湖南省广益实验中学2015届高三周考试题(3)数学文试卷
湖南省衡阳市祁东县2015届高三月考试题(三)数学理(复读)试题 Word版含答案

湖南省衡阳市祁东县2015届高三复读月考试题(三)理科数学2014.10.30.一、选择题(本大题包括12小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题纸上) 1. 命题“若α=4π,则tan α=1”的逆否命题是 A .若α≠4π,则tanα≠1 B .若α=4π,则tanα≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π2.已知复数1z ai =+()a ∈R (i 是虚数单位),3455z iz=-+,则a =A. 2B. 2-C. 2±D.12-3.如图的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的 A. c x >?B. x c > ?C. c b > ?D. b c >?4. 一个几何体的正视图和侧视图都是边长为1的正方形,则这个几何体的俯视图一定不.是( )5.设x x x a d )23(212-=⎰,则二项式261()-ax x展开式中的第4项为A .31280-xB .1280-C .240D .240- 6.在正项等比数列{}n a 中,已知1234a a a =,45612a a a =,11324n n n a a a -+=,则n =A. 11B. 12C. 14D. 16 7. 某工厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100(5x +1-3x )元.若生产该产品900千克,则该工厂获得最大利润时的生产速度为A .5千克/小时B .6千克/小时C .7千克/小时D .8千克/小时 8.设双曲线C 的中心为点O ,若有且只有一对相交于点O 、所成的角为60的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是 A.2] B.2) C.)+∞ D.)+∞ 9.给定命题p :函数sin(2)4y x π=+和函数3cos(2)4y x π=-的图像关于原点对称;命题q :当2x k ππ=+()k ∈Z时,函数2cos2)y x x =+取得极小值. 下列说法正确的是 A. p q ∨是假命题 B. p q ⌝∧是假命题 C.p q ∧是真命题D.p q ⌝∨是真命题10. 定义在R 上的函数()f x 满足1(0)0,()(1)1,()()32x f f x f x f f x =+-==,且当1201x x ≤<≤时,12()()f x f x ≤,则1()2014f 的值为( )A. 1256B. 1128C. 164D. 132二、填空题(本大题包括5小题,每小题5分,共25分,把正确答案填在答题纸中的横线上).(一)选作题(请考生在第11、12、13三题中任选两题作答,如果全做,则按前2题给分)11.(选修4-l :几何证明选讲)如图所示,AB 是两圆的交点,AC 是小圆的直径,D 和E 分12.(选修4-4:坐标系与参数方程)已知点P (3,m )在以点F 为焦点的抛物线)(4,42为参数t t y t x ⎩⎨⎧==上,则|PF|= . 13 .(不等式选讲)设函数()|4|||f x x x a =-+- a (>1),且()f x 的最小值为3,若()5f x ≤,则x 的取值范围 . (二)必作题(14~16题)14. 已知数列{}n a 是单调递增的等差数列, 从7654321,,,,,,a a a a a a a 中取走任意三项,则剩下四项依然构成单调递增的等差数列的概率= . 15. 在锐角ABC ∆中,BC=1,B=2A ,则AACcos 的值等于 ;边长AC 的取值范围为 ; 16.若一个正四面体的表面积为1S ,其内切球的表面积为2S ,则12S S =____________.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分12分) 在ABC ∆中,角,,A B C的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.18.(本题满分12分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,(1) 估计第三个顾客恰好等待4分钟开始办理业务的概率;(2) 用x 表示至第二分钟末已办完业务的人数,球X 的分布列及期望.19.(本小题满分12分)已知数列{}n a 中,211-=a ,当2≥n 时,121-=-n n a a . (1) 求数列{}n a 的通项公式. (2) 设121+=n n nn a a b ,数列{}n b 前n 项的和为n S ,求证:2<n S .20.(本小题满分12分)如图1,直角梯形ABCD 中,//,90AD BC ABC ∠=,,E F 分别为边AD 和BC 上的点,且//EF AB ,2244AD AE AB FC ====.将四边形EFCD 沿EF 折起成如图2的位置,使AD AE =.(1)求证:AF //平面CBD ;(2)求平面CBD 与平面DAE 所成锐角的余弦值.21.(本小题满分12分)如图,线段AB 为半圆ADB 所在圆的直径,O 为半圆圆心,且AB OD ⊥,Q 为线段OD 的中点,已知4||=AB ,曲线C 过Q 点,动点P 在曲线C 上运动且保持||||PB PA +的值不变(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点N M ,,且M 在N D ,之间,设λDNDM=,求λ的取值范围.22.(本小题满分13分)已知函数)ln()(2a x x f += )0(>a(1) 若2=a ,求)(x f 在点))1(,1(f 处的切线方程.(2) 令332)()(x x f x g -=,求证:在区间)1,0(a 上,)(x g 存在唯一极值点.(3) 令xx f x h 2)()('=,定义数列{}n x :)(,011n n x h x x ==+.当2=a 且]21,0(∈k x )4,3,2( =k 时,求证:对于任意的*∈N m ,恒有1431-+⋅<-k k k m x x .数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1. C 2. B 3. A 4. B 5. A 6. C 7.B 8.A 9. B 10. B简答与提示:2.B 由题意可知,因此221315a a-=-+,化简得225533a a -=+,24a =则2a =±,由22415a a -=+可知0a <,仅有2a =-满足,故选B.3.A 由于要取a ,b ,c 中最大项,输出的x 应当是a ,b ,c 中的最大者,所以应填比较x 与c 大小的语句c x >,故选A.5.C由3312314a a a a q==与312456112a a a a q==可得93q =,333111324n n n n a a a a q --+⋅⋅=⋅=,因此36436813n q q -===,所以14n =,故选C.9.Bp 命题中3cos(2)cos(2)cos[(2)]44224y x x x πππππ=-=--=-- sin(2)4x π=-与sin 24y x π⎛⎫=+ ⎪⎝⎭关于原点对称,故p 为真命题;q 命题中)s i n 2c o s 22s i n 24y x x x π⎛⎫=+=+ ⎪⎝⎭取极小值时,2242x k πππ+=-,则38x k ππ=-()k ∈Z ,故q 为假命题,则p q ⌝∧为假命题,故选B.10. 【答案】D 【解析】由题意,分1n =或1m =两种情况:(1)1n =时,23m =,此时()f x 在[,]m n 上单调递减, 故2()log 13a f m m a ==⇒=(2)1m =时,43n =,此时()f x 在[,]m n 上单调递增,故3()log 14a f n n a ==⇒=二、填空题(本大题共4小题,每小题5分,共20分)83≤≤x 14. 53515.(1)2, (2)16.设正四面体棱长为a,则正四面体表面积为2214S a ==,其内切球半径为正四面体高的14,即14r a a=,因此内切球表面积为22246a S r ππ==,则1226S S a =.三、解答题(本大题必做题5小题,三选一中任选1小题,共70分)17. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-.(Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.【答案】解:()I 由()()232coscos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦,即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a b A B =,所以,sin sin b A B a ==由题知ab >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c=或7c =-(舍去).故向量BA 在BC方向上的投影为cos BA B 18.(1) 设事件A :“第三个顾客恰好等待4分钟开始办理业务”,则事件A 对应三种情形; ①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理办理业务所需的时间为1分钟;③第一个顾客和第二个顾客办理办理业务所需的时间都为2分钟。
2015年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科)解析版

2015年高考湖南卷理数试题解析(精编版)(解析版)一.选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()211i i z-=+(i 为虚数单位),则复数z =( ) A. 1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运 算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数 的乘法则是按多项式的乘法法则进行处理.2.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】C.【考点定位】1.集合的关系;2.充分必要条件.【名师点睛】本题主要考查了集合的关系与充分必要条件,属于容易题,高考强调集合作为工具与其他知 识点的结合,解题的关键是利用韦恩图或者数轴求解,充分,必要条件的判断性问题首要分清条件 和结论,然后找出条件和结论之间的推出或包含关系.3.执行如图所示的程序框图,如果输入3n =,则输出的S =( )A.67 B.37 C.89 D.49【答案】B.【考点定位】1程序框图;2.裂项相消法求数列的和.【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题, 解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图 问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规 律,若循环次数较少可以全部列出.4.若变量x ,y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y =-的最小值为( )A.-7B.-1C.1D.2【答案】A.而可知当2-=x ,1=y 时,min 3(2)17z =⨯--=-的最小值是7-,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.5.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A .奇函数,且在(0,1)上是增函数 B. 奇函数,且在(0,1)上是减函数 C. 偶函数,且在(0,1)上是增函数 D. 偶函数,且在(0,1)上是减函数 【答案】A.【考点定位】函数的性质.【名师点睛】本题主要考查了以对数函数为背景的单调性与奇偶性,属于中档题,首先根据函数奇偶性的 判定可知其为奇函数,判定时需首先考虑定义域关于原点对称是函数为奇函数的必要条件,再结合复合函 数单调性的判断,即可求解.6.已知5x x 的展开式中含32x 的项的系数为30,则a =( )33- D .-6【答案】D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.7.