苏教版高中数学必修一对数函数教案(4)

合集下载

高中数学 2.3《对数函数》课件三 苏教版必修1

高中数学 2.3《对数函数》课件三 苏教版必修1
问:什么是指数函数? 它的图象和性质是什么?
复习引入
我们研究指数函数时,曾讨论过细胞分裂问题,某种细胞分裂时,由 1个分裂成2个,2个分裂成4个……1个这样的细胞分裂成x次后,得到细胞 个数y是分裂次数x的函数,这个函数可以用指数函数 _y_=_2_x_,x__∈__N__表示。
反过来,1个细胞经过多少次分裂,大约可以等于1万个、10万个…… 细胞?已知细胞个数y,如何求分裂次数x?得到怎样一个新的函数?

值域: R
过定点 ( 1 , 0 )
质 在 ( 0 ,+∞)上 在 ( 0 ,+∞)上
是 增 函数
是减 函数
例1:求下列函数的定义域:
(1)y=log0.2(4-x) (2)y=loga
x 1
(3)y=log2(x-1)+log2(x+1)
讲解范例 例: 比较下列各组数中两个值的大小:
(1) log 2 3.4, log 2 8.5 (2)log 0.3 1.8, log 0.3 2.7
③比较真数大小,然后利用对数函数的增减性判断两对数值 的大小
④若底数与1的大小关系未明确指定时,要分情况对底数进行 讨论来比较大小.
讲解范例
(4) log6 7, log7 6
(5) log3 1.7, log2 0.8
解:(4)log6 7 log6 6 1, log7 6 log7 7 1
y
解:当 0 a 1时,在( 0,+ ∞)上是 减函数,
于是log a 5.4 loga 3.2
o
当a 1时,在( 0,+ ∞)上是 增函数,
于是 loga 5.4 loga 3.2
小结1:两个同底数的对数比较大小的一般步骤:

高中数学 第四章 对数运算和对数函数 1 对数的概念课件 必修第一册高一第一册数学课件

高中数学 第四章 对数运算和对数函数 1 对数的概念课件 必修第一册高一第一册数学课件
1
2
D.4 =x
(2)D
2021/12/12
第七页,共二十二页。
激趣诱思
知识(zhī shi)点

二、对数的基本性质
1.负数和零没有(méi yǒu)对数.
2.对于任意的a>0,且a≠1,都有
1
loga1=0,logaa=1,loga =-1.
a
3.对数恒等式aa =
N
.
名师点析1.loga1=0,logaa=1可简述为“1的对数等于0,底的对数等于1”.
4
(3)log3(lg x)=1.
2
解:(1)由 log8x=- ,得 x=8
3
3
3
4
2
3
-
2
=(23)-3 =2-2,故
3
4
1
x= .
4
(2)由 logx27=4,得 =27,即 =33,
4
3 3
故 x=(3 ) =34=81.
(3)由 log3(lg x)=1,得 lg x=3,故 x=103=1 000.
3
-1 1
(3)e = ;
e
(4)10-3=0.001.
分析利用当a>0,且a≠1时,logaN=b⇔ab=N进行互化.
解:(1)
1
1 -3
3
(3)ln =-1.
e
=27.
(2)log464=3.
(4)lg 0.001=-3.
2021/12/12
第十页,共二十二页。
当堂检测
探究(tànjiū)一
探究(tànjiū)二
§1
对数(duìshù)的概念
2021/12/12

