2018年中考数学专题《有理数》复习试卷含答案解析

合集下载

2018年中考数学试题分类汇编:北师版数学七年级上册第2章《有理数》(2)有理数的加减乘除

2018年中考数学试题分类汇编:北师版数学七年级上册第2章《有理数》(2)有理数的加减乘除

2018年中考数学试题分类汇编:北师版数学七年级上册第2章《有理数》(2)有理数的加减乘除考点一:有理数的加法1.(2018∙自贡)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.2.(2018∙柳州)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.3.(2018∙铜仁)计算111112612209900+++++……的值为()A.1100B.99100C.199D.10099【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=112⨯+123⨯+134⨯+…+199100⨯=1﹣12+12﹣13+13﹣14+…+199﹣1 100=1﹣1100=99100.故选:B.4.(2018∙武汉)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.5.(2018∙德州)计算:|﹣2+3|= .【分析】根据有理数的加法解答即可.【解答】解:|﹣2+3|=1,故答案为:1考点二:有理数的减法6.(2018∙台湾)已知a=(314﹣215)﹣116,b=314﹣(215﹣116),c=314﹣215﹣116,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c 【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(314﹣215)﹣116=314﹣215﹣116,b=314﹣(215﹣116)=314﹣215+116,c=314﹣215﹣116,∴a=c,b≠c.故选:B.7.(2018∙台州)比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣3 【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.8.(2018∙新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.9.(2018∙咸宁)咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A.1℃B.﹣1℃C.5℃D.﹣5℃【分析】根据题意列出算式,再利用减法法则计算可得.【解答】解:这一天的温差是2﹣(﹣3)=2+3=5(℃),故选:C.10.(2018∙淄博)1122--计算的结果是()A.0 B.1 C.﹣1 D.1 4【分析】先计算绝对值,再计算减法即可得.【解答】解:1122--=1122-=0,故选:A.11.(2018∙呼和浩特)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.12.(2018∙临安区)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.13.(2018∙南充)某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:6﹣(﹣4)=6+4=10℃.故答案为:1014.(2018∙玉林)计算:6﹣(3﹣5)=.【分析】直接利用去括号法则进而计算得出答案.【解答】解:6﹣(3﹣5)=6﹣(﹣2)=8.故答案为:8.15.(2018∙常州)计算:|﹣3|﹣1=.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2考点三:有理数的加减混合运算16.(2018期中)把下列各式写成省略加号的和的形式,再进行计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12);(2)(﹣65)﹣7﹣(﹣3.2)+(﹣1);(3)﹣23﹣16﹣(﹣14)﹣12;(4)(﹣1123)﹣(﹣725)﹣1213﹣(﹣4.2).(5)235+(﹣112)+(3310)﹣(﹣212);(6)34+338﹣|﹣0.75|+(﹣512)+|﹣258|【分析】(1)首先写成省略加号的和的形式,然后正数和负数分别相加,然后把结果相加即可求解;(2)首先写成省略加号的和的形式,然后正数和负数分别相加,然后把结果相加即可求解;(3)首先写成省略加号的和的形式,然后通分相加即可求解;(4)首先写成省略加号的和的形式,然后同分母的先相加,然后把结果相加即可求解;(5)首先写成省略加号的和的形式,然后同分母的先相加,然后把结果相加即可求解;(6)首先取绝对值符号,写成省略加号的和的形式,然后同分母的先相加,然后把结果相加即可求解.【解答】解:(1)原式=﹣8+15﹣9+12=﹣8﹣9+15+12=﹣17+27=10;(2)原式=﹣65﹣7+165﹣1=﹣65+165﹣7﹣1=2﹣7﹣1=﹣5﹣1=﹣6;(3)原式=﹣23﹣16+14﹣12=﹣23﹣16﹣12+14=﹣1612+312=﹣1312;(4)原式=﹣1123+725﹣1213+415=﹣1123﹣1213+725+415=﹣24+13=﹣11;(5)原式=235﹣112+3310+212=235+3310﹣112+212=5910+1=6910;(6)原式=34+338﹣34﹣512+258=34﹣34+338+258﹣512=6﹣512=12.17.(2018期末)某检修站,甲小组乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.同时,乙小组也从A地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:﹣17,+9,﹣2,+8,+6,+9,﹣5,﹣1,+4,﹣7,﹣8.(1)分别计算收工时,甲、乙两组各在A地的哪一边,分别距A地多远?(2)若每千米汽车耗油a升,求出发到收工时两组各耗油多少升?【分析】(1)由于东西方向检修规定向东为正,向西为负,南北方向检修,约定向北为正,那么收工时,甲组在A地的39米处,即东39千米处;乙组﹣4即南4千米处;(2)把甲乙两组的检修的所有行走记录的绝对值的和求出,然后分别乘以每千米汽车耗油a升就可以求出出发到收工时两组各耗油多少升.【解答】解:(1)∵(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=39,∴收工时,甲组在A地的东边,且距A地39千米.∵(﹣17)+(+9)+(﹣2)+(+8)+(+6)+(+9)+(﹣5)+(﹣1)+(+4)+(﹣7)+(﹣8)=﹣4,∴收工时,乙组在A地的南边,且距A地4千米;(2)从出发到收工时,甲组耗油为[|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|]×a=(15+2+5+1+10+3+2+12+4+5+6)×a=65a(升),乙组耗油[|﹣17|+|+9|+|﹣2|+|+8|+|+6|+|+9|+|﹣5|+|﹣1|+|+4|+|﹣7|+|﹣8|]×a=(17+9+2+8+6+9+5+1+4+7+8)×a=76a(升).考点四:有理数的乘法18.(2018∙遂宁)﹣2×(﹣5)的值是()A.﹣7 B.7 C.﹣10 D.10【分析】根据有理数乘法法则计算可得.【解答】解:(﹣2)×(﹣5)=+2×5=10,故选:D.19.(2018∙大庆)已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.考点五:倒数20.(2018∙湖北)8的倒数是()A.﹣8 B.8 C.﹣18D.18【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是18,故选:D.21.(2018∙陕西)﹣711的倒数是()A.711B.﹣711C.117D.﹣117【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:﹣711的倒数是﹣117,故选:D.22.(2018∙枣庄)﹣12的倒数是()A.﹣2 B.﹣12C.2 D.12【分析】根据倒数的定义,直接解答即可.【解答】解:﹣12的倒数是﹣2.故选:A.23.(2018模拟)若a≠b,且a、b互为相反数,则ab=.【分析】由a 、b 互为相反数可知a=﹣b ,然后代入计算即可.【解答】解:∵a 、b 互为相反数,∴a=﹣b .∴1a b b b-==-.故答案为:﹣1.考点六:有理数的除法24.(2018•模拟)计算(﹣16)÷12的结果等于( )A .32B .﹣32C .8D .﹣8 【分析】根据有理数的除法,即可解答.【解答】解:(﹣16)÷12=(﹣16)×2=﹣32,故选:B .25.(2018•期末)计算﹣100÷10×110,结果正确的是( ) A .﹣100 B .100 C .1 D .﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×110=﹣10×110=﹣1.故选:D . 考点七:有理数乘除混合运算26.(2018期末)用简便方法计算:(1)﹣1.53×0.75+1.53×12+45×1.53 (2)(213﹣312+1912)÷(﹣116) 【分析】(1)逆运用乘法分配律,提取1.53,并把分数化为小数,然后进行计算即可得解;(2)把带分数化为假分数,并根据除以一个数等于乘以这个数的倒数把除法转化为乘法运算,然后利用乘法分配律计算即可得解.【解答】解:(1)原式=1.53×(﹣0.75+0.5+0.8)=1.53×(1.3﹣0.75)=1.53×0.55=0.8415;(2)原式=(73﹣72+74)×(﹣67)=73×(﹣67)﹣72×(﹣67)+74×(﹣67)=﹣2+3﹣32=3﹣312=﹣12.27.(2018模拟)已知a、b、c都不等于零,且a b ca b c++的最大值为m,最小值为n,求mn的值.【分析】如果a、b、c都大于0,的最大值为m=3,;如果a、b、c都小于0,的最小值为n=﹣3,代入代数式求得答案.【解答】解:当a>0、b>0、c>0时,a b ca b c++的值最大,m=3,当a<0、b<0、c<0,a b ca b c++的值最小,n=﹣3;∴mn=﹣1.。

2018年中考数学试卷及答案

2018年中考数学试卷及答案

选择题1、若一个数的相反数是-5,则这个数为A、-10B、-5C、0D、5(答案:D。

解析:一个数的相反数是与该数和为零的数,-5的相反数是5。

)2、下列哪个数不是有理数?A、1/2B、-3C、πD、0.777...(0.7循环)(答案:C。

解析:有理数是可以表示为两个整数之比的数,π是一个无理数,不能表示为两个整数的比。

)3、一个等腰三角形的顶角是底角的2倍,则它的顶角是A、60°B、90°C、120°D、150°(答案:C。

解析:等腰三角形的两个底角相等,设底角为x,则顶角为2x,三角形内角和为180°,所以x+x+2x=180°,解得x=45°,顶角为2x=90°的2倍,即120°。