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )A.2386B.2718C.3413D.4772 附:若2(,)XN μσ,则6826.0)(=+≤<-σμσμX P ,9544.0)22(=+≤<-σμσμX P【答案】C.【考点定位】1.正态分布;2.几何概型.【名师点睛】本题主要考查正态分布与几何概型等知识点,属于容易题,结合参考材料中给出的数据,结 合正态分布曲线的对称性,再利用几何概型即可求解,在复习过程中,亦应关注正态分布等相对冷门的知 识点的基本概念.8.已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则P A P B P C ++的最大值为( )A.6B.7C.8D.9【答案】B.【考点定位】1.圆的性质;2.平面向量的坐标运算及其几何意义.【名师点睛】本题主要考查向量的坐标运算,向量的几何意义以及点到圆上点的距离的最值问题,属于中 档题,结合转化思想和数形结合思想求解最值,关键是把向量的模的最值问题转化为点与圆上点的距离的 最值问题,即圆221x y +=上的动点到点)0,6(距离的最大值.9.将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min 3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π【答案】D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以 )sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三 角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.34(21)πD.321)π【答案】A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.二.填空题:本大题共5小题,每小题5分,共25分.11.20(1) x dx⎰-= .【答案】0.【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .【答案】4.【考点定位】1.系统抽样;2.茎叶图.【名师点睛】本题主要考查了系统抽样与茎叶图的概念,属于容易题,高考对统计相关知识的考查,重点在于其相关的基本概念,如中位数,方差,极差,茎叶图,回归直线等,要求考生在复习时注意对这些方面的理解与记忆.13.设F是双曲线C:22221x ya b-=的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为 . 【答案】5.【考点定位】双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用222b a c +=,焦点坐标,渐近线方程等性质, 也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来.14.设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a = . 【答案】13-n .【考点定位】等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列 基本量q 的方程即可求解,考查学生等价转化的思想与方程思想.15.已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .【答案】),1()0,(+∞-∞ .【考点定位】1.函数与方程;2.分类讨论的数学思想.【名师点睛】本题主要考查了函数的零点,函数与方程等知识点,属于较难题,表面上是函数的零点问题,实际上是将问题等价转化为不等式组有解的问题,结合函数与方程思想和转化思想求解函数综合问题,将函数的零点问题巧妙的转化为不等式组有解的参数,从而得到关于参数a 的不等式,此题是创新题,区别于其他函数与方程问题数形结合转化为函数图象交点的解法,从另一个层面将问题进行转化,综合考查学生的逻辑推理能力.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(Ⅰ)如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明:(1)180MEN NOM ∠+∠=; (2)FE FN FM FO ⋅=⋅【答案】(1)详见解析;(2)详见解析.【考点定位】1.垂径定理;2.四点共圆;3.割线定理.【名师点睛】本题主要考查了圆的基本性质等知识点,属于容易题,平面几何中圆的有关问题是高考考查 的热点,解题时要充分利用圆的性质和切割线定理,相似三角形,勾股定理等其他平面几何知识点的交汇.(Ⅱ)已知直线35:132x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1) 将曲线C 的极坐标方程化为直角坐标方程;(2) 设点M 的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值. 【答案】(1)0222=-+x y x ;(2)18.的两个实数根分别为1t ,2t ,则由参数t 的几何意义即知,1821==⋅|t |t |MB||MA|. 【考点定位】1.极坐标方程与直角坐标方程的互相转化;2.直线与圆的位置关系.【名师点睛】本题主要考查了极坐标方程与直角坐标方程的互相转化以及直线与圆的位置关系,属于容易 题,在方程的转化时,只要利用θρcos =x ,θρsin =y 进行等价变形即可,考查极坐标方程与参数方程, 实为考查直线与圆的相交问题,实际上为解析几何问题,解析几何中常用的思想,如联立方程组等,在极 坐标与参数方程中同样适用.(Ⅲ)设0,0a b >>,且11a b a b+=+. (1)2a b +≥;(2)22a a +<与22b b +<不可能同时成立. 【答案】(1)详见解析;(2)详见解析.【考点定位】1.基本不等式;2.一元二次不等式;3.反证法.【名师点睛】本题主要考查了不等式的证明与反证法等知识点,属于中档题,第一小问需将条件中的式子 作等价变形,再利用基本不等式即可求解,第二小问从问题不可能同时成立,可以考虑采用反证法证明, 否定结论,从而推出矛盾,反证法作为一个相对冷门的数学方法,在后续复习时亦应予以关注.17.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围.【答案】(1)详见解析;(2)9]8. 【解析】【考点定位】1.正弦定理;2.三角恒等变形;3.三角函数的性质.【名师点睛】本题主要考查了利用正弦定理解三角形以及三角恒等变形等知识点,属于中档题,高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,在三角函数求值问题中,一般运用恒等变换,将未知角变换为已知角求解,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式求解,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小.18.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望. 【答案】(1)107;(2)详见解析.【考点定位】1.概率的加法公式;2.离散型随机变量的概率分布与期望.【名师点睛】本题主要考查了离散型随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一 直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计 的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以 关注.19.如图,已知四棱台1111ABCD A B C D -上、下底面分别是边长为3和6的正方形,16AA =,且1AA ⊥底面ABCD ,点P ,Q 分别在棱1DD ,BC 上.(1)若P 是1DD 的中点,证明:1AB PQ ⊥;(2)若//PQ 平面11ABB A ,二面角P QD A --的余弦值为37,求四面体ADPQ 的体积.【答案】(1)详见解析;(2)24.【考点定位】1.空间向量的运用;2.线面垂直的性质;3.空间几何体体积计算. 【名师点睛】本题主要考查了线面垂直的性质以及空间几何体体积计算,属于中档题,由于空间向量工具的引入,使得立体几何问题除了常规的几何法之外,还可以考虑利用向量工具来解决,因此有关立体几何的问题,可以建立空间直角坐标系,借助于向量知识来解决,在立体几何的线面关系中,中点是经常使用的一个特殊点,无论是试题本身的已知条件,还是在具体的解题中,通过找“中点”,连“中点”,即可出现平行线而线线平行是平行关系的根本,在垂直关系的证明中线线垂直是核心,也可以根据已知的平面图形通过计算的方式证明线线垂直,也可以根据已知的垂直关系证明线线垂直.20.已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为(1)求2C 的方程; (2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向(ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形【答案】(1)22198y x+=;(2)(i)6±,(ii)详见解析.【考点定位】1.椭圆的标准方程及其性质;2.直线与椭圆位置关系.【名师点睛】本题主要考查了椭圆的标准方程及其性质以及直线与椭圆的位置关系,属于较难题,解决此 类问题的关键:(1)结合椭圆的几何性质,如焦点坐标,对称轴,222c b a +=等;(2)当看到题目中出现 直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条 件中突显的或隐含的等量关系,把这种关系“翻译”出来,有时不一定要把结果及时求出来,可能需要整 体代换到后面的计算中去,从而减少计算量.21.已知0a >,函数()sin ([0,))ax f x e x x =∈+∞,记n x 为()f x 的从小到大的第n *()n N ∈个极值点,证明:(1)数列{()}n f x 是等比数列(2)若21a e ≥-,则对一切*n N ∈,|()|n n x f x <恒成立. 【答案】(1)详见解析;(2)详见解析.【考点定位】1.三角函数的性质;2.导数的运用;3.恒成立问题.【名师点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.。
湖南省衡阳市祁东县2015届高三月考试题(三)数学理(复读)试题 Word版含答案

湖南省衡阳市祁东县2015届高三复读月考试题(三)理科数学2014.10.30.一、选择题(本大题包括12小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题纸上) 1. 命题“若α=4π,则tan α=1”的逆否命题是 A .若α≠4π,则tanα≠1 B .若α=4π,则tanα≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π2.已知复数1z ai =+()a ∈R (i 是虚数单位),3455z iz=-+,则a =A. 2B. 2-C. 2±D.12-3.如图的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的 A. c x >?B. x c > ?C. c b > ?D. b c >?4. 一个几何体的正视图和侧视图都是边长为1的正方形,则这个几何体的俯视图一定不.是( )5.设x x x a d )23(212-=⎰,则二项式261()-ax x展开式中的第4项为A .31280-xB .1280-C .240D .240- 6.在正项等比数列{}n a 中,已知1234a a a =,45612a a a =,11324n n n a a a -+=,则n =A. 11B. 12C. 14D. 16 7. 某工厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100(5x +1-3x )元.若生产该产品900千克,则该工厂获得最大利润时的生产速度为A .5千克/小时B .6千克/小时C .7千克/小时D .8千克/小时 8.设双曲线C 的中心为点O ,若有且只有一对相交于点O 、所成的角为60的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是 A.2] B.2) C.)+∞ D.)+∞ 9.给定命题p :函数sin(2)4y x π=+和函数3cos(2)4y x π=-的图像关于原点对称;命题q :当2x k ππ=+()k ∈Z时,函数2cos2)y x x =+取得极小值. 