高中数学 2.3对数函数教案十 苏教版必修1

高中数学 2.3对数函数教案十 苏教版必修1

对 数(三)教学目标:使学生掌握对数的换底公式,并能解决有关的化简、求值、证明问题;培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力.教学重点:换底公式及推论.教学难点:换底公式的证明和灵活应用.教学过程:教学过程:Ⅰ.复习回顾对数的运算法则若a >0,a ≠1,M >0,N >0,则(1)log a (MN )=log a M +log a N ;(2)log a M N =log a M -log a N ;(3)log a M n =n log a M (n ∈R )Ⅱ.讲授新课1.对数换底公式:log a N =log m N log m a(a >0,a ≠1,m >0 ,m ≠1,N >0) 证明:设log a N =x , 则 a x =N两边取以m 为底的对数:log m a x =log m N ⇒x log m a =log m N从而得:x =log m N log m a ∴ log a N =log m N log m a2.两个常用的推论:① log a b ·log b a =1② log m a b n =n mlog a b ( a 、b >0且均不为1) 证:①log a b ·log b a =lg b lg a lg a lg b=1 ②log m a b n =lg b nlg a m =n lg b m lg a =n m log a b Ⅲ.例题分析例1 已知 log 23=a , log 37=b , 用 a , b 表示log 4256解:因为log 23=a ,则1a=log 32 , 又∵log 37=b , ∴log 4256=log 356log 342 =log 37+3log 32log 37+log 32+1 =ab +3ab +b +1例2计算:① 53log 12.0- ② log 43·log 92-log 21432解:①原式=15315555531log 3log 52.0===②原式=12 log 23·12 log 32+54 log 22=14 +54 =32例3设 x 、y 、z ∈(0,+∞)且3x =4y =6z1︒ 求证 1x +12y =1z; 2︒ 比较3x ,4y ,6z 的大小 证明1︒:设3x =4y =6z =k ∵x 、y 、z ∈(0,+∞) ∴k >1取对数得:x =lg k lg 3 , y =lg k lg4 , z =lg k lg 6∴1x +12y =lg 3lg k +lg 42lg k =2lg 3+lg42lg k =2lg 3+2lg22lg k =lg 6lg k =1z2︒ 3x -4y =(3lg 3 -4lg 4 )lg k =lg64-lg81lg 3lg4 lg k =lg k ·lg 6481 lg 3lg4<0 ∴3x <4y又:4y -6z =(4lg 4 -6lg 6 )lg k =lg36-lg64lg 2lg6 lg k =lg k ·lg 916 lg 2lg6<0 ∴4y <6z ∴3x <4y <6z例4已知log a x =log a c +b ,求x分析:由于x 作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b 的存在使变形产生困难,故可考虑将log a c 移到等式左端,或者将b 变为对数形式解法一:由对数定义可知:b c a a x+=log b c a a a ⋅=log b a c ⋅= 解法二:由已知移项可得log a x -log a c =b , 即log a x c =b由对数定义知:x c =a b ∴x =c ·a b解法三:∵b =log a a b ∴log a x =log a c +log a a b =log a c ·a b ∴x =c ·a bⅣ.课堂练习①已知 log 189=a , 18b =5 , 用 a , b 表示log 3645解:∵log 189=a ∴log 18182=1-log 182=a ∴log 182=1-a ∵18b =5 ∴ log 185=b∴log 3645=log 1845log 1836 =log 189+log 1851+log 182 =a +b 2-a②若log 83=p ,log 35=q , 求 lg5解:∵log 83=p ∴3log 32 =p ⇒log 23=3p ⇒log 32=13p又∵log 35=q ∴ lg5=log 35log 310 =log 35log 32+log 35 =3pq 1+3pq Ⅴ.课时小结本节课学习了以下内容:换底公式及其推论Ⅵ.课后作业1.证明:b xx a ab a log 1log log += 证法1: 设 p x a =log ,q x ab =log ,r b a =log 则:p a x = q q q b a ab x ==)( r a b = ∴)1()(r q q p a ab a +== 从而 )1(r q p += ∵ 0≠q ∴r q p +=1 即:b xx a ab a log 1log log +=(获证) 证法2: 由换底公式 左边=b ab a ab x x a a x x ab a log 1log log log log log +====右边 2.已知λ====n a a a b b b n log log log 2121求证:λ=)(log 2121n a a a b b b n证明:由换底公式 λ====nn a b a b a b lg lg lg lg lg lg 2211 由等比定理得: λ=++++++n n a a a b b b lg lg lg lg lg lg 2121 ∴λ=)lg()lg(2121n n a a a b b b ∴λ==)lg()lg()(log 21212121n n n a a a a a a b b b b b b n。

高中数学必修一课件:第四章对数函数的概念

高中数学必修一课件:第四章对数函数的概念
x+1>0, (4)由x+1≠1,解得-1<x<0或0<x<2,∴定义域为(-1,0)∪(0,2).
2-x>0,
探究2 (1)给定函数解析式求定义域的限制条件如下: ①分母不为0. ②偶次方根下非负. ③x0中x≠0. ④对数的真数大于0. ⑤对数、指数的底数a满足a>0且a≠1. (2)求定义域时,首先列全限制条件组成不等式组,然后正确解出不等式 组,最后结果一定写成集合(包含区间)的形式.
【解析】 设经过y年后公司全年投入的研发资金为x, 则x=130(1+12%)y,即13x0=1.12y, 所以y=log1.1213x0,令x=200, 所以y=log1.12210300=log1.1212.3=lg l2g-1l.1g21.3≈3.8, 所以到2021年,公司全年投入的研发资金开始超过200万元.
4.设f(x)=l1g0xx,,xx≤>00,,则f(f(-2))=___-_2____. 解析 f(-2)=10-2>0,f(10-2)=lg 10-2=-2.
5.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额为 x万元时,奖励y万元.若y=2log4x-2,某业务员要得到5万元奖励,则他的销 售额应为___1_2_8___万元.
解析 据题意5=2log4x-2,所以7=2log4x=log2x, ∴x=27=128.
C.y=logxe
D.y=2lg x
解析 B中真数不对;C中底数不对;D中系数不对.
2.函数f(x)=log2(x-1)的定义域是( B )
A.[1,+∞)
B.(1,+∞)
C.(-∞,1)
D.(-∞,1]
解析 由x-1>0得x>1,故定义域为(1,+∞).

