静电场知识点总结归纳

合集下载

高中物理:静电场知识点归纳

高中物理:静电场知识点归纳

高中物理:静电场知识点归纳一、电荷及电荷守恒定律1. 元电荷、点电荷(1) 元电荷:e=1.6×10-19C,所有带电体的电荷量都是元电荷的整数倍,其中质子、正电子的电荷量与元电荷相同。

(2) 点电荷:当带电体本身的大小和形状对研究的问题影响很小时,可以将带电体视为点电荷。

2. 静电场(1) 定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质。

(2) 基本性质:对放入其中的电荷有力的作用。

3. 电荷守恒定律(1) 内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变。

(2) 起电方式:摩擦起电、接触起电、感应起电。

(3) 带电实质:物体带电的实质是得失电子。

二、库仑定律1. 内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比。

作用力的方向在它们的连线上。

2. 表达式:,式中k=9.0×109N·m2/C2,叫静电力常量。

3. 适用条件:真空中的点电荷。

三、电场强度、点电荷的场强1. 定义:放入电场中某点的电荷受到的电场力F与它的电荷量q的比值。

2. 定义式:3. 点电荷的电场强度:真空中点电荷形成的电场中某点的电场强度:4. 方向:规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向。

5. 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,遵从平行四边形定则。

四、电场线1. 定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密表示电场的强弱。

2. 特点①电场线从正电荷或无限远出发,终止于无限远或负电荷.②电场线不相交,也不相切,更不能认为电场就是电荷在电场中的运动轨迹.③同一幅图中,场强大的地方电场线较密,场强小的地方电场线较疏.五、匀强电场电场中各点场强大小处处相等,方向相同,匀强电场的电场线是一些平行的等间距的平行线.六、电势能、电势1. 电势能(1) 电场力做功的特点:电场力做功与路径无关,只与初、末位置有关。

高二物理静电场知识点总结

高二物理静电场知识点总结

高二物理静电场知识点总结一、电荷与电场电荷是物质的一种固有属性,有正电荷和负电荷两种,同种电荷相互排斥,异种电荷相互吸引。

电场是由电荷所产生的物理场,具有方向和大小,可以影响周围空间中的其他电荷。

二、库仑定律库仑定律用于描述电荷之间的相互作用力,公式为F=k(q1*q2/r^2),其中F为电荷之间的作用力,k为电磁力常量,q1和q2分别为两个电荷的电量,r为它们之间的距离。

根据库仑定律可知,两个电荷之间的作用力与电量的大小呈正比,与距离的平方呈反比。

三、静电场强度静电场强度E的定义是电场力对单位正电荷所施加的力,即E=F/q,其中F为电场对电荷的作用力,q为单位正电荷的电量。

四、静电势能静电势能U是把单位正电荷从无穷远处移动到静电场中某点所需的功,公式为U=qV,其中V为该点的电势。

五、电场线与电势面电场线是用于表示电场方向和强度的曲线,其方向指向电荷所带电荷的运动方向。

电势面是指在同一电势值处的连续点构成的面。

六、电场强度与电势的关系在静电场中,电场强度与电势的关系可以通过公式E=-∇V表示,其中E为电场强度,V为电势。

七、高斯定理高斯定理是静电学的重要定理,用于计算电场与电荷之间的关系。

高斯定理表明,通过闭合曲面的电通量与该曲面内电荷的代数和成正比。

数学表达式为∮EdA=Q/ε0,其中∮E为电场在闭合曲面上的积分,dA为曲面上某一点的面积微元,Q为曲面内的电荷,ε0为真空介质的电容率。

八、静电平衡静电平衡是指电荷分布在物体表面,不再发生移动和积累。

当物体处于静电平衡时,其表面的电场强度为零。

九、静电屏蔽静电屏蔽是指通过导体将电荷转移或消除的过程。

当导体靠近带电体时,导体内部产生的感应电荷会抵消外部电荷的作用,从而减弱或消除静电效应。

十、静电感应静电感应是指带电体的靠近会在不接触的情况下使另一物体带电。

当带电体靠近一个导体时,导体内部的电荷重新分布,导致导体表面产生电荷。

总结:静电场是物理学中重要的概念之一,涉及电荷、电场和电势等多个知识点。

静电场的性质与电场强度应用知识点总结

静电场的性质与电场强度应用知识点总结

静电场的性质与电场强度应用知识点总结在物理学中,静电场是一个非常重要的概念,它与我们的日常生活和许多现代技术都有着密切的联系。

理解静电场的性质以及电场强度的应用,对于深入学习电磁学以及解决实际问题都具有关键意义。

一、静电场的性质1、库仑定律库仑定律是描述两个静止点电荷之间相互作用力的规律。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$F$ 是库仑力,$k$ 是库仑常量,$q_1$ 和$q_2$ 分别是两个点电荷的电荷量,$r$ 是它们之间的距离。