下列说法正确的是 A. p q ∨是假命题 B. p q ⌝∧是假命题 C.p q ∧是真命题D.p q ⌝∨是真命题10. 定义在R 上的函数()f x 满足1(0)0,()(1)1,()()32x f f x f x f f x =+-==,且当1201x x ≤<≤时,12()()f x f x ≤,则1()2014f 的值为( )A. 1256B. 1128C. 164D. 132二、填空题(本大题包括5小题,每小题5分,共25分,把正确答案填在答题纸中的横线上).(一)选作题(请考生在第11、12、13三题中任选两题作答,如果全做,则按前2题给分)11.(选修4-l :几何证明选讲)如图所示,AB 是两圆的交点,AC 是小圆的直径,D 和E 分12.(选修4-4:坐标系与参数方程)已知点P (3,m )在以点F 为焦点的抛物线)(4,42为参数t t y t x ⎩⎨⎧==上,则|PF|= . 13 .(不等式选讲)设函数()|4|||f x x x a =-+- a (>1),且()f x 的最小值为3,若()5f x ≤,则x 的取值范围 . (二)必作题(14~16题)14. 已知数列{}n a 是单调递增的等差数列, 从7654321,,,,,,a a a a a a a 中取走任意三项,则剩下四项依然构成单调递增的等差数列的概率= . 15. 在锐角ABC ∆中,BC=1,B=2A ,则AACcos 的值等于 ;边长AC 的取值范围为 ; 16.若一个正四面体的表面积为1S ,其内切球的表面积为2S ,则12S S =____________.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分12分) 在ABC ∆中,角,,A B C的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.18.(本题满分12分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,(1) 估计第三个顾客恰好等待4分钟开始办理业务的概率;(2) 用x 表示至第二分钟末已办完业务的人数,球X 的分布列及期望.19.(本小题满分12分)已知数列{}n a 中,211-=a ,当2≥n 时,121-=-n n a a . (1) 求数列{}n a 的通项公式. (2) 设121+=n n nn a a b ,数列{}n b 前n 项的和为n S ,求证:2<n S .20.(本小题满分12分)如图1,直角梯形ABCD 中,//,90AD BC ABC ∠=,,E F 分别为边AD 和BC 上的点,且//EF AB ,2244AD AE AB FC ====.将四边形EFCD 沿EF 折起成如图2的位置,使AD AE =.(1)求证:AF //平面CBD ;(2)求平面CBD 与平面DAE 所成锐角的余弦值.21.(本小题满分12分)如图,线段AB 为半圆ADB 所在圆的直径,O 为半圆圆心,且AB OD ⊥,Q 为线段OD 的中点,已知4||=AB ,曲线C 过Q 点,动点P 在曲线C 上运动且保持||||PB PA +的值不变(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点N M ,,且M 在N D ,之间,设λDNDM=,求λ的取值范围.22.(本小题满分13分)已知函数)ln()(2a x x f += )0(>a(1) 若2=a ,求)(x f 在点))1(,1(f 处的切线方程.(2) 令332)()(x x f x g -=,求证:在区间)1,0(a 上,)(x g 存在唯一极值点.(3) 令xx f x h 2)()('=,定义数列{}n x :)(,011n n x h x x ==+.当2=a 且]21,0(∈k x )4,3,2( =k 时,求证:对于任意的*∈N m ,恒有1431-+⋅<-k k k m x x .数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1. C 2. B 3. A 4. B 5. A 6. C 7.B 8.A 9. B 10. B简答与提示:2.B 由题意可知,因此221315a a-=-+,化简得225533a a -=+,24a =则2a =±,由22415a a -=+可知0a <,仅有2a =-满足,故选B.3.A 由于要取a ,b ,c 中最大项,输出的x 应当是a ,b ,c 中的最大者,所以应填比较x 与c 大小的语句c x >,故选A.5.C由3312314a a a a q==与312456112a a a a q==可得93q =,333111324n n n n a a a a q --+⋅⋅=⋅=,因此36436813n q q -===,所以14n =,故选C.9.Bp 命题中3cos(2)cos(2)cos[(2)]44224y x x x πππππ=-=--=-- sin(2)4x π=-与sin 24y x π⎛⎫=+ ⎪⎝⎭关于原点对称,故p 为真命题;q 命题中)s i n 2c o s 22s i n 24y x x x π⎛⎫=+=+ ⎪⎝⎭取极小值时,2242x k πππ+=-,则38x k ππ=-()k ∈Z ,故q 为假命题,则p q ⌝∧为假命题,故选B.10. 【答案】D 【解析】由题意,分1n =或1m =两种情况:(1)1n =时,23m =,此时()f x 在[,]m n 上单调递减, 故2()log 13a f m m a ==⇒=(2)1m =时,43n =,此时()f x 在[,]m n 上单调递增,故3()log 14a f n n a ==⇒=二、填空题(本大题共4小题,每小题5分,共20分)83≤≤x 14. 53515.(1)2, (2)16.设正四面体棱长为a,则正四面体表面积为2214S a ==,其内切球半径为正四面体高的14,即14r a a=,因此内切球表面积为22246a S r ππ==,则1226S S a =.三、解答题(本大题必做题5小题,三选一中任选1小题,共70分)17. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-.(Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.【答案】解:()I 由()()232coscos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦,即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a b A B =,所以,sin sin b A B a ==由题知ab >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c=或7c =-(舍去).故向量BA 在BC方向上的投影为cos BA B 18.(1) 设事件A :“第三个顾客恰好等待4分钟开始办理业务”,则事件A 对应三种情形; ①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理办理业务所需的时间为1分钟;③第一个顾客和第二个顾客办理办理业务所需的时间都为2分钟。
湖南省衡阳县第四中学2015届高三上学期周考(二)数学理试题 Word版含答案

湖南省衡阳县四中2014高三下期周考数学试题(二)本试卷共22小题,满分150分。
考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A.4B.3C.2D.1 2. 复数z =iim 212+-(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A.第一象限B.第二象限C.第三象限D.第四象限3. 在(0,2π)内,使sin x >cos x 成立的x 取值范围为( )A.(4π,2π)∪(π,45π) B.(4π,π) C.(4π,45π)D.(4π,π)∪(45π,23π)4. 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足S n =90n (21n -n 2-5)(n =1,2,……,12). 按此预测,在本年度内,需求量超过1.5万件的月份是( )A.5月、6月B.6月、7月 C .7月、8月 D.8月、9月5. 如果111A BC ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形6.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=, 则(|| 1.96)P ξ<=( ) A .0.025B .0.050C .0.950D .0.9757、如图为一个几何体的三视图,其中俯视图为正三角形,1112,4AC AA ==,则该几何体的表面积为( )(第7题图) (第8题图) 8、如图在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若,AB mAM AC nAN == ,则mn 的最大值为( )A12B 1C 2D 4 9. 已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2)C.[2,+∞]D.(2,+∞)10. 对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③ B.①② C.③ D.②二、填空题:本大题共6小题,考生作答5小题,每小题5分,满分25分. (一)必做题(11~ 13题)11. 一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.12. 在二项式251()x x-的展开式中,含4x 的项的系数是________________13. 设P (3,1)为二次函数2()2(1)f x ax ax b x =-+≥的图象与其反函数)(1x ff -=的图象的一个交点,则a=________________b=________________(二)选做题(14 ~ 16题,考生只能从中选做两题) 14. (坐标系与参数方程选做题)以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位。
2015届高中三年级一轮复习全能测试(文科)专题三三角函数

2015届高三一轮复习全能测试专题三 三角函数本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的、座号、号、科类填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.参考公式:如果事件A,B 互斥,那么P (A+B )=P (A )+P (B );球的表面积公式:24R S π=(其中R 表示球的半径);球的体积公式:343V R π=(其中R 表示球的半径); 锥体的体积公式:Sh V 31=(其中S 表示锥体的底面积,h 表示锥体的高);柱体的体积公式Sh V =(其中S 表示柱体的底面积,h 表示柱体的高);台体的体积公式:)(312211S S S S h V ++=(其中21,S S 分别表示台体的上,下底面积,h 表示台体的高).第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求) 1、【2012高考全国文4】已知α为第二象限角,3sin 5α=,则sin 2α= (A )2524-(B )2512-(C )2512(D )2524 2、【2012高考文7】要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象 (A ) 向左平移1个单位 (B ) 向右平移1个单位 (C ) 向左平移12个单位 (D ) 向右平移12个单位 3、已知函数1)2sin()(--=ππx x f ,则下列命题正确的是 ( )A .)(x f 是周期为1的奇函数B )(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶数D .)(x f 是周期为2的非奇非偶函数4、已知角α的终边上一点P (4k ,3k )(k≠0),则sin α的值为A .53B .53-C .53±D .不能确定 5、在△ABC 中,角A ,B ,C 的对边为a,b,c ,若︒===45,2,3B b a ,则角A= ( )A .30°B .30°或105°C .60°D .60°或120°6、25242sin =a ,则)4cos(2a -π的值为 A .51B .57C .51±D .57±7、如图是函数)2,0)(sin(2πϕωϕω<>+=x y 与的图象,那么A .6,2πϕω-==B .6,2πϕω==C .6,1110πϕω==D .6,1110πϕω-==8、【2012高考文6】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是9、若函数)0,4()4sin()(ππP x y x f y 的图象关于点的图象和+==对称,则)(x f 的表达式为)(x f =( )A .)4cos(π+x B .)4cos(π--x C .)4cos(π+-x D .)4cos(π-x10、对任何锐角α,β,下列不等式一定成立的是( )A .sin (α+β)>sin α+sin βB .sin (α—β)>sin α—sin βC .cos (α+β)<cos α+cos βD .cos (α—β)<cos α—cos β非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分. 11、【2102高考文11】在△ABC 中,若a =3,b=3,∠A=3π,则∠C 的大小为_________。