)4、若一个圆的半径是r,则它的周长与直径的比值是A、πB、2πC、1/πD、1/(2π)(答案:A。

解析:圆的周长是2πr,直径是2r,所以周长与直径的比值是2πr/(2r)=π。

)5、下列哪个选项不是一元二次方程的根?A、x=1(对于方程x²-2x+1=0)B、x=2(对于方程x²-4x+4=0)C、x=3(对于方程x²-5x+6=0)D、x=4(对于方程x²-4x+3=0)(答案:D。

解析:将x=4代入方程x²-4x+3=0,不满足等式,所以x=4不是该方程的根。

)6、若一组数据的方差是16,且每个数据都乘以2,则新数据的方差是A、4B、8C、16D、64(答案:C。

解析:当一组数据中的各个数据都乘以k时,新的方差会变为k²倍的原方差,所以新数据的方差是16*2²=64,但题目问的是新方差与原方差的关系,即仍为16。

)7、下列哪个图形不是轴对称图形?A、正方形B、等腰三角形C、平行四边形D、圆(答案:C。

解析:正方形、等腰三角形和圆都可以找到一条直线,使得图形关于这条直线对称,而平行四边形不一定能找到这样的直线。

2018年天津市中考数学试题含答案解析(Word版)

2018年天津市中考数学试题含答案解析(Word版)

2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。

有理数知识连线2018中考数学真题

有理数知识连线2018中考数学真题


A. 2+ (﹣ 2) B. 2﹣(﹣ 2) C. (﹣ 2) +2 【分析】根据数轴上两点间距离的定义进行解答。
D. (﹣ 2)﹣ 2
解: A 、 B 两点间的距离可表示为: 2-(﹣ 2)
【答案】 B
7.﹣ 8 的相反数是(

A. ﹣ 8
1
B. C. 8
8
1
D. ﹣
8
【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.
0的
绝对值是 0.
解: |﹣ 2|=2
【答案】 B
14. |1- 2 |( )
A. 1 - 2 B. 2 - 1C. 1+ 2 D. ﹣ 1- 2
【分析】根据绝对值的性质解答即可.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;
0的
绝对值是 0.
解: |1- 2 |= 2 -1
4
【答案】 B
【答案】 C
12.计算 |﹣ 1 |- 1 的结果是(

22
1
A. 0 B. 1 C. ﹣ 1 D.
4
【分析】先计算绝对值,再计算减法即可.
解: |﹣ 1 |- 1 = 1 - 1 = 0 2 222
【答案】 A
13.﹣ 2 的绝对值是()
11
A. ﹣ 2B. 2 C. ﹣ D.
22
【分析】根据绝对值的性质解答即可.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;
数, 0 的相反数是 0.
解: 3 的相反数是﹣ 3
【答案】 C
11. 2018 的相反数是(

1
A.
B. 2018
2018

(精校 word)2018年吉林省中考数学试卷(含答案)-(27421)

(精校 word)2018年吉林省中考数学试卷(含答案)-(27421)

2018年吉林省中考数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣32.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C. D.3.(2.00分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)34.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D 重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.156.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C. D.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:= .8.(3.00分)买单价3元的圆珠笔m支,应付元.9.( 3.00分)若a+b=4,ab=1,则a2b+ab2= .第11题图10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B (0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=m.第12题图13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 度.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据:表一表二包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN 与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x= ;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE= ;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.2018年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3【分析】根据“两数相乘,同号得正”即可求出结论.【解答】解:(﹣1)×(﹣2)=2.故选:A.【点评】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C. D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2.00分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D 重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.15【分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.【解答】解:∵D为BC的中点,且BC=6,∴BD=BC=3,由折叠性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12,故选:A.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:= 4 .【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴=4,故答案为4.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3.00分)买单价3元的圆珠笔m支,应付3m 元.【分析】根据总价=单价×数量列出代数式.【解答】解:依题意得:3m.故答案是:3m.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.(3.00分)若a+b=4,ab=1,则a2b+ab2= 4 .【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1 .【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B (0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可.【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB==5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),【点评】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= 100 m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,解得:AB=(米).故答案为:100.【点评】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 29 度.【分析】根据∠BDC=∠BOC求解即可;【解答】解:连接OC.∵=,∴∠AOB=∠BOC=58°,∴∠BDC=∠BOC=29°,故答案为29.【点评】本题考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.【点评】考查了平方差公式和实数的运算,去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.【点评】本题考查正方形的性质全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率.【解答】解:列表得:标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【分析】先求出P点的坐标,再把P点的坐标代入反比例函数的解析式,即可求出答案.【解答】解:∵把x=1代入y=x+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y=得:k=3,即反比例函数的解析式是y=.【点评】本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征,能求出P点的坐标是解此题的关键.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【分析】(1)根据两人的方程思路,可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间;(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米;(3)选择两个方程中的一个,解之即可得出结论.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:=,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,∴=40.答:甲队每天修路的长度为40米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).【分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×=8π.【点评】本题考查作图﹣旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平算即可;【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a米,CD=b米.(3)计算过程:∵四边形BCDE是矩形,∴DE=BC=a,BE=CD=b,在Rt△ADE中,AE=ED•tanα=a•tanα,∴AB=AE+EB=a•tanα+b.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据:表一表二包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【分析】整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义,方差小分装质量较为稳定即可得.【解答】解:整理数据:表一将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.【点评】本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x (min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000 m,小玲步行的速度为200 m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【解答】解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷10=200m/s故答案为:4000,200(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.【点评】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为菱形;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.【分析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:▱ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,故答案为:菱形;(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.【点评】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x= s ;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.【分析】(1)当PQ⊥AB时,BQ=2PB,由此构建方程即可解决问题;(2)分三种情形分别求解即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】解:(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x=s.故答案为s.(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中,当<x≤1时,重叠部分是四边形PQEN.y=(2﹣x+2tx×x=x2+x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;综上所述,y=.(3)①如图4中,当直线AM经过BC中点E时,满足条件.则有:tan∠EAB=tan∠QPB,∴=,解得x=.②如图5中,当直线AM经过CD的中点E时,满足条件.此时tan∠DEA=tan∠QPB,∴=,解得x=,综上所述,当x=s或时,直线AM将矩形ABCD的面积分成1:3两部分.【点评】本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想解决问题,属于中考压轴题.26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax ﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,。

2018年辽宁省沈阳市中考数学试卷(答案+解析)

2018年辽宁省沈阳市中考数学试卷(答案+解析)