库仑定律表明,两个点电荷之间的库仑力与它们的电荷量的乘积成正比,与它们之间距离的平方成反比。

2、电场的物质性静电场虽然看不见、摸不着,但它是一种客观存在的物质。

它具有能量和动量,能够对处于其中的电荷施加力的作用。

3、电场的叠加原理如果空间中有多个点电荷,那么空间中某点的电场强度等于各个点电荷单独在该点产生的电场强度的矢量和。

这就是电场的叠加原理。

4、静电场的高斯定理通过一个闭合曲面的电通量等于该闭合曲面所包围的电荷量除以介电常数。

高斯定理反映了静电场是有源场的性质。

5、静电场的环路定理静电场中场强沿任意闭合路径的线积分恒为零。

这表明静电场是保守场,静电力做功与路径无关,只与电荷的初末位置有关。

二、电场强度1、定义电场强度是描述电场强弱和方向的物理量。

放入电场中某点的电荷所受的电场力$F$ 与它的电荷量$q$ 的比值,叫做该点的电场强度,简称场强,用$E$ 表示,即$E =\frac{F}{q}$。

电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。

2、点电荷的场强点电荷$Q$ 产生的电场中,距离点电荷$r$ 处的场强大小为:$E = k\frac{Q}{r^2}$。

3、匀强电场电场强度大小和方向都相同的电场称为匀强电场。

在匀强电场中,电场线是平行且等间距的直线。

三、电场强度的应用1、带电粒子在电场中的运动带电粒子在电场中受到电场力的作用,其运动情况取决于电场的性质和粒子的初速度。

静电场中的能量知识点总结

静电场中的能量知识点总结

静电场中的能量知识点总结静电场是指一系列被静电荷所产生的电场分布。

静电场中的能量是指电荷在电场中所具有的能量。

在静电场中,电荷与电场之间相互作用,电场对电荷有做功的能力,同时电荷也对电场造成了能量耗散,因此静电场中的能量是电场与电荷之间相互转化的结果。

静电场中的能量可以分为两部分:电势能和电场能。

电势能是指电荷在电场中由于位置而具有的能量,与电荷的位置有关,而不依赖于电荷的运动状态。

电势能可以通过电势来表示,电势是描述电场能量分布的物理量。

电势是单位正电荷在某点的电势能,具有标量性质。

在静电场中,电势能与电势之间有如下关系:电势能等于电荷与电势的乘积。

电势能的表达式为U=qV,其中U为电势能,q为电荷量,V为电势。

电场能是指电荷在电场中由于电场而具有的能量,与电荷的位置和运动状态有关。

电场能是电荷在电场力作用下的动能转化而来的。

当一个电荷从一个点移动到另一个点时,由于电场力做功,电场能发生变化。

在静电场中,电场能可以表示为电荷与电场的乘积。

电场能的表达式为E=½mv²=qV,其中E为电场能,m为电荷的质量,v为电荷的速度,q为电荷的电量。

静电场中的电场能可以通过电势差(电压)来描述,电势差是指单位电荷在电场中移动时所获得的电势能的变化量。

电势差等于两点之间的电势差乘以单位正电荷的电量。

静电场中的能量转化伴随着能量守恒定律的成立。

能量守恒定律是指在一个封闭系统中,能量总量保持不变,只能从一种形式转化为另一种形式。

在静电场中,电势能和电场能之间可以相互转化,但总能量保持不变。

静电场中的能量转化还涉及到电场与电荷之间的能量传递。

当一个电荷在电场中运动时,电场对电荷做功,将电势能转化为电场能。

电场能可以继续传递给其他电荷,使其获得动能。

这种电场能的传递导致了电荷之间的相互作用和电场的扩散。

静电场中的能量还与电容器的存储能量有关。

电容器是由两个导体之间通过一种介质进行隔离的器件,具有储存电荷的能力。

高中静电场知识点总结

高中静电场知识点总结

高中静电场知识点总结高中静电场知识点总结在高中物理中,电方面的知识是十分的重要,学好这部分需要不断地去总结归纳,下面是高中静电场知识点总结,希望帮助大家更好的进行高中物理的学习,一起来看看吧!1.电荷电荷守恒定律点电荷自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。