湖南广益实验中学2025届数学九上期末统考试题含解析

湖南广益实验中学2025届数学九上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.下列一元二次方程中,有两个不相等的实数根的是( )A .28160x x -+=B .23x x =C .24x x +=D .2(2)50x -+=2.已知如图,在正方形ABCD 中,AD=4,E ,F 分别是CD ,BC 上的一点,且∠EAF=45°,EC=1,将△ADE 绕点A 沿顺时针方向旋转90°后与△ABG 重合,连接EF ,过点B 作BM∥AG,交AF 于点M ,则以下结论:①DE+BF=EF,②BF=47,③AF=307,④S △MEF =32175中正确的是( )A .①②③B .②③④C .①③④D .①②④3.若方程(m ﹣1)x 2﹣4x =0是关于x 的一元二次方程,则m 的取值范围是( )A .m ≠1B .m =1C .m ≠0D .m ≥1 4.在函数4x y x +=中,自变量x 的取值范围是( ) A .x >0 B .x≥﹣4 C .x≥﹣4且x≠0 D .x >0且x≠﹣15.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°6.在下列命题中,正确的是( )A .对角线相等的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形7.如图,在ACB ∆中,90C ∠=︒,则BC AB 等于( ) A .cos A B .sin B C .tan B D .sin A8.在Rt △ABC 中,∠C =90°,若AC =4,AB =5,则cos B 的值( )A .45B .35C .34D .439.下列说法正确的是( )A .所有菱形都相似B .所有矩形都相似C .所有正方形都相似D .所有平行四边形都相似 10.计算11111133557793739+++++⨯⨯⨯⨯⨯的结果是( ) A .1937 B .1939 C .3739 D .383911.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .312.直径为1个单位长度的圆上有一点A 与数轴上表示1的点重合,圆沿着数轴向左滚动一周,点A 与数轴上的点B 重合,则B 表示的实数是( )A .2π1-B .π1-C .1π-D .12π-二、填空题(每题4分,共24分)13.计算:2sin 458︒-=______.14.如图,⊙O 是△ABC 的外接圆,∠A =60°,BC =63,则⊙O 的半径是_____.15.如图,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B(m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是________.16.反比例函数y =k x的图象经过点(﹣2,3),则k 的值为_____. 17.如图,点B 是反比例函数y =2x (x >0)的图象上任意一点,AB ∥x 轴并交反比例函数y =﹣3x (x <0)的图象于点A ,以AB 为边作平行四边形ABCD ,其中C 、D 在x 轴上,则平行四边形ABCD 的面积为_____.18.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm ,母线OE (OF )长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且FA=2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短距离________cm .三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B 点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.20.(8分)已知关于x的方程2x2﹣17x+m=0的一个根是1,求它的另一个根及m的值.21.(8分)解方程:(1)x2﹣2x﹣1=0 (2) 2(x﹣3)=3x(x﹣3)22.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AD交AB于E,EF∥BC交AC 于F.(1)求证:△ACD∽△ADE;(2)求证:AD2=AB•AF;(3)作DG⊥BC交AB于G,连接FG,若FG=5,BE=8,直接写出AD的长.23.(10分)小明、小亮两人用如图所示的两个分隔均匀的转盘做游戏:分别转动两个转盘,转盘停止后,将两个指针所指数字相加(若指针恰好停在分割线上,则重转一次).如果这两个数字之和小于8(不包括8),则小明获胜;否则小亮获胜。
湖南省常德市第一中学2015届高三第七次月考数学(文)试题(附答案) (2)
湖南省常德市第一中学2015届高三第七次月考数学(文)试题一、选择题(本大题共10小题,每小题5分,共50分. 每小题只有一个选项符合题目要求) 1.设命题 0lg ,0:00<>∃x x p ,则p ⌝为( ) A. 0lg ,0>>∀x x B.0lg ,0≥>∀x xC. 0lg ,000>>∃x xD. 0lg ,000≥>∃x x2.已知a 是实数,且52121ii a +++也是实数,则a 等于( ) A. 2 B.23 C.1 D. 213.如右图是某几何体的三视图(正视图与侧视图一样,上面是半径为1的半圆,下面是边长为2的正方形),则该几何体的体积是( ) A .π328+B. π348+ C. π+24 D. π220+4. “2015<a ”是“函数2)()(a x x f -=在区间[2015,+∞)上为增函数”的( ) A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件5. 已知函数)0()sin(2)(πϕϕ<<+=x x f 是偶函数,则)32cos(2πϕ+等于( )A. 3-B. 1-C. 3D. 16. 已知等比数列{n a }的前n 项和为n S ,且r q S n n +=(10,≠>∈*q q N n 且),则实数r 的值为( )A .2 B.1 C.0 D.1-(正、侧视图)(俯视图)7.已知正方体1111ABCD A BC D -的棱长为2,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被该正方体的外接球所截得的线段长为( ) A. 32 B. 3 C. 22 D. 28.已知关于x 的不等式0722≥--+ax x 在),(∞+a 上恒成立,则实数a 的最小值为( ) A. 1 B. 2 C. 21 D. 239.已知直线l :a x y +-=与圆C:222=+y x 相交于相异两点M 、N ,点O 是坐标原点,>+则实数a 的取值范围是( ) A.)2,2()2,2 --( B. )2,2-( C. )2,1()12 --,(D.)1,1-(10.已知函数ax x ey x---=2ln 有3个不同的零点(其中e 为自然对数的底数),则实数a 的取值范围是( )A. )1[∞+,B. )1∞+,(C. ]1,0(D. )1,0(二、填空题 (共25分)11.已知向量)2,1(=a 与)1,(λ=b 垂直,则λ=12.如果执行右边程序框图,那么输出的数S=13.在平面直角坐标系中,已知曲线⎩⎨⎧+==ααsin 5cos :1y x C (α为参数),在以原点为极点,x 轴的正半轴为极轴建立的极坐标系上有曲线2:2=ρC ,设点A ,B 分别在曲线1C 、2C 上,则AB 的最大值为14.已知O 为坐标原点,双曲线22ax -22b y =1(0,0>>b a )的右焦点为F ,直线:l c a x 2=与双曲线的一条渐近线交于点A ,且△OAF 的面积为22a ,则该双曲线的两条渐近线的夹角大小为15.设函数)(x f y =的定义域为A ,集合{}A x x f y yB ∈==,)(,若A B ⊆,则称函数)(x f 为定义域A 内的“任性函数”.(1)若函数13)(2-++=x x m x f 是定义域),2(∞+=A 内的“任性函数”,则实数m 的取值范围是 ;(2)已知22≤≤-a 且0≠a ,11≤≤-b ,则函数b ax x f +=2)(是定义域]1,0[=A 内的“任性函数”的概率为 .三、解答题 (共75分)16. (本题12分)已知函数x x x x f 2sin 2cos sin 2)(-= (1)求函数)(x f 的最小正周期;(2)设△ABC 的内角A 、B 、C 所对的边记作c b a 、、,且满足0)(=A f , 1=c ,2=b ,求△ABC 的面积.17. (本题12分)某高中学校共有学生3000名,各年级的男、女生人数如下表:(其中高三学生具体男、女生人数未统计出,设为x 、y 名)(2)已知该校高三年级的男女生人数都不少于395名. 并且规定如果“一个年级的男女生人数相差不超过6(即男女生人数之差的绝对值不大于6)”则称该年级为“性别平衡年级”,求该校高三年级为“性别平衡年级”的概率.18.(本题12分)如图,在三棱锥A-BCD 中,底面BCD 是边长为2的等边三角形,侧棱AB=AD=2,AC=2,O 、E 、F 分别是BD 、BC 、AC 的中点. (1)求证:EF ∥平面ABD ; (2)求证:AO ⊥平面BCD ;(3)求异面直线AB 与CD 所成角的余弦值.AF DBCEO19.(本题13分)已知数列{}n a 中,)10(1≠≠=t t t t a 且为常数,,22ta =,当2,≥∈*n N n 时,11)1(-+-+=n n n ta a t a .(1)求证{}n n a a -+1为等比数列,并求数列{}n a 的通项公式; (2)若,2=t 若∀*∈N n ,B a a a a a a A nn <-++-+-<+12312111 ,试求实数A 、B 的取值范围.20. (本题13分)若抛物线1C :px y 22=的准线为1-=x ,椭圆2C :)0(12222>>=+b a by a x 的一个焦点与抛物线1C 的焦点重合,且以原点为圆心,椭圆2C 的短半轴长为半径的圆与直线2+=x y 相切.(1)求椭圆2C 的离心率;(2)若O 为坐标原点,过点(2,0)的直线l 与椭圆2C 相交于不同两点A 、B ,且椭圆2C 上一点E 满足0=--OB OA OE t ,求实数t 的取值范围.21. (本题13分)已知函数xx a ax x f 1ln )1()(-+-=,其中a 为实数. (1)求函数)(x f 的极大值点和极小值点;(2)已知函数)(x f 的图象在2=x 处的切线与x 轴平行,⎩⎨⎧≤<--≤≤-=)32(1)1()21(1)(x x b x bx x g .且对任意]01e x ,(∈,存在]31[2,∈x ,使得0)()(21≤+x g x f ,求实数b 的最小值(其中e 为自然对数的底数).【答案请写在“答题卷”上】参考答案二、填空题 (共25分) 11. 2-. 12. 2550. 13. 8. 14. 2π.15.(1)),4(∞+- (2)81 (15题解析):(1)22132)()(---='x x x x f ,可知)(x f 在)3,2(上递减,在),3(∞+上递增,故应6)3()(+=≥m f x f ,函数)(x f 的值域为),6[∞++=m B ,由已知应26>+m 4->⇒m 即),4(∞+-∈m ;(2)当0>a 时,函数)(x f 的值域为],[b a b B +=,应⎪⎩⎪⎨⎧≤+≥>100b a b a ;同理当0<a 时,有⎪⎩⎪⎨⎧≥+≤<010b a b a ,看做线性规划问题,对应区域设为面积1S =1,而22≤≤-a 且0≠a ,11≤≤-b 对应的区域为8=S ,故81=P . 