高中数学必修1 指数函数与对数函数教案(知识点+例题+练习)

高中数学必修1 指数函数与对数函数教案(知识点+例题+练习)

学员姓名年级高一辅导科目数学课程类型1对1任课老师班组课题指数函数与对数函数课型□预习课□同步课□复习课□习题课课次11 授课日期及时段教学目标重难点重点:难点:教学及学习方法教学方法:学习方法:教学内容【基础知识网络总结与巩固】本节考点:考点回顾考点一考点二考点三【上节知识回顾】【本节知识要点】1. 指数函数的图象和性质函数y=a x(a>0,且a≠1)图象0<a<1a>1图象特征在x轴上方,过定点(0,1)性质定义域值域单调性函数值变化规律R(0,+∞)减函数增函数当x=0时,y=1当x<0时,y>1;当x>0时,0<y<1当x<0时,0<y<1;当x>0时,y>12.对数函数的图象和性质y =log a xa >10<a <1图象性质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数3.求解与指数函数、对数有关的复合函数问题,首先要熟知指数函数、对数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为内层函数相关的问题加以解决.【重难点例题启发与方法总结】典型例题剖析例1 求下列函数的定义域 (1)f (x )=1-2log 6x ; (2)y =32x -1-19.【解析】(1)由1-2log 6x ≥0,解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].(2)由32x -1-19≥0,得32x -1≥19=3-2,∵y =3x 为增函数,∴2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎡⎭⎫-12,+∞. 变式训练 函数f (x )=4-x 2+log 2(x -1)的定义域是( ) A .(1,2] B .[1,2] C .(1,+∞) D .[2,+∞)【答案】A【解析】要使函数有意义,则⎩⎨⎧4-x 2≥0x -1>0,即⎩⎪⎨⎪⎧-2≤x ≤2x >1,∴1<x ≤2,即函数的定义域为(1,2], 故选A.例2 (1)已知函数f (x )=(23)|x |-a ,则函数f (x )的单调递增区间为________,单调递减区间为________.2.(2018·湖南衡阳期末)已知集合A ={x |log 12x >-1},B ={x |2x >2},则A ∪B =( )A.⎝⎛⎭⎫12,2B.⎝⎛⎭⎫12,+∞ C .(0,+∞) D .(0,2) 答案:C解析:由A ={x |log 12x >-1}={x |0<x <2},B ={x |2x >2}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >12,则A ∪B =(0,+∞).故选C. 3.(2018·福建福州外国语学校期中)已知函数f (x )=(m 2-m -1)x -5m -3是幂函数,且f (x )是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .0 答案:B解析:因为函数f (x )=(m 2-m -1)x -5m -3是幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m=-1.又因为幂函数在(0,+∞)上单调递增,所以-5m -3>0,即m <-35,所以m =-1,故选B.方法点拨:求有关幂函数的解析式,一般采用待定系数法,即设出解析式后,利用已知条件,求出待定系数.注意幂函数中自变量的系数为1.4.(2018·重庆第一中学一诊模拟)设a =213,b =log 43,c =log 85,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b [来源:学科网]C .b >c >aD .c >b >a [来源:学科网ZXXK] 答案:A解析:由指数函数的性质知a >1,由对数函数的性质得0<b <1,0<c <1.c 可化为log 235;b 可化为log 23,∵(35)6<(3)6,∴b >c ,∴a >b >c ,故选A.5.函数f (x )=a x -1a(a >0,a ≠1)的图象可能是( )答案:D解析:当a >1时,将y =a x 的图象向下平移1a 个单位长度得f (x )=a x -1a的图象,A ,B 都不符合;当0<a <1时,将y =a x 的图象向下平移1a 个单位长度得f (x )=a x -1a 的图象,而1a大于1,故选D.6.若函数y =f (x )的定义域为[2,4],则y =f (log 12x )的定义域是( )A.⎣⎡⎦⎤12,1 B .[4,16] C.⎣⎡⎦⎤116,14 D .[2,4] 答案:C解析:令log 12x =t ,则y =f (log 12x )=f (t ),因为函数y =f (x )的定义域是[2,4],所以y =f (t )的定义域是[2,4],即2≤t ≤4,所以2≤log 12x ≤4,解得116≤x ≤14,所以y =f (log 12x )的定义域是⎣⎡⎦⎤116,14. 7.(2018·武汉二模)设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞) 答案:C解析:通解 当a <0时,不等式f (a )<1为⎝⎛⎭⎫12a-7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.优解 取a =0,f (0)=0<1,符合题意,排除A ,B ,D.8.(2018·怀化二模)已知函数f (n )=log n +1(n +2)(n ∈N *),定义使f (1)·f (2)·f (3)·…·f (k )为整数的k (k ∈N *)叫做企盼数,则在区间[1,2 016]内的企盼数的个数是( )A .8B .9C .10D .11 答案:B解析:因为函数f (n )=log n +1(n +2)(n ∈N *),所以f (1)=log 23,f (2)=log 34,…,f (k )=log k +1(k +2),所以f (1)·f (2)·f (3)·…·f (k )=log 23·log 34·…·log k +1(k +2)=log 2(k +2),若f (1)·f (2)·f (3)·…·f (k )为整数,则k +2=2m ,m ∈Z ,又k ∈[1,2 016],所以k ∈{2,6,14,30,62,126,254,510,1 022},故在区间[1,2 016]内的企盼的个数是9.二、填空题[来源:学科网]9.log 327-log 33+(5-1)0-⎝⎛⎭⎫9412+cos 4π3=________. 答案:0解析:原式=log 3(27÷3)+1-32-12=1+1-32-12=0.10.(2018·江西自主招生)方程log 3(1+2·3x)=x +1的解为________. 答案:0解析:由方程log 3(1+2·3x )=x +1可得1+2·3x =3x +1,化简可得3x =1,故x =0.11.(2018·山西一模,13)已知函数f (x )=x 2-m 是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=________. 答案:-1解析:由题意得m 2-m =3+m ,即m 2-2m -3=0,∴m =3或m =-1.当m =3时,f (x )=x -1,[-3-m ,m 2-m ]为[-6,6],f (x )在x =0处无意义,故舍去.[来源:学科网] 三、解答题12.已知函数f (x )=log 3mx 2+8x +nx 2+1的定义域为R ,值域为[]0,2,求m ,n 的值.解析:由y =f (x )=log 3mx 2+8x +n x 2+1,得3y =mx 2+8x +nx 2+1,即()3y -m ·x2-8x +3y -n =0[来源:学.科.网Z.X.X.K] ∵x ∈R ,∴Δ=64-4(3y -m )(3y -n )≥0,即32y -(m +n )·3y +mn -16≤0由0≤y ≤2,得1≤3y≤9,由根与系数的关系得⎩⎪⎨⎪⎧m +n =1+9mn -16=1×9,解得m =n =5.【课后强化巩固练习与方法总结】1.已知集合M ={}x |y =x -1,N ={x |y =log 2(2-x )},则∁R (M ∩N )等于( ) A .[1,2) B .(-∞,1)∪[2,+∞) C .[0,1] D .(-∞,0)∪[2,+∞)2.已知a =23log 4.1,b =23log 2.7,c =⎝⎛⎭⎫123log 0.1,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b3.函数y =log 12(x 2-3x +2)的递增区间是( )A .(-∞,1)B .(2,+∞)C .(-∞,32)D .(32,+∞)学管签字:学管主任签字:。

