1)2 + ( y + 2)2 = 20, 令y = 0,x 1 = 4,可得弦长为8. 法2(几何法) 根据半弦、半径、弦心 距组成直角三角形求(这里,弦心距 等于圆心C的纵坐标的绝对值).
练习:点(2a, 1 a)在圆x2 + y2 = 4 的内部,求实数 a 的取值范围. 3 <a<1 5 例2 求满足下列条件的圆的方程: (1) 圆心在 x 轴上,半径为5,且过 点A(2, 3). (x 6)2 + y2 = 25或(x + 2)2 + y2 = 25
北师大版七年级上册数学配套练习(带答案)(2021年整理)
(完整)北师大版七年级上册数学配套练习(带答案)(word版可编辑修改)(完整)北师大版七年级上册数学配套练习(带答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)北师大版七年级上册数学配套练习(带答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)北师大版七年级上册数学配套练习(带答案)(word版可编辑修改)的全部内容。
(完整)北师大版七年级上册数学配套练习(带答案)(word 版可编辑修改)北师大七年级上第一章丰富的图形世界第1。
1。
1课时家庭作业 生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。
一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.; 2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4. 围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5. 正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________; 6. 圆柱、圆锥、球的共同点是_____________________________;7. 假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8. 圆可以分割成_____ 个扇形,每个扇形都是由___________________;9. 从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有 ;11.将下列几何体分类,柱体有: ,锥体有 (填序号) ;新知识点要小心呦!12.长方体由_______________个面_______________条棱_______________个顶点;13.半圆面绕直径旋转一周形成__________;二.选择题14.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B C D15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A) 10个(B) 9个(C) 8个(D) 7个16.如图的几何体是下面( )平面图形绕轴旋转一周得到的( )(A) (B)(C) (D)18.下面图形不能围成封闭几何体的是()(A)(B) (C)(D)三.解答题:A CB20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
北师大——圆相关练习(七)
1、⊙O中,∠AOB=∠84°,则弦AB所对的圆周角的度数为( )
A.42° B.138° C.69° D.42°或138°
2、如图1,⊙O的直径CD垂直于弦EF,垂足为G,若∠EOD=40°,则∠CDF等于( )
A.80° B. 70° C. 40° D. 20°
图1 图2 图3
3、如图2,PA、PB是⊙O的切线,切点分别为A 、B,点C在⊙O上.如果∠P=50°,那
么∠ACB等于( )
A.40○ B.50○ C.65○ D.130○
4、如图3,点A,B,C在⊙O上,AO∥BC,∠OAC=20°,则∠AOB的度数是( )
A.10° B.20° C.40° D.70°
5、已知⊙O的半径为5cm,弦AB∥CD,且6ABcm,8CDcm,则弦AB,CD间的距离
为( ).
A.1cm B.7cm C.5cm D.7cm或1cm
6、已知圆O的半径为1,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C
是切点,连结AC,若30CAB°,则BD的长为( ).
A.2 B.3 C.1 D.23
7、 ⊙O的半径为2,点P是⊙O外一点,OP的长为3,那么以点P为圆心,且与⊙O相
切的圆的半径为( ).
A.1或5 B.1 C.5 D.1或4
8、如图4,ABO是⊙的直径,弦303cmCDABECDBO于点,°,⊙的半径为,
则弦CD的长为( ).
A.3cm2 B.3cm C.23cm D.9cm
2
9、如图5,在平面直角坐标系中,点P(3a,a)是反比例函xy12与⊙O的一个交点,则
图中阴影部分的面积( ).
A.6π B.8π C.10π D.12π
10、如图6,已知⊙O的直径AB与弦AC的夹角为35°,过点C的切线PC与AB的延长线交
于点P,那么∠P等于( )
A.15° B.20° C.25° D.30°
11、已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是 .
12、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心3cm为半径作圆,
则⊙O与BC的位置关系是________.
13、如图7,△ABC为⊙O的内接三角形,O为圆心,OD⊥AB,垂足为D,OE⊥AC,垂足为
E,若DE=3,则BC=________.
14、如图8,ABC△内接于O⊙,ABBC,120ABC°,AD为O⊙的直径,6AC,
那么BD .
15、如图9,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,2cm为半径作⊙M,
当OM=______cm时,⊙M与OA相切.
16、如图10,⊙O是△ABC的外接圆,AB为直径,⌒AC=⌒CF,CD⊥AB于D,且交⊙O于G,
AF交CD于E.
(1)求∠ACB的度数;
(2)求证:AE=CE;
图4
C
A B
O
E
D
图5
图7
16题图
O
D
C
B
A
图6
图8 图10 图9
3
17、如图11,已知AB是⊙O的直径,点C,D在⊙O上,且AB=6,BC=3.
(1)求sin∠BAC的值;
(2)如果OE⊥AC,垂足为E,求OE的长;
(3)求tan∠ADC的值.(结果保留根号)
18、如图12,ABC△是⊙O的内接三角形,ACBC,D为⊙O中⌒AB上一点,延长
DA
至点E,使CECD.
求证:AEBD
19、如图13,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB
上一点,⊙O过A、E两点, 交AD于点G,交AB于点F.
(1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求∠EFG的度数.
图11
图12
B
A
C
D
E
G
O
F
图13
4
20、如图14,AB是⊙O的直径, P为AB延长线上任意一点,C为半圆ACB的中点,PD切
⊙O于点D,连结CD交AB于点E.
求证:(1)PD=PE;
(2)PBPAPE2.
21、如图15,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,
已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.
22、如图16,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延
长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AE.
求证:(1)AF//BE;
(2)△ACP∽△FCA;
(3)AB2=AF·BE
C
A
B
P
E
O
F
•
P
B
A
E
O
C
D
图14
图15
C
B
P
D
A
O
图16