电荷的多少叫电量。

基本电荷e = 1.6*10^(-19)C。

带电体电荷量等于元电荷的整数倍(Q=ne)使物体带电也叫起电。

使物体带电的方法有三种:①摩擦起电②接触带电③感应起电。

电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。

带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。

2.库仑定律公式F = KQ1Q2/r^2(真空中静止的两个点电荷)在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,其中比例常数K叫静电力常量,K = 9.0*10^9Nm^2/C^2。

(F:点电荷间的作用力(N),Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引)库仑定律的适用条件是(1)真空,(2)点电荷。

点电荷是物理中的理想模型。

当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。

3.静电场电场线为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。

电场线的特点:(1)始于正电荷(或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。

电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。

带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。

知识点总结静电场

知识点总结静电场

知识点总结静电场1. 静电力静电场是由静止电荷或者电荷在互相静止的情况下产生的。

当两个电荷之间存在一定的距离时,它们之间就会产生静电力,即库仑力。

库仑定律描述了两个电荷之间的静电力与它们之间距离的平方成反比,与它们电荷量的乘积成正比。

数学表示为:\[F = k \frac{q_1 q_2}{r^2}\]其中,\(F\)为静电力,\(q_1\)和\(q_2\)分别为两个电荷的电荷量,\(r\)为它们之间的距离,\(k\)为真空介质中的电场常量,其值为\(8.9875 \times 10^9 N m^2/C^2\)。

2. 电场强度在静电力的基础上可以引入电场的概念,电场是指空间中的每一点所受的静电力。

电场的强度用电场强度矢量表示,通常用\(E\)表示。

电场强度的定义为单位正电荷在电场中所受的力。

在均匀电场中,电场强度是一个常量,可用以下公式表示:\[E = \frac{F}{q}\]其中,\(F\)为单位正电荷所受的力,\(q\)为单位正电荷的电荷量。

3. 电势电势是电场的另一个重要概念,它描述了电场中单位正电荷所具有的电势能。

在静电场中,电场强度与电势之间存在一定的关系。

在电场中沿某一方向移动单位正电荷,单位正电荷所具有的电势能的增加量称为电势差。

电场中某一点的电势与该点所受的力之间存在一种直观的联系。

电场中任意一点\(A\)的电势定义为单位正电荷从无穷远处移到该点时所做的功。

其数学表达式为:\[V_A = \frac{W_{A\to\infty}}{q}\]其中,\(V_A\)为点\(A\)的电势,\(W_{A\to\infty}\)为从无穷远处移到点\(A\)所做的功。

4. 高斯定律高斯定律是描述电场的重要定律之一,它表明了电场强度与通过任意闭合曲面的总电通量之间的关系。

高斯定律对问题的简化和求解提供了更便利的方法。

它表示为:\[\oint \vec{E} \cdot \vec{dS} = \frac{1}{\varepsilon_0} Q_{enc}\]其中,\(\vec{E}\)是电场强度,\(\vec{dS}\)是曲面元素,\(\varepsilon_0\)是真空中的介电常数,\(Q_{enc}\)是曲面内的电荷总量。