高一数学对数函数的导学案苏教版必修一

高一数学对数函数的导学案苏教版必修一

宿迁中学高一数学(必修1) 课题:对数函数(一) 导学案班级_______学号________姓名________组内评价_____【三维目标】1. 知识与技能① 理解指数函数与对数函数之间的联系与区别。

② 理解对数函数的概念,能熟练的进行比较大小。

2. 过程与方法① 通过师生之间,学生与学生之间的合作交流,使学生学会与别人共同学习。

② 通过探究对数函数的概念,感受化归思想,培养学生数学的分析问题的意识。

3. 情感态度价值观① 通过对对数函数概念的学习,使学生认清基本概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣。

② 通过学生的相互交流来加深理解对数函数概念,增强学生数学交流能力,培养学生倾听,接受别人建议的优良品质。

【教学重难点】1. 对数函数和指数函数之间的联系;2. 理解对数函数的概念,体会对数函数是一类重要的函数模型;3. 掌握对数函数的图像和性质,会求与对数函数有关的复合函数的定义域和值域【教具准备】多媒体课件,投影仪,打印好的作业。

【教学过程】一. 预习填空:1.一般地,把函数 叫做对数函数,其中 是自变量,函数的定义域是 ,值域 .(可从指数式和对数式的互化来理解)3.指数函数y=a x (a>0且a ≠1)和对数函数y = log a x (a>0且a ≠1)是关于 对称二、例题讲解例1.求下列函数的定义域(1).0.2log (4);y x =- (2).log 0,1)ay a a =>≠(3). 61log 13y x =- (4). 2lg(23)y x x =+-变式训练:①.求函数1log (164)x x y +=-的定义域②.已知函数2log ()a y a a =-,其中a>1,求它的定义域和值域例2.比较下列各组数中两个值的大小23.4log 3.82①.log 与 0.50.5②.log 1.8与log 2.1 65l o g 77③.log 与变式训练:比较大小36①.log 5与log 5 1.9 2.1②.(lgm)与(lgm)(m>1)三.巩固练习1.函数的定义域2.若log 2log 20a b <<,则a ,b 与0,1的大小关系3.若函数()y f x =的图像与函数ln y x =的图像关于直线y x =对称,则()f x =4.函数2log (6)y x =- (2)x ≥-的值域为5.设20.30.3,2,2a b c ===,则a ,b ,c 的大小关系6.对数函数图像过点P (8,3),则1()2f =7.函数1()log a f x x -=在其定义域上是减函数,则a 的取值范围8.3lg 40x +=四.总结:①本节课学习的知识点有:②本节课所用的思想方法有:五:课堂作业: 课本P70 习题2.3(2) 2 , 3 P69 练习4作业 对数函数(1)1. 已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则M N = 2. 若0<x<1,则0.2x 2log x (填>或<)3.函数2()lg(31)f x x =++的定义域是 4. 若函数(4)x y f =的定义域为[0,1],则函数2(log )y f x =的定义域为5. 若log (21)log (4)0a a a a +<<,则a 的取值范围是6.已知函数2()log (2)f x x =-的值域是[1,4],那么函数()f x 的定义域是7.(2009全国卷Ⅱ文)设2lg ,(lg ),a e b e c ===a ,b ,c 的大小关系:8.对于函数2()lg(21)f x ax x =++.①若()f x 的定义域为R ,则a 的取值范围②若()f x 的值域为R ,则a 的取值范围9. 解下列不等式33log (4)2log x x ->+①. .2log (4)log (2)a a x x ->-②10. 对于函数124()lg 3x x a f x ++=. ①若()f x 在(,1)-∞上有意义,求a 的取值范围; ②若()f x 的定义域为(,1)-∞,求a 的值探究●拓展 :已知函数222()log 3,[1,4],()()[()]f x x x g x f x f x =+∈=-,求:①函数()f x 的值域②()g x 的最大值以及相应的x 的值。