三、解答题 (共75分)16. 解析:(1)1)42sin(2)2cos 1(2sin )(-+=--=πx x x x f故函数)(x f 的最小正周期为π=T -------6分 (2)由0)(=A f 01)42sin(2=-+⇒πA 22)42sin(=+⇒πA而),0(π∈A ,故4π=A , -------10分故△ABC 的面积为214sin 1221=⨯⨯⨯π -------12分17. 解析:(1)易知高三年级有3000-(588+612+520+480)=800名学生, 用分层抽样的方法应抽取:12800300045=⨯ 名; -------6分 (2)由已知800=+y x ,395≥x ,395≥y ,故数对),(y x 的取值情况有:(395,405)、(396,404)、(397,403)、(398,402)、(399,401)、(400,400)、(401,399)、(402,398)、(403,397)、(404,396)、(405,395),共11对;其中满足“男女生人数之差的绝对值不大于6”的有(397,403)、(398,402)、(399,401)、(400,400)、(401,399)、(402,398)、(403,397)共7对. 故117=P 为所求. -------12分 18. 解析:(1)先证EF ∥AB ; -------3分(2)易知AO ⊥BD ① 又AO=1,AC=2,OC=3 故222AC OC AO =+,故AO ⊥OC ②由①②得AO ⊥平面BCD ; -------7分 (3)连接OE ,可知∠OEF (或其补角)为所求 由(1)知,在Rt △AOC 中,OF=21AC=1,又EF=21AB=22,OE=21DC=1 在△EOF 中,由余弦定理得到:cos ∠OEF=4221121-211=⨯⨯+为所求. -------12分 19.解析:(1)11)1(-+-+=n n n ta a t a )(11-+-=-⇒n n n n a a t a a t a a a a n n nn =--⇒-+11故{}n n a a -+1为等比数列,公比为t ,首项t t a a -=-212故n n n n t t tt t a a )1()(121-=-=--+.则有t t a a )1(12-=-, 223)1(t t a a -=-,……,11)1(---=-n n n t t a a累加得到))(1(121-+++-=-n n tt t t a a t t tt t t n n -=---=-1)1()1(1,故nn t a = -------6分 (2)若,2=t 则nn n n n a a 21221111=-=-++,故n n n a a a a a a 212121*********+++=-++-+-+ =n n 211211)211(21-=-- -------9分 而n 211-随n的增大而增大,121121<-≤n, 由已知应有21<A ,1≥B ,即)21,∞-∈(A ,),1[∞+∈B -------13分 20. 解:(1)由已知,抛物线1C 的焦点为(1,0) -------2分 故椭圆2C 中,1=c ,1112=+=b ,2=a -------4分故离心率为2221==e . -------5分 (2)由已知,直线l 的斜率显然存在,设其方程为)2(-=x k y ,联立椭圆方程11222=+y x 得0288)21(2222=-+-+k x k x k .(*)由0>∆得212<k 设),(11y x A ,),(22y x B ,),(00y x E 则有:2221218k k x x +=+, 22212128kk x x +-= -------7分 由已知t +=,得),(),(212100y y x x y x t ++==+=t x x x 210)21(822k t k +,=+=t y y y 210]4)([121k x x k t -+)21(42k t k +-= 将点E 代入椭圆得++222])21(8[k t k 2])21(4[222=+-k t k 得到)1(16222k t k += -------9分故42216211621162222=+<+=+=k kk t ,故22<<-t 为所求. -------13分 21. 解析:(1)2222)1)(1(1)1(11)(xx ax x x a ax x x a a x f --=++-=++-=',0>x -------2分①若0>a ,则 当11>a ,即10<<a 时,⇒>'0)(x f 10<<x 或a x 1>;⇒<'0)(x f ax 11<< )(x f 的单调增区间为),(10和),(∞+a 1,减区间为)(a1,1 此时)(x f 的极大值点为1,极小值点为a1; 当11<a,即1>a 时,同理,此时)(x f 的极大值点为a 1,极小值点为1;当1=a 时,没有极值点;②若0<a ,则⇒>'0)(x f 10<<x ;⇒<'0)(x f 1>x 此时)(x f 的极大值点为1,没有极小值点.综上,若0<a ,则)(x f 的极大值点为1,没有极小值点; 若10<<a ,则)(x f 的极大值点为1,极小值点为a1 ; 若1=a ,则没有极值点; 若1>a 时,则)(x f 的极大值点为a1,极小值点为1. -------6分 (2)易知,210)2(=⇒='a f ,由(1)可知函数)(x f 的单调增区间为),(10和),(∞+2,减区间为)(2,1,又21)1(-=f ,212312)(-<--=e e e f ,可知当]0e x ,(∈时,21)(-≤x f 而0)()(21≤+x g x f )()(12x f x g -≤⇔,又]01e x ,(∈时,21)(1≥-x f 由已知,应存在]31[,∈x ,使得21)(min ≤x g , -------8分 当0<b 时,)(x g 在]31[,上递增,21211)1()(min ≥⇒≤-==b b g x g ,不合;。
湖南省长沙市周南中学2015届高三第一次月考理科数学试卷
长沙市周南中学2015届高三第一次月考试卷数 学(理)考试范围:集合、逻辑、函数与导数、三角函数、解三角形、平面向量、数列、不等式(含选讲)立体几何.时量:120分钟 总分:150分 命题:曹干铁 审题:魏 忠一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.集合{}{}32,log ,,,M a N a b ==若{}1=⋂N M ,则=⋃N M ( )A .{}1,2,3B .{}0,1,3C .{}0,2,3D .{}0,1,22.命题“2,20x R x x ∃∈-=”的否定是( )A .2,20x R x x ∀∈-= B . 2,20x R x x ∀∈-≠C .2,20x R x x ∃∈-≠ D .2,20x R x x ∃∈-> 3.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数, 且32()()1,f x g x x x -=++(1)(1)f g +则=( )A .-3B .-1C .1D .34.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( ) A .3π B C .12π D 5.同时具有性质:“①最小正周期是π;②图象关于直线3π=x 对称;③在]3,6[ππ-上是增函数”的一个函数是( ) A .)62sin(π+=x y B .)32cos(π+=x y C .)62sin(π-=x y D .)62cos(π-=x y 6.已知命题p :1>x 是1>x 成立的充分不必要条件;命题q :若不等式a x x >-++21对R x ∈∀恒成立,则3≤a ,在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是( )A .②③B .②④C .①③D .①④俯视图正视图 侧视图(第4题图)7.若1201x x <<<,则( )A .2121ln ln x x e e x x ->-B .2121ln ln x x e e x x -<-C .1221x x x e x e >D .1221x x x e x e < 8.不等式222y axy x +-≤0对于任意]2,1[∈x 及]3,1[∈y 恒成立,则实数a 的取值范围是( ) A .a ≤22B .a ≥22C .a ≥311D .a ≥29 9.已知函数()x f 是R 上的可导函数,且()x f 的图象是连续不断的,当0≠x 时,有()()0>+'x x f x f ,则函数()()xx f x x F 1+=的零点个数是( ) A .0B .1C .2D .310.在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是() A .⎛ ⎝B .C .D. 二.填空题:本大题5小题,每小题5分,共25分。
高中高三数学上学期周测试卷 文(1.28,含解析)-人教版高三全册数学试题
2014-2015学年某某省某某高中高三(上)周测数学试卷(文科)(1.28)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0 B.∀x>0,x3≤0 C.∃x>0,x3≤0 D.∀x<0,x3≤0 2.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值X围是()A.[2,+∞)B.D.(﹣∞,0]3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.34.已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|=()A.100 B.200 C.360 D.4005.(5分)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,476.(5分)(2015某某一模)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.7.如图所示的程序框图中,若f(x)=x2﹣x+1,g(x)=x+4,且h(x)≥m恒成立,则m 的最大值是()A.0 B.1 C.3 D.48.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.219.(5分)已知定义在R上的函数f(x)满足f(﹣3)=f(5)=1,f'(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣3,0)B.(﹣3,5)C.(0,5)D.(﹣∞,﹣3)∪(5,+∞)10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.211.(5分)(2015某某二模)设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.403112.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X围为()A.[3,6] B.[4,6] C.D.[2,4]二、填空题:每小题5分,共20分.13.(5分)已知数列{a n}是等比数列,若a4=,a6=6,则a10=.14.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是.15.(5分)(2015某某二模)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.16.(5分)(2015某某模拟)给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是.三、解答题:本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015某某一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.18.(12分)(2014秋禅城区校级期中)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 32 1580岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.19.(12分)(2016凉山州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.20.(12分)(2015某某一模)已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.21.