静电场知识点总结

静电场知识点总结

静电场知识点总结静电场是指静电荷在周围空间中产生的一个场。

静电场研究的对象是物体的电荷分布,以及这些电荷所形成的电场的大小和形状。

静电场从物理学的角度来说是一种向量场,它具有方向。

在日常生活中,我们可以经常看到静电场的表现,比如摩擦后头发的卷曲、擦电机上产生的火花等等。

静电荷与静电场静电荷是指物体表面所固有的电荷,它们可以是正电荷、负电荷或者中性电荷。

正负电荷之间受到相互吸引力的作用力由库伦定律描述,这个力的大小与电荷的互相之间距离的平方成反比,与电荷的量成正比。

这说明,如果两个电荷之间的距离越近,则受到的相互作用力就会越强;如果电荷的大小越大,则受到的相互作用力也会越强。

静电场是指静电荷固有的电场,它也可以用一种向量场的方式来描述,称为电场强度。

电场强度的大小与电荷的量成比例,它的方向与电荷之间的相对位置有关。

在静电场中,如果一个电荷在其中运动,它将受到电场的力作用。

如果电荷从一个位置移动到另一个位置,则它所受到的力就会随着电场强度的变化而变化。

静电场中的能量静电场中带有电荷的物体之间可以相互作用,它们带有相互作用的能量称为静电能。

如果两个电荷带有相反的电荷,则它们之间的静电能是负的,也就是说这样的两个电荷相互吸引;如果两个电荷带有相同的电荷,则它们之间的静电能是正的,因此它们相互排斥。

当电荷之间距离越来越近时,它们之间的静电能就会变得越来越大,这导致它们之间的相互作用力变得越来越强。

静电场与电荷的运动静电场通常被认为是不变的,也就是说,它是由固定在物体表面的静电荷导致的。

然而,无论是静电荷还是静电场,都不是绝对不变的。

当一个电荷在静电场中移动时,它会产生一个磁场,也就是说,静电场和磁场是揉杂在一起的。

这意味着,如果我们想要正确地理解静电场和电荷的行为,我们需要考虑到磁场的影响。

在静电场中,如果一个电荷在没有任何外力的情况下移动,它将慢慢地放缓,因为它释放出了一定量的能量。

这个过程称为电场衰减。

静电场知识点总结

静电场知识点总结

静电场知识点总结静电场是物理学中一个重要的概念,指的是在没有任何电流流动的情况下,带电物体周围存在的电场现象。

静电场的研究涉及到许多重要的知识点,本文将从电荷、库仑定律、电场强度和电势等方面进行总结。

首先,我们先了解一下电荷的概念。

电荷是物质的一种基本属性,可以分为正电荷和负电荷。

正电荷和负电荷之间存在相互吸引的力,相同电荷之间则会相互排斥。

电荷的单位是库仑(C),正电荷的电量为正,负电荷的电量为负。

接下来是库仑定律。

库仑定律是描述带电粒子间相互作用的定律,即库仑力的大小与电荷量的乘积成正比,与距离的平方成反比。

具体而言,库仑定律可以用以下公式表示:\[F = k\cdot \frac{{q_1\cdot q_2}}{{r^2}}\]其中,F表示库仑力的大小,k表示比例常数,q1和q2分别表示两个电荷体的电量,r表示两个电荷体间的距离。

库仑定律的存在使得带电物体之间可以产生吸引或排斥的力,从而产生电场。

接下来是电场强度的概念。

电场强度是描述电场强弱的物理量,表示单位正电荷处所受到的电场力大小。

电场强度的单位是N/C(牛顿/库仑)。

在静电场中,电场强度与电荷量的比例关系可以用以下公式表示:\[E = \frac{F}{q}\]其中,E表示电场强度,F表示受力大小,q表示电荷量。

最后是电势的概念。

电势是描述电场能量分布的物理量,表示单位正电荷所具有的电势能大小。

电势的单位是V(伏特)。

在静电场中,电势与电场强度的关系可以用以下公式表示:\[V = \frac{W}{q}\]其中,V表示电势,W表示做功大小,q表示电荷量。

电势还可以通过两点之间的电势差来表示,电势差可以用以下公式表示:\[V_{AB} = \frac{W}{q_B} - \frac{W}{q_A}\]其中,VAB表示A点到B点的电势差,W表示做的功大小,qA和qB分别表示A点和B点的电荷量。

综上所述,静电场涉及到电荷、库仑定律、电场强度和电势等重要的知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电场知识点总结 一、点电荷和库仑定律 1.如何理解电荷量、元电荷、点电荷和试探电荷 (1)电荷量是物体带电的多少,电荷量只能是元电荷的整数倍. (2)元电荷不是电子,也不是质子,而是最小的电荷量数值,电子和质子带有最小的电荷量,即e=×10-19 C,是密立根通过油滴实验测定的。 (3)点电荷要求“线度远小于研究范围的空间尺度”,是一种理想化的模型,对其带电荷量无限制. (4)试探电荷要求放入电场后对原来的电场不产生影响,且要求在其占据的空间内场强“相同”,故其应为带电荷量“足够小”的点电荷. 2.库仑定律 (1)适用条件:真空中的点电荷 (2)库仑力的方向:同种电荷相互排斥,为斥力;异种电荷相互吸引,为引力. 二、库仑力作用下的平衡问题 1.分析库仑力作用下的平衡问题的思路(与以往的受力分析一样,不过多了个电场力) (1)确定研究对象.如果有几个物体相互作用时,要依据题意,适当选取“整体法”或“隔离法”,一般是先整体后隔离. (2)对研究对象进行受力分析. 有些点电荷如电子、质子等可不考虑重力,而尘埃、液滴等一般需考虑重力.具体视题目要求来定。 (3)列平衡方程(F合=0或Fx=0,Fy=0,即水平和竖直方向合力分别为0). 2.三个自由点电荷的平衡问题 (1)条件:三个点电荷放置于于一条直线上,且接触面光滑不固定,有如下结论 (2)规律:“三点共线”——三个点电荷分布在同一直线上; “两同夹异”——正负电荷相互间隔; “两大夹小”——中间电荷的电荷量最小; “近小远大”——中间电荷靠近电荷量较小的电荷. 三、场强的三个表达式的比较及场强的叠加 1.场强的三个表达式的比较 定义式 决定式 关系式 关系式 表达式 E=F/q E=kQ/r2 E=U/d E=4πkQ/(εS) 适用范围 任何电场 真空中的点电荷 匀强电场,电容器 电容器电场