2018年辽宁省沈阳市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题2分,共20分)1.(2分)下列各数中是有理数的是()3A.πB.0 C.√2D.√52.(2分)辽宁男篮夺冠后,从4月21日至24日各类媒体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×105C.8.1×104D.8.1×1053.(2分)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.4.(2分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1) B.(﹣1,4) C.(﹣4,﹣1) D.(﹣1,﹣4) 5.(2分)下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a76.(2分)如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°7.(2分)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.(2分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.(2分)点A (﹣3,2)在反比例函数y =k x (k ≠0)的图象上,则k 的值是( )A .﹣6B .﹣32C .﹣1D .610.(2分)如图,正方形ABCD 内接于⊙O ,AB =2√2,则AB̂的长是( )A .πB .32πC .2πD .12π二、细心填一填(本大题共6小题,每小题3分,满分18分,请把答案填在答題卷相应题号的横线上)11.(3分)因式分解:3x 3﹣12x = .12.(3分)一组数3,4,7,4,3,4,5,6,5的众数是 .13.(3分)化简:2a a 2−4﹣1a−2= .14.(3分)不等式组{x −2<03x +6≥0的解集是 .15.(3分)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB = m 时,矩形土地ABCD 的面积最大.16.(3分)如图,△ABC 是等边三角形,AB =√7,点D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH .当∠BHD =60°,∠AHC =90°时,DH = .三、解答题题(17题6分,18-19题各8分,请认真读题)17.(6分)计算:2tan 45°﹣|√2﹣3|+(12)﹣2﹣(4﹣π)0.18.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.19.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题(每题8分,请认真读题)20.(8分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.五、解答题(本题10分)22.(10分)如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.23.(10分)如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 :y=3x相交于点P.4(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x轴平行.已知矩形ABCD以每秒√5个单位的速度匀速移动(点A移动到点E时停止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.七、解答题(本题12分)24.(12分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它条件不变时,∠BDE的度数是(用含α的代数式表示)(3)若△ABC是等边三角形,AB=3√3,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.25.(12分)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.2018年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题2分,共20分)1.(2分)下列各数中是有理数的是()3A.πB.0 C.√2D.√5【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、√2是无理数,故本选项错误;3无理数,故本选项错误;D、√5故选:B.2.(2分)辽宁男篮夺冠后,从4月21日至24日各类媒体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×105C.8.1×104D.8.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将81000用科学记数法表示为:8.1×104.故选:C.3.(2分)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:D.4.(2分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1) B.(﹣1,4) C.(﹣4,﹣1) D.(﹣1,﹣4)【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.5.(2分)下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.6.(2分)如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.7.(2分)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.8.(2分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.9.(2分)点A (﹣3,2)在反比例函数y =k x (k ≠0)的图象上,则k 的值是( ) A .﹣6 B .﹣32 C .﹣1 D .6【分析】根据点A 的坐标,利用反比例函数图象上点的坐标特征求出k 值,此题得解. 【解答】解:∵A (﹣3,2)在反比例函数y =k x (k ≠0)的图象上,∴k =(﹣3)×2=﹣6.故选:A .10.(2分)如图,正方形ABCD 内接于⊙O ,AB =2√2,则AB̂的长是( ) A .π B .32π C .2π D .12π 【分析】连接OA 、OB ,求出∠AOB =90°,根据勾股定理求出AO ,根据弧长公式求出即可.【解答】解:连接OA 、OB ,∵正方形ABCD 内接于⊙O ,∴AB =BC =DC =AD ,∴AB̂=BC ̂=DC ̂=AD ̂, ∴∠AOB =14×360°=90°,在Rt △AOB 中,由勾股定理得:2AO 2=(2√2)2,解得:AO =2,∴AB ̂的长为90π×2180=π,故选:A .二、细心填一填(本大题共6小题,每小题3分,满分18分,请把答案填在答題卷相应题号的横线上)11.(3分)因式分解:3x 3﹣12x = 3x (x +2)(x ﹣2) .【分析】首先提公因式3x ,然后利用平方差公式即可分解.【解答】解:3x 3﹣12x=3x (x 2﹣4)=3x (x +2)(x ﹣2)故答案是:3x (x +2)(x ﹣2).12.(3分)一组数3,4,7,4,3,4,5,6,5的众数是 4 .【分析】根据众数的定义求解可得.【解答】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.13.(3分)化简:2a a 2−4﹣1a−2= 1a+2 .【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=2a (a+2)(a−2)﹣a+2(a+2)(a−2)=a−2(a+2)(a−2)=1a+2,故答案为:1a+214.(3分)不等式组{x −2<03x +6≥0的解集是 ﹣2≤x <2 . 【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x ﹣2<0,得:x <2,解不等式3x +6≥0,得:x ≥﹣2,则不等式组的解集为﹣2≤x <2,故答案为:﹣2≤x <2.15.(3分)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB = 150 m 时,矩形土地ABCD 的面积最大.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【解答】解:(1)设AB =xm ,则BC =12(900﹣3x ),由题意可得,S =AB ×BC =x ×12(900﹣3x )=﹣32(x 2﹣300x )=﹣32(x ﹣150)2+33750 ∴当x =150时,S 取得最大值,此时,S =33750,∴AB =150m ,故答案为:150.16.(3分)如图,△ABC 是等边三角形,AB =√7,点D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH .当∠BHD =60°,∠AHC =90°时,DH = 13 .【分析】作AE ⊥BH 于E ,BF ⊥AH 于F ,如图,利用等边三角形的性质得AB =AC ,∠BAC =60°,再证明∠ABH =∠CAH ,则可根据“AAS ”证明△ABE ≌△CAH ,所以BE =AH ,AE =CH ,在Rt △AHE 中利用含30度的直角三角形三边的关系得到HE =12AH ,AE =√32AH ,则CH =√32AH ,于是在Rt △AHC 中利用勾股定理可计算出AH =2,从而得到BE =2,HE =1,AE =CH =√3,BH =1,接下来在Rt △BFH 中计算出HF =12,BF =√32,然后证明△CHD ∽△BFD ,利用相似比得到HD FD =2,从而利用比例性质可得到DH的长.【解答】解:作AE ⊥BH 于E ,BF ⊥AH 于F ,如图,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°,∵∠BHD =∠ABH +∠BAH =60°,∠BAH +∠CAH =60°,∴∠ABH =∠CAH ,在△ABE 和△CAH 中{∠AEB =∠AHC ∠ABE =∠CAH AB =CA, ∴△ABE ≌△CAH ,∴BE =AH ,AE =CH ,在Rt △AHE 中,∠AHE =∠BHD =60°,∴sin ∠AHE =AE AH ,HE =12AH , ∴AE =AH •sin 60°=√32AH , ∴CH =√32AH , 在Rt △AHC 中,AH 2+(√32AH )2=AC 2=(√7)2,解得AH =2,∴BE =2,HE =1,AE =CH =√3,∴BH =BE ﹣HE =2﹣1=1,在Rt △BFH 中,HF =12BH =12,BF =√32, ∵BF ∥CH ,∴△CHD ∽△BFD ,∴HD FD =CH BF =√3√32=2, ∴DH =23HF =23×12=13.故答案为13.三、解答题题(17题6分,18-19题各8分,请认真读题)17.(6分)计算:2tan 45°﹣|√2﹣3|+(12)﹣2﹣(4﹣π)0. 【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式=2×1﹣(3﹣√2)+4﹣1=2﹣3+√2+4﹣1=2+√2.18.(8分)如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE =1,DE =2,则菱形ABCD 的面积是 4 .【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°.∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD =90°,∴平行四边形OCED 是矩形;(2)由(1)知,平行四边形OCED 是矩形,则CE =OD =1,DE =OC =2.∵四边形ABCD 是菱形,∴AC =2OC =4,BD =2OD =2,∴菱形ABCD 的面积为:12AC •BD =12×4×2=4. 故答案是:4.19.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59.四、解答题(每题8分,请认真读题)20.(8分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了 50 名学生,m 的值是 18 .(2)请根据据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是 108 度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【分析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m 的值;(2)根据(1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数;(4)根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:(1)在这次调查中一共抽取了:10÷20%=50(名)学生,m %=9÷50×100%=18%,故答案为:50,18;(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),补全的条形统计图如右图所示;(3)扇形统计图中,“数学”所对应的圆心角度数是:360°×1550=108°, 故答案为:108;(4)1000×1550=300(名), 答:该校九年级学生中有300名学生对数学感兴趣.21.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元. 假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.五、解答题(本题10分)22.(10分)如图,BE 是O 的直径,点A 和点D 是⊙O 上的两点,过点A 作⊙O 的切线交BE 延长线于点C .(1)若∠ADE =25°,求∠C 的度数;(2)若AB =AC ,CE =2,求⊙O 半径的长.【分析】(1)连接OA ,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.【解答】解:(1)连接OA ,∵AC 是⊙O 的切线,OA 是⊙O 的半径,∴OA ⊥AC ,∴∠OAC =90°,∵AE ̂=AE ̂,∠ADE =25°, ∴∠AOE =2∠ADE =50°,∴∠C =90°﹣∠AOE =90°﹣50°=40°;(2)∵AB =AC ,∴∠B =∠C ,∵AÊ=AE ̂, ∴∠AOC =2∠B ,∴∠AOC =2∠C ,∵∠OAC =90°,∴∠AOC +∠C =90°,∴3∠C =90°,∴∠C =30°,∴OA =12OC , 设⊙O 的半径为r ,∵CE =2,∴r =12(r +2), 解得:r =2,∴⊙O 的半径为2.六、解答题(本题10分)23.(10分)如图,在平面直角坐标系中,点F 的坐标为(0,10).点E 的坐标为(20,0),直线l 1经过点F 和点E ,直线l 1与直线l 2 :y =34x 相交于点P . (1)求直线l 1的表达式和点P 的坐标;(2)矩形ABCD 的边AB 在y 轴的正半轴上,点A 与点F 重合,点B 在线段OF 上,边AD 平行于x 轴,且AB =6,AD =9,将矩形ABCD 沿射线FE 的方向平移,边AD 始终与x 轴平行.已知矩形ABCD 以每秒√5个单位的速度匀速移动(点A 移动到点E 时停止移动),设移动时间为t 秒(t >0).①矩形ABCD 在移动过程中,B 、C 、D 三点中有且只有一个顶点落在直线l 1或l 2上,请直接写出此时t 的值;②若矩形ABCD 在移动的过程中,直线CD 交直线l 1于点N ,交直线l 2于点M .当△PMN 的面积等于18时,请直接写出此时t 的值.【分析】(1)利用待定系数法求解析式,函数关系式联立方程求交点;(2)①分析矩形运动规律,找到点D 和点B 分别在直线l 2上或在直线l 1上时的情况,利用AD 、AB 分别可以看成图象横坐标、纵坐标之差构造方程求点A 坐标,进而求出AF 距离;②设点A 坐标,表示△PMN 即可.【解答】解:(1)设直线l 1的表达式为y =kx +b∵直线l 1过点F (0,10),E (20,0)∴{b =1020k +b =0 解得{k =−12b =10 直线l 1的表达式为y =﹣12x +10 求直线l 1与直线l 2 交点,得34x =﹣12x +10 解得x =8 y =34×8=6∴点P 坐标为(8,6)(2)①如图,当点D 在直线上l 2时∵AD =9 ∴点D 与点A 的横坐标之差为9∴将直线l 1与直线l 2 交解析式变为x =20﹣2y ,x =43y∴43y ﹣(20﹣2y )=9 解得y =8710 则点A 的坐标为:(135,8710) 则AF =√(135)2+(10−8710)2=13√510∵点A 速度为每秒√5个单位∴t =1310 如图,当点B 在l 2 直线上时∵AB =6 ∴点A 的纵坐标比点B 的纵坐标高6个单位∴直线l 1的解析式减去直线l 2 的解析式得﹣12x +10﹣34x =6解得x =165 则点A 坐标为(165,425)则AF =√(165)2+(10−425)2=8√55 ∵点A 速度为每秒√5个单位 ∴t =85 故t 值为1310或85 ②如图,设直线AB 交l 2 于点H设点A 横坐标为a ,则点D 横坐标为a +9由①中方法可知:MN =54a +54 此时点P 到MN 距离为:a +9﹣8=a +1∵△PMN 的面积等于18∴12×(54a +54)⋅(a +1)=18 解得a 1=12√55−1,a 2=﹣12√55−1(舍去) ∴AF =6﹣√52 则此时t 为6√55−12 当t =6√55−12时,△PMN 的面积等于18七、解答题(本题12分)24.(12分)已知:△ABC 是等腰三角形,CA =CB ,0°<∠ACB ≤90°.点M 在边AC 上,点N 在边BC 上(点M 、点N 不与所在线段端点重合),BN =AM ,连接AN ,BM ,射线AG ∥BC ,延长BM 交射线AG 于点D ,点E 在直线AN 上,且AE =DE .(1)如图,当∠ACB =90°时①求证:△BCM ≌△ACN ;②求∠BDE 的度数;(2)当∠ACB =α,其它条件不变时,∠BDE 的度数是 α或180°﹣α (用含α的代数式表示)(3)若△ABC 是等边三角形,AB =3√3,点N 是BC 边上的三等分点,直线ED 与直线BC 交于点F ,请直接写出线段CF 的长.【分析】(1)①根据SAS 证明即可;②想办法证明∠ADE +∠ADB =90°即可;(2)分两种情形讨论求解即可,①如图2中,当点E 在AN 的延长线上时,②如图3中,当点E 在NA 的延长线上时,(3)分两种情形求解即可,①如图4中,当BN =13BC =√3时,作AK ⊥BC 于K .解直角三角形即可.②如图5中,当CN =13BC =√3时,作AK ⊥BC 于K ,DH ⊥BC 于H .【解答】(1)①证明:如图1中,∵CA =CB ,BN =AM ,∴CB ﹣BN =CA ﹣AM即CN =CM ,∵∠ACN =∠BCM∴△BCM ≌△ACN .②解:如图1中,∵△BCM ≌△ACN ,∴∠MBC =∠NAC ,∵EA =ED ,∴∠EAD =∠EDA ,∵AG ∥BC ,∴∠GAC =∠ACB =90°,∠ADB =∠DBC ,∴∠ADB =∠NAC ,∴∠ADB +∠EDA =∠NAC +∠EAD ,∵∠ADB +∠EDA =180°﹣90°=90°,∴∠BDE =90°.(2)解:如图2中,当点E 在AN 的延长线上时,易证:∠CBM =∠ADB =∠CAN ,∠ACB =∠CAD ,∵EA =ED ,∴∠EAD =∠EDA ,∴∠CAN +∠CAD =∠BDE +∠ADB ,∴∠BDE =∠ACB =α.如图3中,当点E 在NA 的延长线上时,易证:∠1+∠2=∠CAN +∠DAC ,∵∠2=∠ADM =∠CBD =∠CAN ,∴∠1=∠CAD =∠ACB =α,∴∠BDE =180°﹣α.综上所述,∠BDE =α或180°﹣α.故答案为α或180°﹣α.(3)解:如图4中,当BN =13BC =√3时,作AK ⊥BC 于K .∵AD ∥BC ,∴AD BC =AM CM =12, ∴AD =3√32,AC =3√3,易证△ADC 是直角三角形,则四边形ADCK 是矩形,△AKN ≌△DCF , ∴CF =NK =BK ﹣BN =3√32﹣√3=√32. 如图5中,当CN =13BC =√3时,作AK ⊥BC 于K ,DH ⊥BC 于H .∵AD ∥BC ,∴AD BC =AM MC=2, ∴AD =6√3,易证△ACD 是直角三角形,由△ACK ∽△CDH ,可得CH =√3AK =9√32, 由△AKN ≌△DHF ,可得KN =FH =√32, ∴CF =CH ﹣FH =4√3.综上所述,CF 的长为√32或4√3.八、解答题(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线C 1:y =ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),抛物线C 2:y =2x 2+x +1,动直线x =t 与抛物线C 1交于点N ,与抛物线C 2交于点M .(1)求抛物线C 1的表达式;(2)直接用含t 的代数式表示线段MN 的长;(3)当△AMN 是以MN 为直角边的等腰直角三角形时,求t 的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.【分析】(1)应用待定系数法;(2)把x=t带入函数关系式相减;(3)根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.(4)根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进行计算.【解答】解:(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)∴{1=4a−2b−1−1=a−b−1解得:{a=1b=1∴抛物线C1:解析式为y=x2+x﹣1(2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2(3)共分两种情况①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1)∴AN=t﹣(﹣2)=t+2∵MN=t2+2∴t2+2=t+2∴t1=0(舍去),t2=1∴t=1②当∠AMN=90°,AN=MN时,由已知M(t,2t2+t+1),A(﹣2,1)∴AM=t﹣(﹣2)=t+2,∵MN=t2+2∴t2+2=t+2∴t1=0,t2=1(舍去)∴t=0故t的值为1或0(4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:第21页(共21页)易得K (0,3),B 、O 、N 三点共线∵A (﹣2,1)N (1,1)P (0,﹣1)∴点K 、P 关于直线AN 对称设⊙K 与y 轴下方交点为Q 2,则其坐标为(0,2)∴Q 2与点P 关于直线AN 对称∴Q 2是满足条件∠KNQ =∠BNP .则NQ 2延长线与⊙K 交点Q 1,Q 1、Q 2关于KN 的对称点Q 3、Q 4也满足∠KNQ =∠BNP . 由图形易得Q 1(﹣1,3)设点Q 3坐标为(a ,b ),由对称性可知Q 3N =NQ 1=BN =2√2 由∵⊙K 半径为1∴{(a −1)2+(b −1)2=(2√2)2a 2+(b −3)2=12解得{a =35b =195,{a =−1b =3 同理,设点Q 4坐标为(a ,b ),由对称性可知Q 4N =NQ 2=NO =√2 ∴{(a −1)2+(b −1)2=(√2)2a 2+(b −3)2=12解得{a =45b =125,{a =0b =2∴满足条件的Q 点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125)。