(12分)(2014秋涪城区校级月考)已知函数f(x)=e x﹣ax﹣1(e为自然对数的底数),a>0.(Ⅰ)若函数f(x)恰有一个零点,证明:a a=e a﹣1;(Ⅱ)若f(x)≥0对任意x∈R恒成立,某某数a的取值集合.请考生在第22、23、24三题中任选一题作答,如果多做.则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.【选修4-1:几何证明选讲】22.(10分)(2016某某一模)如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,AB=5,求弦DE的长.【选修4-4:坐标系与参数方程】23.(2015某某一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t 为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.【选修4-5:不等式选讲】24.(2015某某一模)已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,某某数m的取值X围.2014-2015学年某某省某某高中高三(上)周测数学试卷(文科)(1.28)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0 B.∀x>0,x3≤0 C.∃x>0,x3≤0 D.∀x<0,x3≤0 【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题P:∀x>0,x3>0,那么¬P是∃x>0,x3≤0.故选:C.【点评】本题考查命题的否定特称命题与全称命题的否定关系,基本知识的考查.2.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值X围是()A.[2,+∞)B.D.(﹣∞,0]【分析】解出集合M,根据子集的概念即可求得实数a的取值X围.【解答】解:M={x|x<2};∵M⊆N;∴a≥2;∴a的取值X围是[2,+∞).故选A.【点评】考查子集的概念,描述法表示集合,可借助数轴求解.3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.3【分析】利用复数代数形式的乘除运算化简,然后由实部等于0求得m的值.【解答】解:∵为纯虚数,∴m+3=0,即m=﹣3.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|=()A.100 B.200 C.360 D.400【分析】根据抛物线的定义,把到焦点的距离转化为到准线的距离,从而求出b,进而求ab 的值.【解答】解:根据抛物线是定义,准线方程为:y=﹣5,|PF|=b+5=25,∴b=20,又点P(a,b)是抛物线x2=20y上一点,∴a2=20×20,∴a=±20,∴|ab|=400,故选D.【点评】本题主要考查抛物线的定义,抛物线上的点到焦点的距离与到准线的距离相等.5.(5分)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,47【分析】根据系统抽样的定义求出样本间隔进行判断即可.【解答】解:要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,则样本间隔为50÷5=10,则只有7,17,27,37,47满足条件.,故选:D.【点评】本题主要考查系统抽样的应用,根据条件求出样本间隔是解决本题的关键.比较基础.6.(5分)(2015某某一模)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.【分析】由三视图的作法规则,长对正,宽相等,对四个选项进行比对,找出错误选项.【解答】解:本题中给出了正视图与左视图,故可以根据正视图与俯视图长对正,左视图与俯视图宽相等来找出正确选项A中的视图满足三视图的作法规则;B中的视图满足三视图的作法规则;C中的视图不满足三视图的作法规则中的宽相等,故其为错误选项;D中的视图满足三视图的作法规则;故选C【点评】本题考查三视图的作法,解题的关键是掌握住三视图的作法规则即长对正,宽相等,高平齐,利用这些规则即可选出正确选项.7.如图所示的程序框图中,若f(x)=x2﹣x+1,g(x)=x+4,且h(x)≥m恒成立,则m 的最大值是()A.0 B.1 C.3 D.4【分析】由已知中的程序框图可得该程序的功能是计算并输出分段函数:h(x)=的值,数形结合求出h(x)的最小值,可得答案.【解答】解:由已知中的程序框图可得该程序的功能是:计算并输出分段函数:h(x)=的值,在同一坐标系,画出f(x)=x2﹣x+1,g(x)=x+4的图象如下图所示:由图可知:当x=﹣1时,h(x)取最小值3,又∵h(x)≥m恒成立,∴m的最大值是3,故选:C【点评】本题考查的知识点是程序框图,分段函数的应用,函数恒成立,难度中档.8.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.21【分析】作出不等式组对应的平面区域,利用数形结合即可得到结论.【解答】解:设z=x2+y2,则z的几何意义为区域内的点到原点的距离的平方,作出不等式组对应的平面区域如图:由图象可知,则OC的距离最大,由,解得,即C(3,3),则z=x2+y2=9+9=18,故选:B【点评】本题主要考查线性规划的应用,结合数形结合是解决本题的关键.9.(5分)已知定义在R上的函数f(x)满足f(﹣3)=f(5)=1,f'(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣3,0)B.(﹣3,5)C.(0,5)D.(﹣∞,﹣3)∪(5,+∞)【分析】由图象可以判断出f(x)的单调性情况,由f(﹣3)与f(5)的取值,即可得出答案.【解答】解:由f′(x)的图象可得,f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,又由题意可得,f(﹣3)=f(5)=1,∴f(x)<1的解集是(﹣3,5),故选:B.【点评】本题考查导函数图象与函数单调性的关系,考查学生灵活转化题目条件的能力,属于中档题.10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.2【分析】根据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数量积定义即可得到结论.【解答】解:∵函数f(x)=sin(2πx+φ)的周期T==2,则BC==1,则C点是一个对称中心,则根据向量的平行四边形法则可知: =2, =∴=2=2||2=2×12=2.故选:D.【点评】本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的关键.11.(5分)(2015某某二模)设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.4031【分析】函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,1),即x1+x2=0时,总有f (x1)+f(x2)=2,再利用倒序相加,即可得到结论【解答】解:∵f(x)=x3+sinx+1,∴f′(x)=3x2﹣cosx,f''(x)=6x+sinx又∵f''(0)=0而f(x)+f(﹣x)=x3+sinx+1+﹣x3﹣sinx+1=2,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,1),即x1+x2=0时,总有f(x1)+f(x2)=2,∴f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=2×2015+f(0)=4030+1=4031.故选:D.【点评】本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f (x1)+f(x2)=2,是解题的关键.12.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X围为()A.[3,6] B.[4,6] C.D.[2,4]【分析】通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b ﹣1)2+4,0≤b≤2,求出X围即可.【解答】解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为: =1,则y=3﹣x,设N(a,3﹣a),M(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)(b,3﹣b)=2ab﹣3(a+b)+9,=2(b2﹣2b+3)=2(b﹣1)2+4,0≤b≤2,∴当b=0或b=2时有最大值6;当b=1时有最小值4.∴的取值X围为[4,6]故选B.【点评】熟练掌握通过建立直角坐标系、数量积的坐标运算是解题的关键.二、填空题:每小题5分,共20分.13.(5分)已知数列{a n}是等比数列,若a4=,a6=6,则a10= 96 .【分析】由已知求出等比数列的公比的平方,再代入等比数列的通项公式求得a10.【解答】解:在等比数列{a n}中,∵a4=,a6=6,∴,∴.故答案为:96.【点评】本题考查了等比数列的通项公式,是基础的计算题.14.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是50 .【分析】由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.【解答】解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故答案为:50【点评】本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.15.(5分)(2015某某二模)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.【分析】由题意球的三角形ABC的位置,以及形状,利用球的体积,求出球的半径,求出棱锥的底面边长,利用棱锥的体积求出该三棱锥外接球的体积即可.【解答】解:正三棱锥D﹣ABC的外接球的球心O满足,说明三角形ABC在球O的大圆上,并且为正三角形,设球的半径为:R,棱锥的底面正三角形ABC的高为:底面三角形ABC的边长为: R正三棱锥的体积为:××(R)2×R=解得R3=4,则该三棱锥外接球的体积为=.故答案为:.【点评】本题考查球的内接体问题,球的体积,棱锥的体积,考查空间想象能力,转化思想,计算能力,是中档题.16.(5分)(2015某某模拟)给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.【分析】根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.【解答】解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在[0,+∞)上有无穷多个交点因此方程()x+sinx﹣1=0有无数个实数解,故②正确;对于③,当x<0时,由于x≤﹣1时()x﹣1≥1,函数y=()x﹣1与y=﹣sinx的图象不可能有交点当﹣1<x<0时,存在唯一的x满足()x=1﹣sinx,因此该方程在(﹣∞,0)内有且只有一个实数解,得③正确;对于④,由上面的分析知,当x≤﹣1时()x﹣1≥1,而﹣sinx≤1且x=﹣1不是方程的解∴函数y=()x﹣1与y=﹣sinx的图象在(﹣∞,﹣1]上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④【点评】本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.三、解答题:本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015某某一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,确定出角A的度数,将2bsinA=a利用正弦定理化简求出sinB的值,即可确定出角B的大小;(Ⅱ)由A=B,利用等角对等边得到AC=BC,设AC=BC=x,利用余弦定理列出关于x的方程,求出方程的解得到x的值,确定出AC与BC的长,再由sinC的值,利用三角形面积公式即可求出三角形ABC面积.【解答】解:(Ⅰ)由a2﹣b2﹣c2+bc=0得:a2﹣b2﹣c2=﹣bc,即b2+c2﹣a2=bc,∴由余弦定理得:cosA==,∵A为三角形内角,∴A=,由2bsinA=a,利用正弦定理化简得:2sinBsinA=sinA,即sinB=,则B=;(Ⅱ)由A=B,得到AC=BC=x,可得C=,由余弦定理得AM2=x2+﹣2x(﹣)=14,解得:x=2,则S△ABC=ACBCsinC=×2×2×=2.