高中数学 3.2.2对数函数(一)配套课件 苏教版必修1


小结 此题主要利用对数函数 y=logax 的定义域为(0,+∞) 求解.
第八页,共27页。
研一研•问题探究、课堂(kètáng)更高 效
跟踪训练 1 求下列函数的定义域: (1)y=log3(1-x);(2)y=log12x;(3)y=log71-13x;
(4)y= log3x.
解 (1)由 1-x>0 得 x<1,
第二十二页,共27页。
研一研•问题探究(tànjiū)、课堂更高 效
3.2.2(一)
跟踪训练 3 函数 y=loga(x-1)(a>0 且 a≠1)的反函数的图象经过点 (1,4),求 a 的值.
解 根据反函数的概念,知函数 y=loga(x-1)(a>0 且 a≠1)的图象经 过点(4,1), ∴1=loga3,∴a=3.
2
图象的过程,观察图象,并指出这两个函数有哪些相同性质
和不同性质?
答 作图步骤: ①列表, ②描点,③用平滑曲线连接.过程
如下: x

1 4
1 2
1
2
4…
y=log2x … -2 -1 0 1 2 …
y= log1 x … 2 1 0 -1 -2 … 2
第十一页,共27页。
研一研•问题探究(tànjiū)、课堂更高 效
所以它在(0,+∞)上是增函数,于是 log23.4<log28.5; (2)考虑对数函数 y=log0.3x,因为它的底数 0<0.3<1,
所以它在(0,+∞)上是减函数,于是 log0.31.8>log0.32.7;
(3)当 a>1 时,y=logax 在(0,+∞)上是增函数,
于是 loga5.1<loga5.9;

对数函数课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册


高中数学
必修第一册
配套江苏版教材
【概念理解】
(1) f -1(x)是函数f(x)的反函数,不是“f(x)的负1次幂”.
(2)并非每个函数都有反函数,有些函数没有反函数,如二次函数y=x2没有反函数.
(3)“给定值域中任意一个y的值,只有唯一的x与之对应”这句话,可以从函数图象上来理解,即任何
一条与y轴垂直的直线与函数y=f(x)的图象至多只有一个交点,因此定义域内的单调函数必有反函数,
<1 x<0
当a>1时,ax
情况
x
当0<a<1时,a
单调性
<1 x>0 ,
=1 x=0 ,
>1 x<0
>0 x>1 ,
当a>1时,log a
=0 x=1 ,
<0 0<x<1 ;
<0 x>1 ,
当0<a<1时,log a
=0 x=1 ,
>0 0<x<1
当a>1时,y=ax,y=logax在定义域内为增函数;当0<a<1时,y=ax,y=logax在定义域内为减函数
高中数学
必修第一册
配套江苏版教材
【规律总结】对数值正负的规律
(1)当a>1时,由对数函数y=logax是增函数知:若0<x<1,则logax<loga1=0;若x>1,则logax>loga1=0.
(2)当0<a<1时,由对数函数y=logax是减函数知:若0<x<1,则logax>loga1=0;若x>1,则logax<loga1=0.

苏教版高中数学必修一第课时对数教案学生

第二十一课时 对数(2) 学习要求1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;2.能较熟练地运用这些法则和联系的观点解决问题;自学评价1.指数幂运算的性质(1),m n m n a a a +=(2)mm n n a a a -=(3)()m n mna a =(2)log log -log a a a MM N N =(3)log log ()na a M n M n R =∈说明:(1)语言表达:“积的对数 = 对数的和”……(简易表达以帮助记忆);(2)注意有时必须逆向运算:如 11025101010==+log log log ;(3)注意性质的使用条件:每一个对数都要有意义。

)(log )(log ))((log 5353222-+-=-- 是不成立的,)(log )(log 1021010210-=-是不成立的(4)当心记忆错误:N log M log )MN (log a a a ⋅≠,试举反例, N log M log )N M (log a a a ±≠±,试举反例。

(5)对数的运算性质实际上是将积、商、幂的运算分别转化为对数的加、减、乘的运算。

【精典范例】例1:用log a x ,log a y ,log a z 表示下列各式:(1)log a xy z ;(2)log a分析:应用对数运算的性质可直接得出。

例2:求下列各式的值: (1)()352log 24⨯; (2)5log 125; (3)lg 32lg 21lg1.2+-; (4)22log log 点评: 熟练掌握对数的运算性质并能逆用性质是解题的关键。

例3:已知lg 20.3010,lg30.4771≈≈,求下列各式的值(结果保留4位小数): (1)lg12 ; (2)27lg 16 点评:寻找已知条件与所求结论的内在联系这是解题的一般途径。