中考数学真题知识分类练习试卷:有理数(含答案)-word文档

有理数一、单选题1.【湖南省娄底市2018年中考数学试题】2018的相反数是()A. B. 2018 C. -2018 D.【答案】C2.【山东省德州市2018年中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.3.【山东省淄博市2018年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4.【山东省潍坊市2018年中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省2018年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.【答案】B6.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D8.【江苏省连云港市2018年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市2018年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市2018年中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省2018年中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.12.【2018年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市2018年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣【答案】A14.【2018年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.【答案】C分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市2018年中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市2018年中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B 两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2【答案】B17.【江苏省连云港市2018年中考数学试题】﹣8的相反数是()A. ﹣8B.C. 8D. ﹣【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市2018年中考数学试题】-2018的相反数是()A. 2018B. -2018C.D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市2018年中考数学试题】-的相反数是()A. -B. -C.D.【答案】C分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市2018年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.21.【广东省深圳市2018年中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B22.【四川省成都市2018年中考数学试题】2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2018年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B二、填空题24.【山东省德州市2018年中考数学试题】计算:=__________.【答案】1分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市2018年中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)三、解答题28.【江苏省南京市2018年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【答案】(1).(2)B.。

2018年辽宁省沈阳市中考数学试卷(含答案解析版)-(27820)