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.18.(12分)(2014秋禅城区校级期中)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 32 1580岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.【分析】(Ⅰ)求出该小区80岁以下的老龄人数,即可求解老龄人生活能够自理的概率.(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.写出5人中抽取3人的基本事件总数,被访问的3位老龄人中恰有1位老龄人的个数,即可求解健康指数不大于0的概率.【解答】解:(Ⅰ)解:该社区80岁以下的老龄人共有120+133+32+15=300人,…(1分)其中生活能够自理的人有120+133+32=285人,…(2分)记“随机访问该小区一位80岁以下的老龄人,该老人生活能够自理”为事件A,则P(A)==.…(4分)(Ⅱ)根据表中数据可知,社区健康指数大于0的老龄人共有280人,不大于0的老龄人共有70人,…(5分)所以,按照分层抽样,被抽取的5位老龄人中,有位为健康指数大于0的,依次记为:a,b,c,d,有一位健康指数不大于0的,记为e.…(7分)从这5人中抽取3人的基本事件有:(a,b,c)(a,b,d)(a,b,e)(a,c,d)(a,c,e)(a,d,e)(b,c,d)(b,c,e)(b,d,e)(c,d,e)共10种,…(9分)其中恰有1位老龄人的健康指数不大于0的事件有:(a,b,e)(a,c,e)(a,d,e)(b,c,e)(b,d,e)(c,d,e)共6种,…(10分)记“被访问的3位老龄人中恰有1位老龄人的健康指数不大于0”为事件B,则P(B)=…(12分)【点评】本题考查分层抽样,古典概型概率公式的应用,基本知识的考查.19.(12分)(2016凉山州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N 为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以V P﹣BMQ=V A﹣BMQ=V M﹣ABQ,取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)所以V P﹣BMQ=V A﹣BMQ=V M﹣ABQ=.,…(11分)则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.20.(12分)(2015某某一模)已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.【分析】(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.【解答】解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.(12分)(2014秋涪城区校级月考)已知函数f(x)=e x﹣ax﹣1(e为自然对数的底数),a>0.(Ⅰ)若函数f(x)恰有一个零点,证明:a a=e a﹣1;(Ⅱ)若f(x)≥0对任意x∈R恒成立,某某数a的取值集合.【分析】(Ⅰ)求出函数的导数,通过导数为0,判断函数的单调性,利用函数的最小值证明a a=e a﹣1;(Ⅱ)利用(Ⅰ)函数的最小值,结合f(x)≥0对任意x∈R恒成立,构造函数,求出新函数的最小值利用恒成立,某某数a的取值集合.【解答】(Ⅰ)证明:由f(x)=e x﹣ax﹣1,得f'(x)=e x﹣a.…(1分)由f'(x)>0,即e x﹣a>0,解得x>lna,同理由f'(x)<0解得x<lna,∴f(x)在(﹣∞,lna)上是减函数,在(lna,+∞)上是增函数,于是f(x)在x=lna取得最小值.又∵函数f(x)恰有一个零点,则f(x)min=f(lna)=0,…(4分)即e lna﹣alna﹣1=0.…(5分)化简得:a﹣alna﹣1=0,即alna=a﹣1,于是lna a=a﹣1,∴a a=e a﹣1.…(6分)(Ⅱ)解:由(Ⅰ)知,f(x)在x=lna取得最小值f(lna),由题意得f(lna)≥0,即a﹣alna﹣1≥0,…(8分)令h(a)=a﹣alna﹣1,则h'(a)=﹣lna,由h'(a)>0可得0<a<1,由h'(a)<0可得a>1.∴h(a)在(0,1)上单调递增,在(1,+∞)上单调递减,即h(a)max=h(1)=0,∴当0<a<1或a>1时,h(a)<0,∴要使得f(x)≥0对任意x∈R恒成立,a=1.∴a的取值集合为{1}…(13分)【点评】本题考查函数的导数的应用,函数的最值的求法,考查逻辑推理能力,构造新函数是解题本题的关键.请考生在第22、23、24三题中任选一题作答,如果多做.则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.【选修4-1:几何证明选讲】22.(10分)(2016某某一模)如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,AB=5,求弦DE的长.【分析】(Ⅰ)由已知PG=PD,得到∠PDG=∠PGD,由切割弦定理得到∠PDA=∠DBA,进一步得到∠EGA=∠DBA,从而∠PFA=∠BDA.最后可得∠BDA=90°,说明AB为圆的直径;(Ⅱ)连接BC,DC.由AB是直径得到∠BDA=∠ACB=90°,然后由Rt△BDA≌Rt△ACB,得到∠DAB=∠CBA.再由∠DCB=∠DAB可推得DC∥AB.进一步得到ED为直径,则ED长可求.【解答】(Ⅰ)证明:∵PG=PD,∴∠PDG=∠PGD,由于PD为切线,故∠PDA=∠DBA,又∵∠EGA=∠PGD,∴∠EGA=∠DBA,∴∠DBA+∠BAD=∠EGA+∠BAD,从而∠PFA=∠BDA.又AF⊥EP,∴∠PFA=90°,则∠BDA=90°,故AB为圆的直径.(Ⅱ)解:连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而得Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又∵∠DCB=∠DAB,∴∠DCB=∠CBA,故DC∥AB.∵AB⊥EP,∴DC⊥EP,∠DCE为直角,∴ED为直径,又由(1)知AB为圆的直径,∴DE=AB=5.【点评】本题考查了直线和圆的位置关系,考查了圆的切割线定理的应用,是中档题.【选修4-4:坐标系与参数方程】23.(2015某某一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t 为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.【分析】(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入即可得出.(II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.【解答】解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.【点评】本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.(2015某某一模)已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,某某数m的取值X围.【分析】(Ⅰ)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由二次函数y=x2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f(x)在x=﹣1处取得最大值m﹣2,故有m﹣2≥2,由此求得m的X围.【解答】解:(Ⅰ)当m=5时,,由f(x)>2可得①,或②,或③.解①求得﹣<x<﹣1,解②求得﹣1≤x<0,解③求得x∈∅,易得不等式即4﹣3x>2 解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1取得最小值2,因为在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,求得m≥4..【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解;还考查了函数的恒成立问题,体现了转化的数学思想,属于中档题.。
湖南省长郡中学2015届高三月考试卷(二)数学(理)试题Word版含答案
长郡中学2015届高三月考试卷(二)数学(理科)长郡中学高三数学命题组组稿得分:____________ 本试题卷包括选择题、填空题和解答题三部分,共8页。
时量120分钟。
满分150分。
一、选择题:本大题共10小题,没小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x ”是“ln 10x ”的A.充分不必要条件B.必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.已知函数33y x x c 的图像与x 轴恰有两个公共点,则c A.-2或 2 B.-9或3C.-1或 1D.-3或1 3.已知函数()sin f x x 在0,4上单调递增且在这个区间上的最大值为32,则实数的一个值可以是A.23 B.83C.43D.1034.已知向量a 与b 的夹角为,定义a b 为a 与b 的“向量积”,且a b 是一个向量,它的长度sin a b a b ,若2,0,1,3,则A,43 B.3 C.6 D.235.一几何体的三视图如图,该几何体的顶点都在球O 的球面上,球O 的表面积是A.2 B.4 C.6 D.166.设l 为直线,,是两个不同的平面,下列命题中正确的是A.若//,//,//l l 则B.//l l 若,,则C.,//,//l l 若则D.,//,l l若则7.已知n S 是等差数列n a 的前n 项和,下列选项中不可能是关于,n n S 的图像的是8.在数列n a 中,11a ,对于任意自然数n ,都有12nn n a a n ,则15a A.151422 B. 141322 C. 151423 D. 1513239.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式3169d V,人们还用过一些类似的近似公式.根据π=3.14159…判断,下列近似公式中最精确的一个是A.3169d VB. 32d V C. 3300157d V D. 32111d V10.已知数列n a 的通项公式为13n a n ,则满足119102k k k a a a 的整数kA.有3个B.有2个C.有1个D.不存在选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 得分答案二、填空题:本大题共5小题,每小题5分,共25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南广益实验中学2012级高三文科数学周考试题(3) 一、选择题:本大题共10小题;每小题5分,共50分. 1.设集合}032|{2xxxM,2{|log0}Nxx,则MNI等于_________. A.)0,1( B.)1,1( C.)1,0( D.)3,1( 2.若复数z的实部为1,且||2z,则复数z的虚部是_________. A.3 B.3 C.3i D.3i 3. 若命题:pR,cos()cos;命题:qRx,012x. 则下面结论正确的是_________. A.p是假命题 B.q是真命题 C.pq是假命题 D.pq是真命题
4.若函数21,1ln,1xxfxxx, 则((e))ff_________.(其中e为自然对数的底数) A.0 B.1 C.2 D. 2ln(e1) 5.若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为_________. A.1 B.2 C.3 D.4 6.在等差数列na中,12012a ,其前n项和为nS,若2012102002201210SS,则2014S的值等于_________. A.2011 B. -2012 C.2014 D. -2013 7.如图是某班50位学生期中考试数学成绩的频率分布直方图, 其中成绩分组区间是:4050,,5060,,6070,, 7080,,8090,,90100,,则图中x的值等于_________.