例4:计算:(1)lg 14-2lg 18lg 7lg 37-+;2. 对数的运算性质如果 a > 0 , a ≠ 1, M > 0 ,N > 0, 那么(1)log ()log log a a a MN M N =+;2lg 2lg 3(2)2lg 0.362lg 2+++;(3)2lg 5lg 2lg50+⋅点评:灵活运用对数运算法则进行对数运算,要注意法则的正用和逆用。

高中数学第4章指数函数与对数函数4.3对数4.3.1对数的概念教学案第一册数学教学案

4.3.1 对数的概念(教师独具内容)课程标准:通过具体实例,理解对数的概念,了解常用对数与自然对数.理解对数的简单性质.教学重点:1.对数的概念,指数式与对数式的互化.2.对数的简单性质.教学难点:对数概念的理解,指数式与对数式之间的熟练转化.【知识导学】知识点一 对数的概念(1)对数的概念:如果□01a x =N (a >0,且a ≠1),那么数□02x 叫做以□03a 为底□04N 的对数,记作□05x =log a N ,其中□06a 叫做对数的底数,□07N 叫做真数. (2)两种特殊的对数①常用对数:通常□08以10为底的对数叫做常用对数,N 的常用对数log 10N 简记为□09lg_N ; ②自然对数:□10以e 为底的对数称为自然对数,N 的自然对数log e N 简记为□11ln_N (其中e =2.71828…). 知识点二 对数与指数的关系 (1)对数的基本性质①□01零和负数没有对数,即真数N >0; ②1的对数为□020,即log a 1=□030(a >0,且a ≠1);③底数的对数等于□041,即log a a=□051(a>0,且a≠1).(2)两个重要的对数恒等式①a log a N=□06N(a>0,且a≠1,N>0);②log a a N=□07N(a>0,且a≠1).【新知拓展】在对数的概念中为什么规定a>0且a≠1(1)若a<0,则当N为某些值时,x的值不存在,如:x=log(-2)8不存在.(2)若a=0,①当N≠0时,x的值不存在.如:log03(可理解为0的多少次幂是3)不存在;②当N=0时,x可以是任意正实数,是不唯一的,即log00有无数个值.(3)若a=1,①当N≠1时,x的值不存在.如:log13不存在;②当N=1时,x可以为任意实数,是不唯一的,即log11有无数个值.因此规定a>0,且a≠1.1.判一判(正确的打“√”,错误的打“×”)(1)因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对于同一个正数,当底不同时,它的对数也不相同.( )(4)等式log a 1=0对于任意实数a 恒成立.( ) 答案 (1)× (2)× (3)× (4)× 2.做一做(请把正确的答案写在横线上) (1)若5x=2019,则x =________. (2)lg 10=________;ln e =________. (3)将log 3a =2化为指数式为________. 答案 (1)log 52019 (2)1 1 (3)32=a 题型一 对数的概念例 1 (1)使对数log 2(-2x +1)有意义的x 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,+∞ C.⎝⎛⎭⎪⎫-∞,12D.⎝⎛⎭⎪⎫-∞,-12(2)在对数式b =log a -2(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5D .3<a <4[解析] (1)要使对数log 2(-2x +1)有意义,只要使真数-2x+1>0即可,即x <12,所以x 的取值范围为⎝⎛⎭⎪⎫-∞,12,故选C.(2)由题意,得⎩⎪⎨⎪⎧a -2>0,a -2≠1,5-a >0,解得2<a <3或3<a <5.[答案] (1)C (2)C 金版点睛对数有意义的条件对数有意义的两个条件:①底数大于零且不等于1;②对数的真数必须大于零.[跟踪训练1] (1)函数f (x )=lgx +1x -1中x 的取值范围是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)(2)若log (2x -1)(x +2)有意义,求x 的取值范围. 答案 (1)C (2)见解析 解析(1)要使函数有意义,必有⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1且x ≠1,故选C.(2)若对数有意义,则真数大于0,底数大于0且不等于1,所以⎩⎪⎨⎪⎧x +2>0,2x -1>0,2x -1≠1,解得x >12,且x ≠1.即x的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12,且x ≠1. 题型二 指数式与对数式的互化例 2 (1)将下列指数式改写成对数式:24=16;2-5=132;34=81;⎝ ⎛⎭⎪⎫12m=n ;(2)将下列对数式改写成指数式:log 5125=3;log 1216=-4;ln a =b ;lg 1000=3.[解] (1)log 216=4;log 2132=-5;log 381=4;log 12n =m .(2)53=125;⎝ ⎛⎭⎪⎫12-4=16;e b =a ;103=1000.金版点睛由指数式a b=N 可以写成log a N =b (a >0,且a ≠1),这是指数式与对数式互化的依据.对数式与指数式是同一种数量关系的两种不同表达形式.具体对应如下:[跟踪训练2] (1)若a =log 23,则2a +2-a =________; (2)将下列指数式化为对数式,对数式化为指数式: ①log 216=4;②log 3x =6;③43=64. 答案 (1)103(2)见解析解析 (1)因为a =log 23,所以2a=3,则2a+2-a=3+3-1=103.