说明 E的大小及方向与检验电荷的电荷量及存在与否无关. Q:场源电荷的电荷量. r:研究点到场源电荷的距离,用于均匀带电球体(或球壳)时,r是球心到研究点的距离,Q是整个球体的带电荷量. U:电场中两点的电势差. d:两点沿电场方向的距离. Q:电容器一个极板的带电量 ε:插入的绝缘材料的介电常数 S:正对面积 2.电场的叠加原理 电场为矢量,叠加需要平行四边形定则。 四、对电场线的进一步认识 1.点电荷的电场线的分布特点 (1)离点电荷越近,电场线越密集,场强越强. (2)若以点电荷为球心作一个球面,电场线处处与球面垂直,在此球面上场强大小处处相等,方向各不相同. 2.等量异种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线上各点,电场线方向从正电荷指向负电荷. (2)两点电荷连线的中垂面(线)上,场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线的中点). (3)关于O点对称的两点A与A′,B与B′的场强等大、同向. 3.等量同种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线中点O处场强为零. (2)中点O附近的电场线非常稀疏,但场强并不为零. (3)在中垂面(线)上从O点到无穷远,电场线先变密后变疏,即场强先变大后变小. (4)两点电荷连线中垂线上各点的场强方向和该直线平行. (5)关于O点对称的两点A与A′,B与B′的场强等大、反向. 五、电势高低及电势能大小的比较方法 1.比较电势高低的几种方法 (1)沿电场线方向,电势越来越低,电场线由电势高的等势面指向电势低的等势面.注意:电势降低最快的方向是电场线的方向 (2)判断出UAB的正负,再由UAB=φA-φB,比较φA、φB的大小,若UAB>0,则φA>φB,若UAB<0,则φA<φB.,即看UAB的下角标。 (3)取无穷远处为零电势点,正电荷周围电势为正值,且离正电荷近处电势高;负电荷周围电势为负值,且离负电荷近处电势低. 2.电势能大小的比较方法 (1)场源电荷判断法 (EP=qφ,电势能既与电势有关,还取决于电性的正负) ①离场源正电荷越近,试探正电荷的电势能越大,试探负电荷的电势能越小. ②离场源负电荷越近,试探正电荷的电势能越小,试探负电荷的电势能越大. (2)电场线判断法 ①正电荷顺着电场线的方向移动时,电势能逐渐减小;逆着电场线的方向移动时,电势能逐渐增大. ②负电荷顺着电场线的方向移动时,电势能逐渐增大;逆着电场线的方向移动时,电势能逐渐减小. (3)做功判断法 电场力做正功,电荷(无论是正电荷还是负电荷),电势能减少.反之,如果电荷克服电场力做功,那么电势能将增加。 六、电场力做功的特点及电场力做功的计算 1.电场力做功的特点 电场力做的功和路径无关,只和初、末位置的电势差有关. 2.电场力做功的计算方法 (1)由公式W=Flcos θ计算,此公式只适用于匀强电场,可变形为W=qElE,式中lE为电荷初末位置在电场方向上的距离. (2)由电势差的定义式计算,WAB=qUAB,对任何电场都适用.当UAB>0,q>0或UAB<0,q<0时,W>0;否则W<0. (3)由电场力做功与电势能变化的关系计算,WAB=EPA-EPB.= -ΔEP 七、电场线、等势线与运动轨迹的综合分析 1.带电粒子在电场中的运动轨迹是由带电粒子受到的合外力的情况以及初速度的情况共同决定的.运动轨迹上各点的切线方向表示粒子在该点的速度方向.电场线只能够描述电场的方向和定性地描述电场的强弱,它决定了带电粒子在电场中各点所受电场力的方向和加速度的方向. 2.等势线总是和电场线垂直,已知电场线可以画出等势线.已知等势线也可以画出电场线. 3.在利用电场线、等势面和带电粒子的运动轨迹解决带电粒子的运动问题时,基本方法是: (1)根据带电粒子的运动轨迹确定带电粒子受到的电场力的方向,带电粒子所受的合力(往往只受电场力)指向运动轨迹曲线的内侧,再结合电场线确定带电粒子的带电种类或电场线的方向; (2)根据带电粒子在不同的等势面之间移动,结合题意确定电场力做正功还是做负功,电势能的变化情况或是等势面的电势高低. 八、匀强电场中电场强度与电势差的关系 1.电场与电势没关系,一个反映电场力的性质,一个是能的性质,一个是矢量一个是标量。