A.0.12 B.0.18 C.0.012 D.0.018 8.函数xxysin在,上的图象是_________.
频率组距0.054
x0.010.006
1009080706050400成绩
9.若函数()2sin()(214)84fxxx的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则OAOCOB)(_________.(其中O为坐标原点) A.32 B.32 C.72 D.72 10已知函数()(ln)fxxxax有两个极值点,则实数a的取值范围是_________.
A.(,0) B.1(0,)2 C.(0,1) D.(0,) 二、填空题:本大题共有5个小题,每小题5分,共25分. 11.若直线10axby平分圆22:241Cxyxy0的周长,则ab的取值范围是_________. 12.若某程序框图如右图所示,则该程序运行后输出的i值为 。
13. 已知变量yx,满足约束条件042042kyxyyx,且目标函数yxz3的最小值为1,则实常数k 。
14.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于 . 15.已知抛物线24yx的准线与双曲线22221xyab的两条渐近线分别交于A,B两点,且||23AB,则双曲线的离心率e为 。 三、解答题.本大题共6个小题,共75分. 16.(12分)全国第十二届全国人民代表大会第二次会议和政协第十二届全国委员会第二次会议,2014年3月在北京开幕.期间为了了解国企员工的工资收入状况,从108名相关人员中用分层抽样方法抽取若干人组成调研小组,有关数据见下表:(单位:人)
(1)求x,y; (2)若从中层、高管抽取的人员中选2人,求这二人都自中层的概率.
17.(本小题满分12分) 已知函数27()sin22sin1()6fxxxxR, (1)求函数fx的周期及单调递增区间; (2)在ABC中,三内角A,B,C的对边分别为cba,,,已知函数fx的图象经过
点1,,,,2Abac成等差数列,且9ABAC,求a的值.
18.(12分)如图1,在直角梯形ABCD中,//ADBC,90,ADCBABC.把BAC沿AC 折起到PAC的位置,使得P点在平面ADC上的正投影O恰好落在线段AC上,如图2所示,点EF、分别为棱PCCD、的中点. (1)求证:平面//OEF平面APD; (2)求证:CD平面POF; (3)若3,4,5ADCDAB,求四棱锥ECFO的体积.
19.(13分)已知数列{}na的前n项和为nS,且22nnSa,数列{}nb满足11b,且
相关人数 抽取人数 一般职工 63 x
中层 27 y 高管 18 2 12nnbb.
(1)求数列{}na,{}nb的通项公式;
(2)设1(1)1(1)22nnnnncab,求数列{}nc的前2n项和2nT. 20.(本小题满分13分)已知函数+1()ln+1afxxaxx. (1)当1a时,求曲线()yfx在点(2,(2))f处的切线方程; (2)当102a时,讨论()fx的单调性.
21. (13分) 已知椭圆)0(1:2222babyaxC经过点2(1,)2P,且两焦点与短轴的两个端点的连线构成一正方形. (1)求椭圆C的方程; (2)直线l与椭圆C交于A,B两点,若线段AB的垂直平分线经过点1(0,)2,求AOB (O为原点)面积的最大值. 湖南广益实验中学2015届高三文科数学周考试题(3)(答卷) 一、选择题 1 2 3 4 5 6 7 8 9 10
二、填空题: 11、___________; 12、___________; 13、___________;
14、___________; 15、___________; 三、解答题: 16、(12分)
17、(12分) 18、(12分)
19、(13分) 20、(13分)
21、(13分) 湖南广益实验中学2012级高三文科数学周考试题(3)---答案 一、选择题 C B D C D C D A D B
二、填空题 11.1(,]8 12. 8 13. 9 14.332 15.2 三、解答题 16.解:(1)由题意可得 2632718xy,所以7x,3y. ……………………3分 (2)记从中层抽取的3人为1b,2b,3b,从高管抽取的2人为1c,2c, 则抽取的5人中选2人的基本事件有:12(,)bb,13(,)bb,11(,)bc,12(,)bc,23(,)bb,21(,)bc,
22(,)bc,31(,)bc,32(,)bc,12(,)cc共10种. ……8分
设选中的2人都自中层的事件为A, 则A包含的基本事件有:12(,)bb,13(,)bb,23(,)bb错误!未找到引用源。共3种. ………………10分 因此3()0.310PA错误!未找到引用源。. 故选中的2人都自中层的概率为0.3错误!未找到引用源。. … ……………12分 17.解:
271()si622fxx
sin(2)6x ………………………………………………3分 (1)最小正周期:22T, ………………………………………………4分 由222()262kxkkZ可解得:()36kxkkZ, 所以()fx的单调递增区间为:[,]()36kkkZ; ………………6分 (2)由1()sin(2)62fAA可得:5222()666AkkkZ或 所以3A, ………………………………………………8分 又因为,,bac成等差数列,所以2abc, ………………9分 而1cos9,182ABACbcAbcbc ………………………………10分 222221()4cos111223612bcaaaaAbc
,】32a. ………12分
18.解:(1)因为点P在平面ADC上的正投影O恰好落在线段AC上 所以PO平面ABC,所以POAC …………………1分 因为ABBC, 所以O是AC中点, ………2分 所以//OEPA ,PAPAD平面所以 //OEPAD平面 ………3分 同理//OFPAD平面又,OEOFOOEOFOEF、平面 所以平面//OEF平面PDA …………………5分 (2)因为//OFAD,ADCD 所以OFCD 又PO平面ADC,CD平面ADC所以POCD ……7分 又OFPOO 所以CD平面POF ……8分 (3)因为90ADC,3,4ADCD,所以13462ACDS,而点,OE分别是,ACCD的中点,所以1342CFOACDSS, …………………10分 由题意可知ACP为边长为5的等边三角形,所以高532OP, …………11分 即P点到平面ACD的距离为532,又E为PC的中点,所以E到平面CFO的距离为534,故1355333248ECFOV. …………………12分 19.解:(1)当1n,21a; ………………………1分 当2n时,1122nnnnnaSSaa ,∴ 12nnaa. ……………2分 ∴{}na是等比数列,公比为2,首项12a, ∴2nna. ………3分 由12nnbb,得{}nb是等差数列,公差为2. ……………………4分 又首项11b,∴ 21nbn. ……………………………6分
(2)2(21)nncn 为偶数为奇数nn ……………………8分
3212222[37(41)]nnTn 2122223nnn. …12分 20.解:(1)当1a时,2()ln+1fxxxx, 此时'212()+1fxxx, ………………………………2分 '12(2)+1124f,又2(2)ln2+21ln2+22f,
所以切线方程为:(ln2+2)2yx,整理得:ln20xy; …5分
(2)2'222111(1)(1)()aaxxaaxaxfxaxxxx, ……6分 当0a时,'21()xfxx,此时,在'(0,1)()0fx,()fx单调递减, 在'(1,)()0fx,()fx单调递增; …………………………… 8分
当102a时,'21()(1)()aaxxafxx,