(2)①24=16;②(3)6=x ;③log 464=3. 题型三 对数性质的应用 例3 (1)给出下列各式:①lg (lg 10)=0; ②lg (ln e)=0;③若10=lg x ,则x =10; ④由log 25x =12,得x =±5.其中,正确的是________(把正确的序号都填上); (2)求下列各式中x 的值:①log 2(log 5x )=0;②log 3(lg x )=1; ③log (2-1)(2-1)=x ;④3x +3=2.[解析] (1)∵lg 10=1,∴lg (lg 10)=lg 1=0,①正确;∵ln e=1,∴lg (ln e)=lg 1=0,②正确;若10=lg x ,则x =1010,③错误;由log 25x =12,得x =25 12 =5,④错误.故填①②.(2)①∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.②∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1000. ③∵log (2-1) (2-1)=x ,∴(2-1)x=2-1, ∴x =1.④∵x +3=log 32,∴x =log 32-3. [答案] (1)①② (2)见解析金版点睛对数性质在计算中的应用(1)对数的常用性质:log a a =1,log a 1=0(a >0,且a ≠1). (2)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.[跟踪训练3] (1)若log 2(x 2-7x +13)=0,求x 的值;(2)已知log 2[log 3(log 4x )]=log 3[log 4(log 2y )]=0,求x +y 的值.解 (1)因为log 2(x 2-7x +13)=0, 所以x 2-7x +13=1,即x 2-7x +12=0, 解得x =4或x =3.(2)因为log 2[log 3(log 4x )]=0, 所以log 3(log 4x )=1,所以log 4x =3.所以x =43=64.同理求得y =16.所以x +y =80.题型四 对数恒等式的应用例4 求下列各式的值:(1)5log 54;(2)3log 34-2;(3)24+log 25.[解] (1)设5log 54=x ,则log 54=log 5x ,∴x =4. (2)∵3log 34=4,∴3log 34-2=3log 34×3-2=4×19=49.(3)∵2log 25=5,∴24+log 25=24×2log 25=16×5=80. 金版点睛运用对数恒等式时的注意事项(1)对于对数恒等式a log a N =N (a >0,且a ≠1,N >0)要注意格式:①它们是同底的;②指数中含有对数形式;③其值为对数的真数.(2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.[跟踪训练4] 求31+log 36-24+log 23+103lg 3+⎝ ⎛⎭⎪⎫19log 34的值.解 原式=31×3log 36-24×2log 23+(10lg 3)3+3-2×log 34=3×6-16×3+33+(3log 34)-2=18-48+27+116=-4716.1.若a >0,且a ≠1,c >0,则将a b=c 化为对数式为( ) A .log a b =c B .log a c =b C .log b c =a D .log c a =b 答案 B解析 由对数的定义直接可得log a c =b . 2.已知log x 16=2,则x 等于( ) A .±4 B.4 C .256 D .2 答案 B解析 ∵x 2=16且x >0,x ≠1,∴x =4.故选B.3.若log 3181=x ,则x =________.答案 -4解析 ∵log 3181=log 33-4,∴3x =3-4,∴x =-4.4.式子2log 25+log 32 1的值为________.答案 5解析 由对数性质知,2log 25=5,log 32 1=0,故原式=5.5.求下列各式中x 的值:(1)若log 3 1+2x3=1,求x 的值;(2)若log 2019(x 2-1)=0,求x 的值. 解 (1)∵log 31+2x 3=1,∴1+2x3=3,∴1+2x =9,∴x =4. (2)∵log 2019(x 2-1)=0,∴x 2-1=1,即x 2=2.∴x =± 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数 教学任务:(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; (2)能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; (3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法. 教学重点:掌握对数函数的图象和性质. 教学难点:对数函数的定义,对数函数的图象和性质及应用. 教学过程: 一、引入课题 1.(知识方法准备) ○1 学习指数函数时,对其性质研究了哪些内容,采取怎样的方法? 设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质. ○2 对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备. 2.(引例) 教材P81引例 处理建议:在教学时,可以让学生利用计算器填写下表: 碳14的含量P 0.5 0.3 0.1 0.01 0.001 生物死亡年数t 然后引导学生观察上表,体会“对每一个碳14的含量P的取值,通过对应关系Pt215730log,生物死亡年数t都有唯一的值与之对应,从而t是P的函数” .(进