2018年辽宁省沈阳市中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 2 分,共 20 分)1.( 2.00 分)( 2018? 沈阳)下列各数中是有理数的是()A.πB.0 C. D .2.(2.00 分)( 2018? 沈阳)辽宁男蓝夺冠后,从 4 月21 日至 24 日各类媒体体关于“辽篮CBA 夺冠”的相关文章达到 81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81× 106 C.8.1×104D.8.1×106 3.( 2.00 分)( 2018? 沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.4.(2.00分)( 2018? 沈阳)在平面直角坐标系中,点 B 的坐标是( 4,﹣ 1),点 A 与点 B 关于 x 轴对称,则点 A 的坐标是()A.(4,1)B.(﹣ 1,4) C .(﹣ 4 ,﹣ 1 )D.(﹣ 1,﹣ 4)5.(2.00分)( 2018? 沈阳)下列运算错误的是()A.(m2)3=m 6B.a10÷a9=a C . x3?x5=x 8 D.a4+a3=a76.(2.00分)( 2018? 沈阳)如图,AB∥CD,EF∥GH ,∠ 1=60 °,则∠2 补角的度数是()A. 60 °B. 100 ° C. 110 ° D.120 °7.( 2.00 分)( 2018? 沈阳)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是 2 的倍数----WORD格式 -- 专业资料 -- 可编辑 ---B.13 个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.( 2.00 分)( 2018? 沈阳)在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则k 和 b 的取值范围是()A.k>0,b>0 B.k>0, b<0 C.k<0,b>0 D.k <0,b<09.(2.00分)( 2018? 沈阳)点A(﹣ 3,2)在反比例函数 y= (k≠0)的图象上,则k 的值是()A.﹣ 6 B.﹣C.﹣ 1 D.610.(2.00分)( 2018? 沈阳)如图,正方形ABCD 内接于⊙ O,AB=2,则的长是()--WORD格式 -- 专业资料 -- 可编辑 ---A.πB.π C. 2π D.π二、细心填一填(本大题共 6 小题,每小题 3 分,满分 18 分,请把答案填在答題卷相应题号的横线上)11.( 3.00分)(2018? 沈阳因)式分解:3x3﹣12x=.12.(3.00分)( 2018? 沈阳)一组数 3,4,7,4,3,4,5,6,5 的众数是.13.(3.00分)( 2018? 沈阳化)简:﹣=.14.(3.00分)( 2018? 沈阳)不等式组<的解集是.15.(3.00分)(2018? 沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与 CD 边平行的篱笆 EF 分开.已知篱笆的总长为 900m(篱笆的厚度忽略不计),当 AB=m 时,矩形土地 ABCD 的面积最大.--WORD格式 -- 专业资料 -- 可编辑 ---16.(3.00分)( 2018? 沈阳)如图,△ABC 是等边三角形, AB= ,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH、CH.当∠ BHD=60°,∠ AHC=90°时, DH=.三、解答题题( 17 题 6 分,18-19题各 8 分,请认真读题)17.(6.00分)( 2018? 沈阳)计算:2tan45 °﹣|﹣3|+()﹣20﹣( 4﹣π).18.(8.00 分)( 2018? 沈阳)如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点 D 作 AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若 CE=1,DE=2 ,ABCD 的面积是.--WORD格式 -- 专业资料 -- 可编辑 ---19.(8.00 分)( 2018? 沈阳)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题(每题8 分,请认真读题)20.(8.00 分)( 2018? 沈阳)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的--WORD格式 -- 专业资料 -- 可编辑 ---值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.(8.00分)( 2018? 沈阳)某公司今年1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是361万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.五、解答题(本题10)22.(10.00分)( 2018? 沈阳)如图,BE 是 O 的直径,点 A 和点 D 是⊙ O 上的两点,过点 A 作⊙ O 的切----WORD格式 -- 专业资料 -- 可编辑 ---交 BE 延长线于点.(1)若∠ ADE=25°,求∠C 的度数;(2)若 AB=AC ,CE=2,求⊙ O 半径的长.六、解答题(本题10 分)23.(10.00分)( 2018? 沈阳)如图,在平面直角坐标系中,点 F 的坐标为(0,10).点 E 的坐标为(20,0),直线 l1经过点 F 和点 E,直线 l1与直线 l2、y= x 相交于点 P.(1)求直线 l1的表达式和点 P 的坐标;(2)矩形 ABCD 的边 AB 在 y 轴的正半轴上,点 A与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB=6 ,AD=9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒个单位的速度匀速移动(点 A 移动到点 E 时止移动),设移动时间为 t 秒( t>0).①矩形 ABCD 在移动过程中, B、C、D 三点中有且只有一个顶点落在直线l1或 l2上,请直接写出此时t的值;②若矩形 ABCD 在移动的过程中,直线CD 交直线 l1于点 N,交直线 l2于点 M.当△ PMN 的面积等于 18时,请直接写出此时t 的值.七、解答题(本题12 分)24.(12.00 分)( 2018? 沈阳)已知:△ABC 是等腰三角形, CA=CB , 0°<∠ACB≤ 90 °.点 M 在边 AC 上,点 N 在边 BC 上(点 M、点 N 不与所在线段端点重合),BN=AM ,连接 AN ,BM,射线 AG ∥BC,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且AE=DE .(1)如图,当∠ ACB=90°时①求证:△ BCM≌△ ACN ;②求∠BDE 的度数;(2)当∠ ACB=α,其它多件不变时,∠BDE 的度数是(用含α的代数式表示)(3)若△ ABC 是等边三角形, AB=3 ,点 N 是 BC 边上的三等分点,直线 ED 与直线 BC 交于点 F,请直接写出线段 CF 的长.八、解答题(本题12 分)25.(12.00分)( 2018? 沈阳如)图,在平面角坐标系中,抛物线 C1:y=ax2+bx﹣1 经过点 A(﹣ 2,1)和点 B (﹣ 1,﹣ 1),抛物线 C2:y=2x2+x+1 ,动直线 x=t 与抛物线 C1交于点 N ,与抛物线 C2交于点 M.(1)求抛物线 C1的表达式;(2)直接用含 t 的代数式表示线段 MN 的长;(3)当△ AMN 是以 MN 为直角边的等腰直角三角形时,求 t 的值;(4)在(3)的条件下,设抛物线 C1与 y 轴交于点 P,点 M 在 y 轴右侧的抛物线 C2上,连接 AM 交 y 轴于点k,连接 KN ,在平面内有一点Q,连接 KQ 和 QN ,当 KQ=1 且∠ KNQ= ∠BNP 时,请直接写出点 Q 的坐标.2018年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10 小题,每题 2 分,共 20 分)1.( 2.00 分)( 2018? 沈阳)下列各数中是有理数的是()A.πB.0 C. D .【考点】 27:实数.【专题】 511:实数.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解: A、π是无限不循环小数,属于无理数,故本选项错误;B、0 是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选: B.【点评】本题考查了有理数,有限小数或无限循环小数是有理数.2.(2.00 分)( 2018? 沈阳)辽宁男蓝夺冠后,从 4 月21 日至 24 日各类媒体体关于“辽篮CBA 夺冠”的相关文章达到 81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81× 106 C.8.1×104D.8.1×106【考点】 1I:科学记数法—表示较大的数.【专题】 1:常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中 1≤|a| <10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时,n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:将 81000用科学记数法表示为: 8.1×104.故选: C.--WORD格式 -- 专业资料 -- 可编辑 ---【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n的形式,其中 1≤|a| <10,n为整数,表示时关键要正确确定 a 的值以及 n 的值.3.( 2.00 分)( 2018? 沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【专题】 55:几何图形.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为: 2,1.左视图如下:【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.(2.00分)( 2018? 沈阳)在平面直角坐标系中,点 B 的坐标是( 4,﹣ 1),点 A 与点 B 关于 x 轴对称,则点 A 的坐标是()A.(4,1)B.(﹣ 1,4) C .(﹣ 4 ,﹣ 1 )D.(﹣ 1,﹣ 4)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【专题】 1:常规题型.【分析】直接利用关于x 轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点 B 的坐标是( 4,﹣1),点 A 与点 B 关于 x 轴对称,∴点 A 的坐标是:(4,1).【点评】此题主要考查了关于 x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.(2.00分)( 2018? 沈阳)下列运算错误的是()A.(m2)3=m 6B.a10÷a9=a C . x3?x5=x 8 D.a4+a3=a7【考点】 35:合并同类项; 46:同底数幂的乘法; 47:幂的乘方与积的乘方; 48:同底数幂的除法.【专题】 11 :计算题.【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解: A、(m2)3=m 6,正确;B、a10÷a9=a,正确;C、x3?x5=x 8,正确;D、a4+a3=a4+a3,错误;----WORD格式 -- 专业资料 -- 可编辑 ---【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.(2.00分)( 2018? 沈阳)如图,AB∥CD,EF∥GH ,∠ 1=60 °,则∠2 补角的度数是()A. 60°B. 100 ° C. 110 °D. 120 °【考点】 IL :余角和补角; JA:平行线的性质.【专题】 551:线段、角、相交线与平行线.【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵ AB∥CD,∴∠ 1=∠EFH ,∵E F∥GH ,∴∠ 2=∠EFH ,∴∠ 2=∠ 1=60 °,∴∠ 2 的补角为 120 °,故选: D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.( 2.00 分)( 2018? 沈阳)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是 2 的倍数B.13 个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【考点】 X1:随机事件.【专题】 543:概率及其应用.【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解: A 、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“ 13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选: B.【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.( 2.00 分)( 2018? 沈阳)在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则 k 和 b 的取值范围是()A.k>0,b>0 B.k>0, b<0 C.k<0,b>0 D.k <0,b<0【考点】 F7:一次函数图象与系数的关系.【专题】 53:函数及其图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数 y=kx+b 的图象经过一、二、四象限,∴k<0,b> 0.故选: C.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数 y=kx+b (k≠0)中,当 k<0,b>0 时图象在一、二、四象限.9.(2.00分)( 2018? 沈阳)点A(﹣ 3,2)在反比例函数 y= (k≠0)的图象上,则k 的值是()A.﹣ 6 B.﹣C.﹣ 1 D.6【考点】 G6:反比例函数图象上点的坐标特征.【专题】 33 :函数思想.【分析】根据点 A 的坐标,利用反比例函数图象上点的坐标特征求出 k 值,此题得解.【解答】解:∵A(﹣3,2)在反比例函数y= (k≠0)的图象上,∴k=(﹣ 3)× 2= ﹣6.故选: A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.10.(2.00分)( 2018? 沈阳)如图,正方形ABCD 内接于⊙ O,AB=2,则的长是()A.πB.π C. 2π D.π【考点】 LE :正方形的性质; MN :弧长的计算.【专题】 1:常规题型.【分析】连接 OA 、OB,求出∠ AOB=90°,根据勾股定理求出 AO ,根据弧长公式求出即可.【解答】解:连接 OA 、OB,∵正方形 ABCD 内接于⊙ O,∴A B=BC=DC=AD ,∴===,∴∠ AOB= × 360 ° =90 °,在 Rt△AOB 中,由勾股定理得: 2AO2= (2 )2,解得: AO=2 ,∴的长为=π,故选: A.【点评】本题考查了弧长公式和正方形的性质,能求出∠ AOB 的度数和 OA 的长是解此题的关键.