公式E=Ud反映了电场强度与电势差之间的关系,由公式可知,电场强度的方向就是电场中电势降低最快的方向. 2.公式中d可理解为电场中两点所在等势面之间的距离,由此可得出一个结论:在匀强电场中,两长度相等且相互平行的线段的端点间的电势差相等.如图5所示,AB、CD平行且相等,则UAB=UCD

九、静电现象

1.处于静电平衡状态的导体具有以下特点 (1)导体内部的场强(E0与E′的合场强)处处为零,E内=0; (2)整个导体是等势体,导体的表面是等势面; (3)导体外部电场线与导体表面垂直; (4)静电荷只分布在导体外表面上,且与导体表面的曲率有关. 2.静电屏蔽:如果用金属网罩(或金属壳)将一部分空间包围起来,这一包围空间以外的区域里,无论电场强弱如何,方向如何,空间内部电场强度均为零.因此金属网罩(或金属壳)对外电场有屏蔽作用. 十、平行板电容器的动态分析 运用电容的定义式和决定式分析电容器相关量变化的思路 (1)确定不变量,分析是电压不变还是所带电荷量不变.

电容器的两极板与电源连接时,电容器两极板间的电压保持不变;用E=Ud分析电容器极板间场强的变化 电容器先充电后与电源断开,电容器的电荷量保持不变.用E=4πkQ/(εS)分析电容器极板间场强的变化 (2)用决定式C=εrS4πkd分析平行板电容器电容的变化.

(3)用定义式C=QU分析电容器所带电荷量或两极板间电压的变化,确定充放电过程,充电电流由电源正极流向正极板,由负极板流回电源附近;放电,电流由正极板流出,流向负极板(可以通过电源) 十一、带电粒子在电场中的直线运动 1. 带电粒子在电场中的运动: 先分析受力情况,再分析运动状态和运动过程(平衡、加速、减速;直线还是曲线),直线说明合力和速度共线,解决这类问题的基本方法是: (1)采用运动和力的观点:牛顿第二定律和运动学知识求解. (2)用能量转化的观点:动能定理和功能关系求解. 2.对带电粒子进行受力分析时应注意的问题 (1)要掌握电场力的特点.电场力的大小和方向不仅跟场强的大小和方向有关,还跟带电粒子的电性和电荷量有关. (2)是否考虑重力要依据情况而定. 基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示外,一般不考虑重力(但不能忽略质量). 带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确暗示外,一般都不能忽略重力. 十二、带电粒子在电场中的偏转

在图中,设带电粒子质量为m,带电荷量为q,以速度v0垂直于电场线方向射入匀强偏转电场,偏转电压为U,若粒子飞离偏转电场时的偏距为y,偏转角为θ,则tan θ=vyvx=aytv0=qUlmdv20,y=12ayt2=qUl22mdv20 带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于极板中线的中点.所以侧移距离也可表示为y=l2tan θ,所以粒子好像从极板中央沿直线飞出去一样.

若不同的带电粒子是从静止经同一加速电压U0加速后进入偏转电场的,则qU0=12mv20,即y=Ul24dU0,tan θ=yx=Ul2dU0

.由以上讨论可知,粒子的偏转角和偏距与粒子的q、m无关,仅决定于加速电场和偏转电场,即不同的带电粒

子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度和偏转距离总是相同的. 十三、用能量的观点处理带电体在电场及复合场中的运动 对于受变力作用的带电体的运动,必须借助于能量的观点去处理,用能量观点处理也更简捷,具体的方法通常有两种: (1)用动能定理处理.思维顺序一般为:

相关文档
最新文档