而引入对数函数的概念) 二、新课教学 (一)对数函数的概念

1.定义:函数0(logaxya,且)1a叫做对数函数(logarithmic function) 其中x是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:xy2log2,

5log5xy 都不是对数函数,而只能称其为对数型函数.

○2 对数函数对底数的限制:0(a,且)1a. (二)对数函数的图象和性质 问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究: ○1 在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)

(1) xy2log (2) xy21log

(3) xy3log (4) xy31log ○2 类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格: 图象特征 函数性质 1a 1a0 1a 1a0 函数图象都在y轴右侧 函数的定义域为(0,+∞) 图象关于原点和y轴不对称 非奇非偶函数 向y轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11

自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数

第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log,1xxa 0log,10xx

a

第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0 0log,10xx

a 0log,1xx

a

○3 思考底数a是如何影响函数xyalog的.(学生独立思考,师生共同总结) 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大. 三、例题导析

例1.求函数141log21xxy的定义域. 解:01log01421xxx 即02141xxx ∴函数的定义域为}.41210\{xxx且 点评:求函数的定义域,往往可转化为解不等式. 例2.比较下列各组数的大小,并说明理由.

(1)8.0log7.0log3131与. (2).3loglog88与 (3).3log41log8.06.0与

解:(1)xy31log,1310是减函数,.8.0log7.0log3131 (2)xy8log,81是增函数,.3loglog88 (3).3log41log,03log,041log8.06.08.06.0 教师点评:本例给出了比较两个对数大小的常用方法:(1)和(2)的解法是利用了对数函 数的单调性;(3)利用了对数函数的性质。另外,三个数以上比较大小,0和1 是两把尺度。

例3.求函数)65(log22xxy 定义域、值域、单调区间. 解:定义域为.230652xxxx或 41)25(6522xxxu (x>3或x<2),由二次函数的图象可知(图象略)

0<u<+∞,故原函数的值域为(-∞,+∞). 原函数的单调性与u的单调性一致.∴原函数的单调增区间为(3,+∞),单调减区间为(-∞,2). 学生演板:

(1)已知f(x)的图象g(x)=x)41(的图象关于直线y=x对称,求)2(2xxf的单调减

区间.(先求g(x)=x)41(的反函数),2(log)2(,log)()(2412411xxxxfxxgxf 单调减区间为(0,1])

例4.设函数.11lg21)(xxxxf (1)试判断函数f(x)的中单调性,并给出证明; (2)若f(x)的反函数为)(1xf,证明方程)(1xf=0有唯一解. 分析:为求单调性,需先求定义域,在定义域中利用单调性的定义作出判断.(1)可先请同学用数字试一下,以便做到心中有数.

解:(1)由02011xxx 解得函数f(x)的定义域为(-1,1).

设,1121xx则)11lg11(lg)2121()()(11222121xxxxxxxfxf =)1)(1()1)(1(lg)2)(2(21212121xxxxxxxx 又,0)2)(2(,0,0)2)(2(21212121xxxxxxxx 又(1+,0)1)(1(,0)1)(2121xxxx .0)1)(1()1)(1(lg111)1)(1()1)(1(02121211221212121xxxxxxxxxxxxxx

xx

,0)()(12xfxf即).()(12xfxf 故函数f(x)在区间(-1,1)内是减函数. (2)这里并不需要先求出f(x)的反函数)(1xf,再解方程.0)(1xf

,0)21(,21)0(1ff即21x是方程0)(1xf的一个解.

若方程0)(1xf还有另一解,210x则.0)(01xf又由反函数的定义知21)0(0xf 这与已知矛盾. 故方程0)(1xf有唯一解. 教师点评:(1)中用定义证明了单调性,虽较复杂,但很重要,应掌握.可先用数字试探 一下,以便做到心中有数.(由(2)知函数在定义域上是单调的,因为存在反 函数) (2)中告诉我们并不需要求出反函数,其思维过程,妙用了互为反函数的函数 定义域和值域之间的关系,既考虑存在性又反证了唯一性,这是一个好题,我 们甚至可以求解不等式;

.21)]21([xxf请读者自己完成.

例5.若函数)1(log)(221axxxf (1)若函数的定义域为R,求a的取值范围. (2)若函数的值域为R,求a的取值范围.

(1)若函数在)31,(上是增函数,求a的取值范围.

解:(1)定义域为R,是指不等式012axx的解集为R,即042a .22a

(2)值域为R,是指12axxu能取遍(0,+∞)中的所有的值.∴只需 042a即2a或.2a

(3)1)(2axxxu在)31,(上为减函数且大于0,由图象可知: .2331)31(2312101)31()31(2aa

a

教师点评:对数函数的定义域为R,即指不等式的解集为R.值域为R指对数函数的真数 能取遍所有的正数,不要认为判别式大于或等于0,那么在x轴下面的部分是负 数似乎不合题意,实质上定义域会排掉x轴下面的负的函数值.要画个图仔细

研究.在(3)中特别要注意在区间)31,(上函数大于0.

例6.已知函数2222log)1(xxxfm )1,0(mm且 (1)判断f(x)的奇偶性; (2)解关于x的方程;1log)(xxfm

(3)解关于x的不等式:)13(log)(xxfm 解:(1)设,12tx则,11log)1(21log)(,12tttttftxmm ,11log)(xxxfm它的定义域为(-1,1).),1,1(),1,1(xx

),()11(log11log)(1)(1log)(1xfxxxxxxxfmmm∴f(x)为奇函数.

(2)由f(x)=,1logxm即,1log11logxxxmm得102101011111xxxxxxxx .21x (3)由)13(log)(xxfm即)13(log11logxxxmm得:

(a)当m>1时,0131311xxxx解得:.131031xx或

(b)当10m时,0111311xxxxx 解得:.310x 由(a)、(b)知,当m>1时,原不等式解集为}131031|{xxx或

相关文档
最新文档