二、细心填一填(本大题共 6 小题,每小题 3 分,满分 18 分,请把答案填在答題卷相应题号的横线上)11.(3.00分)( 2018? 沈阳)因式分解:3x3﹣12x= 3x (x+2)(x﹣ 2).【考点】 55:提公因式法与公式法的综合运用.【分析】首先提公因式 3x,然后利用平方差公式即可分解.【解答】解: 3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案是: 3x(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(3.00分)( 2018? 沈阳)一组数 3,4,7,4,3,4,5,6,5 的众数是4.【考点】 W5:众数.【专题】 1:常规题型;542:统计的应用.【分析】根据众数的定义求解可得.【解答】解:在这组数据中 4 出现次数最多,有 3 次,所以这组数据的众数为 4,故答案为: 4.【点评】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.13.(3.00分)( 2018? 沈阳化)简:﹣=.【考点】 6B:分式的加减法.【专题】 11 :计算题; 513:分式.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(3.00分)( 2018? 沈阳)不等式组<的解集是﹣2≤x<2.【考点】 CB:解一元一次不等式组.【专题】 11 :计算题; 524:一元一次不等式 (组)及应用.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式 x﹣2<0,得: x<2,解不等式 3x+6≥0,得: x≥﹣ 2,则不等式组的解集为﹣2≤x<2,故答案为:﹣ 2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3.00分)(2018? 沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与 CD 边平行的篱笆 EF 分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当 AB= 150 m 时,矩形土地 ABCD 的面积最大.【考点】 HE :二次函数的应用.【专题】 12 :应用题.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【解答】解:(1)设 AB=xm ,则 BC= (900﹣3x),由题意可得, S=AB× BC=x ×( 900﹣ 3x)= ﹣( x2﹣300x)= ﹣(x﹣150)2+33750∴当 x=150 时, S 取得最大值,此时, S=33750,--WORD格式 -- 专业资料 -- 可编辑 ---∴A B=150m,故答案为: 150.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.16.(3.00分)( 2018? 沈阳)如图,△ABC 是等边三角形, AB= ,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH、CH.当∠ BHD=60°,∠ AHC=90°时, DH=.【考点】 KD :全等三角形的判定与性质; KK :等边三角形的性质; S9:相似三角形的判定与性质.【专题】11 :计算题.【分析】作 AE⊥BH 于 E,BF⊥AH 于 F,如图,利用等边三角形的性质得 AB=AC ,∠ BAC=60°,再证明∠ ABH= ∠CAH ,则可根据“AAS”证明△ABE ≌△CAH ,所以 BE=AH ,AE=CH ,在 Rt△AHE 中利用含 30 度的直角三角形三边的关系得到HE=AH ,AE= AH ,则 CH= AH ,于是在 Rt△AHC 中利用勾股定理可计算出AH=2 ,从而得到BE=2 , HE=1 ,AE=CH=,BH=1 ,接下来在Rt△ BFH 中计算出HF= ,BF=,然后证明△ CHD∽△ BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作 AE⊥BH 于 E,BF⊥AH 于 F,如图,∵△ ABC 是等边三角形,∴A B=AC ,∠ BAC=60°,∵ ∠ BHD= ∠ ABH+ ∠ BAH=60°,∠ BAH+ ∠CAH=60°,∴∠ ABH= ∠CAH ,在△ ABE 和△ CAH 中,∴△ ABE≌△ CAH ,∴B E=AH ,AE=CH ,在 Rt△AHE 中,∠ AHE= ∠ BHD=60°,∴sin∠AHE= ,HE= AH ,∴ AE=AH?sin60 °=AH ,∴C H= AH ,在 Rt△AHC 中, AH 2+ ( AH )2=AC 2= ()2,解得 AH=2 ,∴BE=2,HE=1 ,AE=CH=,∴B H=BE ﹣HE=2 ﹣1=1,在 Rt△BFH 中, HF= BH= ,BF= ,∵B F∥CH,∴△ CHD ∽△ BFD ,∴===2,∴D H=HF=×=.故答案为.--WORD格式 -- 专业资料 -- 可编辑 ---【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.三、解答题题( 17 题 6 分,18-19题各 8 分,请认真读题)17.(6.00分)( 2018? 沈阳)计算:2tan45 °﹣|﹣3|+()﹣20﹣( 4﹣π).【考点】 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂; T5:特殊角的三角函数值.【专题】 1 :常规题型.--WORD格式 -- 专业资料 -- 可编辑 ---【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式 =2×1﹣( 3﹣)+4﹣1=2﹣3+ +4﹣1=2+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8.00 分)( 2018? 沈阳)如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点 D 作 AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若 CE=1,DE=2 ,ABCD 的面积是4.【考点】 L8:菱形的性质; LD :矩形的判定与性质.--WORD格式 -- 专业资料 -- 可编辑 ---【专题】 556:矩形菱形正方形.【分析】(1)欲证明四边形 OCED 是矩形,只需推知四边形 OCED 是平行四边形,且有一内角为90 度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形 ABCD 是菱形,∴AC⊥BD,∴∠ COD=90°.∵CE∥OD ,DE ∥OC,∴四边形 OCED 是平行四边形,又∠ COD=90°,∴平行四边形OCED 是矩形;( 2)由( 1)知,平行四边形OCED 是矩形,则CE=OD=1 ,DE=OC=2 .∵四边形 ABCD 是菱形,∴AC=2OC=4 ,BD=2OD=2 ,∴菱形 ABCD 的面积为:AC?BD= ×4×2=4.故答案是: 4.【点评】考查了矩形的判定与性质,菱形的性质.此题中,矩形的判定,首先要判定四边形是平行四边形,然后证明有一内角为直角.19.(8.00 分)( 2018? 沈阳)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【考点】 X6:列表法与树状图法.【专题】 1:常规题型;543:概率及其应用.【分析】画树状图展示所有9 种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有 9 种等可能的结果数,其中两人之中至少有一人直行的结果数为 5,所以两人之中至少有一人直行的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果 n,再从中选出符合事件 A 或 B 的结果数目 m,然后利用概率公式计算事件 A 或事件 B 的概率.四、解答题(每题8 分,请认真读题)20.(8.00 分)( 2018? 沈阳)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.--WORD格式 -- 专业资料 -- 可编辑 ---据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了50名学生,m的值是18.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是108度;(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【考点】 V5:用样本估计总体; VB :扇形统计图;VC:条形统计图.【专题】 54:统计与概率.【分析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m 的值;(2)根据( 1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数;(4)根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:( 1)在这次调查中一共抽取了: 10÷20%=50(名)学生,m%=9÷50× 100%=18%,故答案为: 50,18;(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),补全的条形统计图如右图所示;(3)扇形统计图中,“数学”所对应的圆心角度数是:360 °× =108 °,故答案为: 108;(4)1000×=300(名),答:该校九年级学生中有300 名学生对数学感兴趣.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)( 2018? 沈阳)某公司今年1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是361万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.【考点】 AD :一元二次方程的应用.【专题】34 :方程思想; 523:一元二次方程及应用.--WORD格式 -- 专业资料 -- 可编辑 ---【分析】(1)设每个月生产成本的下降率为x,根据 2月份、 3 月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由 4 月份该公司的生产成本 =3 月份该公司的生产成本×( 1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为 x,根据题意得: 400(1﹣x)2=361,解得: x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为 5%.(2)361×( 1﹣5%)=342.95(万元).答:预测 4 月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.五、解答题(本题10)22.(10.00分)( 2018? 沈阳)如图,BE 是 O 的直径,点 A 和点 D 是⊙ O 上的两点,过点 A 作⊙ O 的切--交 BE 延长线于点.(1)若∠ ADE=25°,求∠C 的度数;(2)若 AB=AC ,CE=2,求⊙ O 半径的长.【考点】 KQ :勾股定理; M5:圆周角定理; MC:切线的性质.【专题】 55:几何图形.【分析】(1)连接 OA ,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.【解答】解:(1)连接 OA ,∵A C 是⊙O 的切线,OA 是⊙O 的半径,∴OA⊥AC,∴∠ OAC=90°,∵,∠ ADE=25°,∴∠ AOE=2 ∠ ADE=50°,∴∠ C=90°﹣∠AOE=90°﹣ 50 ° =40 °;(2)∵ AB=AC ,∴∠ B=∠C,∵ ,∴∠ AOC=2∠B,∴∠ AOC=2∠C,∵∠OAC=90°,∴∠ AOC+ ∠ C=90°,∴3∠ C=90°,∴∠ C=30°,∴OA= OC,设⊙ O 的半径为 r,∵CE=2,∴r=,解得: r=2,∴⊙ O 的半径为 2.【点评】此题考查切线的性质,关键是根据切线的性质进行解答.六、解答题(本题10 分)23.(10.00分)( 2018? 沈阳)如图,在平面直角坐标系中,点 F 的坐标为(0,10).点 E 的坐标为(20,0),直线 l 1经过点 F 和点 E,直线 l1与直线 l2、y= x 相交于点 P.(1)求直线 l1的表达式和点 P 的坐标;(2)矩形 ABCD 的边 AB 在 y 轴的正半轴上,点 A与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB=6 ,AD=9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒个单位的速度匀速移动(点 A 移动到点 E 时止移动),设移动时间为 t 秒( t>0).①矩形 ABCD 在移动过程中, B、C、D 三点中有且只有一个顶点落在直线l1或 l2上,请直接写出此时t 的值;②若矩形 ABCD 在移动的过程中,直线CD 交直线 l1于点 N,交直线 l2于点 M.当△ PMN 的面积等于 18时,请直接写出此时t 的值.【考点】 FI:一次函数综合题.【专题】153:代数几何综合题; 31 :数形结合; 32 :分类讨论; 533:一次函数及其应用.【分析】(1)利用待定系数法求解析式,函数关系式联立方程求交点;(2)①分析矩形运动规律,找到点 D 和点 B 分别在直线 l2上或在直线 l1上时的情况,利用 AD 、AB 分别可以看成图象横坐标、纵坐标之差构造方程求点A 坐标,进而求出 AF 距离;②设点 A 坐标,表示△ PMN 即可.【解答】解:(1)设直线 l1的表达式为 y=kx+b ∵直线 l1过点 F(0,10),E( 20,0)∴解得直线 l1的表达式为 y= ﹣ x+10求直线 l1与直线 l2交点,得x=﹣ x+10解得 x=8y= ×8=6∴点 P 坐标为( 8,6)(2)①如图,当点 D 在直线上 l2时∵A D=9∴点 D 与点 A 的横坐标之差为 9 ∴将直线 l1与直线 l2交解析式变为x=20﹣2y,x= y∴y﹣( 20﹣2y)=9解得y=则点 A 的坐标为:(,)则 AF=∵点 A 速度为每秒个单位∴t=如图,当点 B 在 l2直线上时∵A B=6∴点 A 的纵坐标比点 B 的纵坐标高 6 个单位∴直线 l1的解析式减去直线l2的解析式得﹣x+10﹣ x=6解得 x=则点A坐标为(,)则 AF=∵点 A 速度为每秒个单位∴t=故 t 值为或②如图,设直线 AB 交 l2于点 H设点 A 横坐标为 a,则点 D 横坐标为 a+9 由①中方法可知: MN=此时点 P 到 MN 距离为:a+9﹣8=a+1∵△ PMN 的面积等于 18∴解得a1=,a2=﹣(舍去)∴A F=6 ﹣则此时 t 为当 t=时,△ PMN的面积等于18【点评】本题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.七、解答题(本题12 分)24.(12.00 分)( 2018? 沈阳)已知:△ABC 是等腰三角形, CA=CB , 0°<∠ACB≤ 90 °.点 M 在边 AC 上,点 N 在边 BC 上(点 M、点 N 不与所在线段端点重合),BN=AM ,连接 AN ,BM,射线 AG ∥BC,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且AE=DE .(1)如图,当∠ ACB=90°时①求证:△ BCM≌△ ACN ;。

山西省2018年中考数学试卷及答案解析(Word版)

2018 年 省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河, 黄河壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后 ,再随机摸出一个 球,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种,∴ P ( 两 次 都 摸 到 黄 球 ) =498. 如 图 ,在 Rt △ ABC 中,∠ ACB=90°,∠A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6 D.【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴+-1) =2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国航空公司规定:旅客乘机时,免费携带行箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行箱,已知行箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 为______.【答案】【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯2=∴AF = 2FG =15.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】12 5【考点】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数【解析】连接 OF∵FG 为⊙0 的切线∴OF⊥FG∵Rt△ABC 中,D为 AB 中点∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF =12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 围 .【考点】 反 比 例 函 数 与 一 次 函 数【解析】( 1)解: 一次函数 y 1 = k 1 x + b 的 图 象 经 过 点 C ( -4, -2), D ( 2, 4),( 3)解: x < -4 或 0 < x < 2.18.(本题 9 分 ) 在 “ 优 秀 传 统 文 化 进 校 园 ” 活 动 中 , 学 校 计 划 每 周 二 下 午 第 三 节 课 时 间 开 展 此 项 活 动 ,拟 开 展 活 动 项 目 为 :剪 纸 ,武 术 ,书 法 ,器 乐 ,要 求 七 年 级 学 生 人 人 参 加 ,并 且 每 人 只 能参加其中一项活 动 .教务处在该校七年 级 学生中随机抽取了 100 名学生进行调查,并 对此进行 统计,绘制了如图 所 示的条形统计图和 扇 形统计图(均不完 整 ) .请解答下列问题 : ( 1) 请 补 全 条 形 统 计 图 和 扇 形 统 计 图 ;( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ? ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155== 15+10+8+1548165答:正好抽到参加“器乐”活动项目的女生的概率为516.19.(本题 8 分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设 13 对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,B C 相交于点C,分别与桥面交于 A,B两点,且点 A,B,C在同一竖直平面.测量数据∠A 的度数∠B 的度数AB 的长度38°28°234 米... ...(1 )请帮助该小组根据上表中的测量求斜拉索tan 38︒≈ 0.8 ,s in 28︒≈ 0.5 ,c os 28︒≈ 0.9 ,t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D.设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号” 列车 时 速 更快 , 安全性 更好.已车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间 均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 . 答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 : 在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’ =Y ’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交 BD 于点 Z.第四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X. 则有 AX=BY=XY.下面是该结论的部 分 证明: 证明: A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ 又 ∠A'BZ'=∠ABZ. ∴△BA ' Z △BAZ∴ Z ' A ' = BZ ' .ZABZ同 理 可 得 Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' .YZ BZ ZA YZZ ' A ' = Y ' Z ' , ∴ZA = YZ . ...任务:( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / Z ∴A , 四边形 AXYZ 是 平 行 四 边 形 . ZA = YZ , ∴ AXYZ 是菱形(2) 答 :证明: C D = C B , ∴∠1 = ∠2 ZY / / AC , ∴∠1 = ∠3 . ∴∠2=∠3 . ∴YB = YZ . 四边形 AXYZ 是 菱 形 , ∴AX=XY=YZ. ∴AX=BY=XY.(3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z ,Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) .A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存 在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; (3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 . 【考点】 几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG=2FQ . PE ∥ AC , ∴ ∠1 = ∠2 . FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

中考数学专题《有理数》复习试卷含答案解析

中考数学专题复习卷: 有理数一、选择题1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )A. -4B. 0C. -1D. 32.计算:的结果是()A. -3B. 0C. -1D. 33.下列各式不正确的是()A. |﹣2|=2B. ﹣2=﹣|﹣2|C. ﹣(﹣2)=|﹣2|D. ﹣|2|=|﹣2|4.零上13℃记作+13℃,零下2℃可记作()A. 2B. -2C. -2℃D. 2℃5.据有关部门统计,“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. 1.442×107B. 0.1442×107C. 1.442×108D. 0.1442×1086.比-1小2的数是()A. 3B. 1C. -2D. -37.-的相反数是()A. B. - C. D.8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法(精确到十亿位),应表示为()A. 4.995×1010B. 4.995×1011C. 5.0×1010D. 4.9×10109.的绝对值是( ).A. B. C. D.10.-的倒数是()A. B. - C. D. -11.下列各数中,绝对值最小的数是()A.πB.C.-2D.-12.一个数的相反数小于它本身,这个数是()A. 正数B. 负数C. 非正数D. 非负数二、填空题13.计算: =________.14.根据如图所示的车票信息,车票的价格为________元.15.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为________.16.计算:(﹣2)2=________.17.实数16 800 000用科学计数法表示为________.18.在有理数中,既不是正数也不是负数的数是________.19.计算:0-=________.20.已知,则a+b=________21.若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.22.观察规律并填空.⑴⑵⑶________(用含n的代数式表示,n 是正整数,且n ≥ 2)三、解答题23.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].24. 计算:(1)(2)[(2x﹣y)2﹣(2x+y)(2x﹣y)+4xy]÷2y.25.已知a、b互为相反数,c、d互为倒数,|m|=3,求的值.答案解析一、选择题1.【答案】B【解析】:∵0既不是正数也不是负数,∴答案为:B【分析】根据0既不是正数也不是负数,可得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学专题复习卷: 有理数 一、选择题 1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( ) A. -4 B. 0 C. -1 D. 3 2.计算: 的结果是( ) A. -3 B. 0 C. -1 D. 3 3.下列各式不正确的是( ) A. |﹣2|=2 B. ﹣2=﹣|﹣2| C. ﹣(﹣2)=|﹣2| D. ﹣|2|=|﹣2| 4.零上13℃记作+13℃,零下2℃可记作( ) A. 2 B. -2 C. -2℃ D. 2℃ 5.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( ) A. 1.442×107 B. 0.1442×107 C. 1.442×108 D. 0.1442×108 6.比-1小2的数是( ) A. 3 B. 1 C. -2 D. -3 7.-2018的相反数是( ) A. 2018 B. -2018 C. D. 8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数

法(精确到十亿位),应表示为( ) A. 4.995×1010 B. 4.995×1011 C. 5.0×1010 D. 4.9×1010 9.的绝对值是( ). A. B. C. D. 10.- 的倒数是( ) A. B. - C. D. - 11.下列各数中,绝对值最小的数是( ) A.π B. C.-2 D.- 12.一个数的相反数小于它本身,这个数是( ) A. 正数 B. 负数 C. 非正数 D. 非负数 二、填空题

13.计算: =________. 14.根据如图所示的车票信息,车票的价格为________元.

15.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为________. 16.计算:(﹣2)2=________. 17.实数16 800 000用科学计数法表示为________. 18.在有理数中,既不是正数也不是负数的数是________. 19.计算:20180- =________. 20.已知 ,则a+b=________ 21.若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________. 22.观察规律并填空. ⑴ ⑵ ⑶

________(用含n的代数式表示,n 是正整数,且 n ≥ 2) 三、解答题 23.计算: (1)﹣15+(﹣8)﹣(﹣11)﹣12 (2) (3) (4)﹣23+[(﹣4)2﹣(1﹣32)×3].

24. 计算: (1) (2)[(2x﹣y)2﹣(2x+y)(2x﹣y)+4xy]÷2y.

25.已知a、b互为相反数,c、d互为倒数,|m|=3,求 的值. 答案解析 一、选择题 1.【答案】B 【解析】 :∵0既不是正数也不是负数, ∴答案为:B【分析】根据0既不是正数也不是负数,可得出答案。 2.【答案】D 【解析】 :原式=2+1 =3. 故答案为:D. 【分析】先算乘方,再算减法运算即可求解。 3.【答案】D 【解析】 A、|-2|=2,故A不符合题意; B、-|-2|=-2,故B不符合题意; C、-(-2)=2,|-2|=2,因此﹣(﹣2)=|﹣2|,故C不符合题意; D、﹣|2|=-2,|-2|=2,因此﹣|2|≠|﹣2|,故D符合题意;、 故答案为:D【分析】根据绝对值的性质及相反数的意义,对各选项逐一判断即可。 4.【答案】C 【解析】 :零下2℃记作:-2℃ 故答案为:C【分析】根据具有相反意义的量的特点,求解即可。 5.【答案】A 【解析】 :14420000=1.442×107 , 故答案为:A. 【分析】用科学计数法表示绝对值比较大的数,一般表示成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1。 6.【答案】D 【解析】 :比-1小2的数是:-1-2=-3.故答案为:D. 【分析】考查有理数的减法;比-1小2,即这个数是(-1-2). 7.【答案】A 【解析】 :-2018的相反数是2018。故答案为A 【分析】负数的相反数是它的绝对值;-2018只要去掉负号就是它的相反数 8.【答案】C 【解析】 499.5亿=49950000000=4.995×1010. 故答案为:C. 【分析】任何一个绝对值大于或等于1的数都可以表示成a的形式.即499.5亿=49950000000=4.995×. 9.【答案】A 【解析】 : .故答案为:A 【分析】据负数的绝对值等于它的相反数,即可求解。 10.【答案】D 【解析】 ∵ =1, ∴- 的倒数是- , 故答案为:D. 【分析】根据乘积为1 的两个数,叫做互为倒数,即可得出答案。 11.【答案】D 【解析】 :|π|=π,| |= ,|-2|=2,|﹣ |= < <2<π,∴各数中,绝对值最小的数是- .故答案为:D.【分析】先求出各数的绝对值,在比较大小即可。|π|=π, =,|-2|=2,

|-|= . ∵ 2<π,所以绝对值最小的数是-. 12.【答案】A 【解析】 根据相反数的概念,得一个数的相反数小于它本身,则这个数是正数. 故答案为:A. 【分析】正数的相反数是负数,负数小于正数. 二、填空题

13.【答案】1 【解析】 |﹣2+3|=1. 故答案为:1. 【分析】根据有理数的加法法则算出绝对值符号里面的加法,再根据绝对值的意义得出结果。 14.【答案】77.5 【解析】 :车票上有“¥77.5元”,那么车票的价格是77.5元。故答案为:77.5 【分析】根据车票信息中的价格信息可知。 15.【答案】a+3 【解析】 ∵数轴上的两个数 与a,且

∴两数之间的距离为

故答案为: 【分析】数轴上两点 间的距离就是这两个点,所表示的数的差的绝对值,再化简即可。 16.【答案】4 【解析】 (﹣2)2=(﹣2)×(﹣2)=4. 故答案为:4. 【分析】根据乘方的意义,(﹣2)2就是两个-2相乘,根据有理数的乘法法则即可得出答案。 17.【答案】1.68×107 【解析】 :16800000=1.68×107 . 故答案为:1.68×107 【分析】用科学计数法表示绝对值比较大的数,一般表示成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1。 18.【答案】0 【解析】 :在有理数中,既不是正数也不是负数的数是0.【分析】有理数分为正数、0、负数。 19.【答案】-1 【解析】 原式=1-2=-1, 故答案为:-1. 【分析】先算乘方和绝对值,再求差即可。 20.【答案】-4 【解析】 ∵ , ∴2a+b2=0,b﹣4=0, ∴a=﹣8,b=4, ∴a+b=﹣4, 故答案为﹣4. 【分析】根据算术平方根的非负性和绝对值的非负性可得=0,b-4=0,解方程即可求解。 21.【答案】﹣2a+2b 【解析】 :∵△ABC的三边长分别是a、b、c, ∴必须满足两边之和大于第三边,则a﹣b﹣c<0,b﹣a﹣c<0, ∴|a﹣b﹣c|﹣|b﹣a﹣c| =﹣a+b+c+b﹣a﹣c =﹣2a+2b. 故答案为:﹣2a+2b. 【分析】三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可. 22.【答案】 【解析】 : = = . 故答案为: . 【分析】根据各个式子发现的规律,将各个因式改写成两个分数的积,而整个乘法算式中,除了第一个和最后一个因数,中间的因素互为倒数,根据互为倒数的数的性质,它们的乘积为1,从而得出答案。 三、解答题

23.【答案】(1)解:原式

(2)解:原式 (3)解:原式

(4)解:原式

=32. 【解析】【分析】(1)先将有理数的减法转化为加法,然后再计算求值。 (2)先将带分数转化为假分数,将除法转化为乘法,利用有理数乘法法则约分计算即可。 (3)先将括号里的分数通分计算,再将除法转化为乘法,约分计算即可。 (4)先算乘方运算及去括号运算,然后进行加减法计算。 24.【答案】(1)解:原式=1+2﹣ ×( × )2017=1+2﹣ =2 (2)解:原式=(4x2﹣4xy+y2﹣4x2+y2+4xy)÷2y=(2y2)÷2y=y 【解析】【分析】根据有理数的运算法则计算即可,先算平方,再算乘除,再算加减,如果有括号先算括号里面的;再由整式的混合运算法则得到代数式. 25.【答案】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1, ∵|m|=3, ∴m=±3, ∴当m=3时,原式=0﹣1+3=2; 当m=﹣3时,原式=0﹣1﹣3=﹣4. 故答案为:2或﹣4. 【解析】【分析】根据互为相反数的两个数的和为0,可得a+b=0,根据互为倒数的两个数的积为1可得cd=1,由绝对值的意义可得m=±3,所以分两种情况;当m=3和m=﹣3时,将a+b=0,cd=1,代入代数式求

解即可。

相关文档
最新文档