函数定义域总结

合集下载

高一数学函数知识总结6篇

高一数学函数知识总结6篇

高一数学函数知识总结高一数学函数知识总结6篇总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它能够使头脑更加清醒,目标更加明确,让我们好好写一份总结吧。

总结怎么写才能发挥它的作用呢?以下是小编帮大家整理的高一数学函数知识总结,希望对大家有所帮助。

高一数学函数知识总结1一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

3. 求函数值域(1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;(2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;(3)、判别式法:(4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;(5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;(6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;(7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;(8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;(9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

函数定义域值域方法总结打印版1

函数定义域值域方法总结打印版1

函数定义域、值域求法总结一、函数的定义域❖ 基本方法:(1)分母不为零 (2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠1、一般函数定义域求法例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ x x x f -++=211)(2、复合函数定义域的求法例2 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。

练习:设)(x f 的定义域是[-3,2],求函数)2(-x f 的定义域例7 已知f(2x -1)的定义域为[0,1],求f(x)的定义域练习:1 、已知f(3x -1)的定义域为[-1,2),求f(2x+1)的定义域。

[2,25-)2 、已知f(x 2)的定义域为[-1,1],求f(x)的定义域3 、若()y f x =的定义域是[]0,2,则函数()()121f x f x ++-的定义域是 ()A.[]1,1- B⎥⎦⎤⎢⎣⎡-21,21C.⎥⎦⎤⎢⎣⎡1,21 D.10,2⎡⎤⎢⎥⎣⎦4 、已知函数()11x f x x +=-的定义域为A,函数()y f f x =⎡⎤⎣⎦的定义域为B,则( ) A.AB B = B.B A ∈ C.A B B = D. A B =二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合)(3)函数单调性法 (4)配方法(5)换元法 (包括三角换元)(6)反函数法(逆求法)(7)分离常数法 (8)判别式法(9)复合函数法 (10)不等式法1、 直接法例1 求下列函数的值域① y=3x+2(-1≤x ≤1)② )(3x 1x32)(≤≤-=x f ③ 求函数y =3+x 32-的值域例2 求下列函数的最大值、最小值与值域(二次函数在区间上的值域(最值)):①142+-=x x y ; ②;]4,3[,142∈+-=x x x y③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;注:对于二次函数)0()(2≠++=a c bx ax x f ,——————开口、对称轴、定义域2、单调性法例3 求函数y=4x -x 31-(x ≤1/3)的值域。

函数定义域值域求法总结 (1)

函数定义域值域求法总结 (1)

函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。

2、在同一对应法则作用下,括号内整体的取值范围相同。

一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。

因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。

一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。

定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。

一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

():f (x),f[g(x)]题型一已知的定义域求的定义域( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法(10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义, 而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ? ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ?2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[?1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高一数学函数知识点总结(5篇)

高一数学函数知识点总结(5篇)

高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

1、函数定义域、值域求法总结共10页

1、函数定义域、值域求法总结共10页

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域: 解:①∵x-2=0,即x=2时,分式21-x 无意义, 而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 ∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

值域、定义域、求解析式总结

值域、定义域、求解析式总结

第7课时函数的定义域的求法知识点1函数的定义域的求法1、函数的定义域分为自然定义域和实际定义域两种,如果给定的函数解析式(不注明定义域),其定义域值得是使该解析式有意义的自变量x 的取值范围(称为自然定义域),如果函数是由实际问题确定的,这时应根据自变量的实际意义来确定。

2、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠例:求下列函数的定义域:①21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x函数的定义域练习题1、求下列函数的定义域: ①14)(2--=x x f解:①要使函数有意义,必须:142≥-x即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②2143)(2-+--=x x x x f解:要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③=)(x f x11111++解:要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④xx x x f -+=0)1()(解:要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤373132+++-=x x y解:要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x⑥y=x 11x 1x 2—)(-++解:要是函数有意义,自变量x 的取值必须满足:x+1≠0 1-x ≥0 解得:x ≤1且x ≠1,即函数的定义域为{x |x ≤1且x ≠-1}2、 若函数a ax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-a ax ax∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于3、若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 4、已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高中数学-函数定义域、值域求法总结

高中数学-函数定义域、值域求法总结

高中数学-函数定义域、值域求法总结咱今儿就来说说这高中数学里函数定义域、值域求法这档子事儿哈。

我跟你说,一想到高中数学那一堆公式、符号,我这脑袋就有点大。

那函数啊,就跟个调皮捣蛋的小鬼似的,一会儿定义域这儿给你出个难题,一会儿值域那儿又让你摸不着头脑。

就说这定义域吧,它就好比是函数这个小调皮的活动范围。

你得把它的边界给找出来,不能让它乱跑。

比如说,有些函数里有分式,那分母就不能为零啊,这就像是给函数画了条红线,它不能越过去。

我还记得我上学那会,为了搞清楚这个,头发都快薅掉一半了。

看着那一堆数字和字母,眼睛都花了,感觉自己就像掉进了数字的迷宫里,怎么都找不到出口。

有一回,我正对着一道定义域的题发愁呢,旁边那同桌凑过来,看了一眼题,撇撇嘴说:“这题不简单呐,得好好琢磨琢磨。

”我白了他一眼,说:“你就别在这儿说风凉话了,快帮我想想办法。

”他挠挠头,指着题说:“你看啊,这里有个根号,那根号里的数得大于等于零吧,这就是个突破口啊。

”经他这么一提醒,我就像突然开窍了似的,一下子就有了思路。

再说说这值域,它就像是函数这个小鬼能达到的各种状态。

有些函数啊,值域很好求,一眼就能看出来。

可有些呢,就跟藏起来了似的,得费好大的劲儿才能找到。

比如说二次函数,它的图像就像个抛物线,根据开口方向和对称轴,就能大概知道它的值域范围。

我有时候看着那抛物线的图像,就觉得它像个微笑或者皱眉的脸,开口向上就是在笑,开口向下就是在发愁。

想着想着,自己都忍不住乐了,这数学有时候还挺有意思的。

还有一种求值域的方法叫换元法,这个就有点像变魔术了。

把一个复杂的式子换成一个简单的变量,问题就变得容易多了。

我第一次用这个方法的时候,心里还直犯嘀咕,这能行吗?结果一试,还真行!就像给那复杂的函数施了个魔法,一下子就变得简单明了了。

咱学这函数定义域、值域求法,就跟打仗似的,得掌握各种战术。

有时候一种方法不行,就得换另一种,不能在一棵树上吊死。

就像生活中遇到困难,也得灵活应变,多想想办法,说不定哪天就突然找到出路了呢。

归纳求函数定义域的方法

归纳求函数定义域的方法

归纳求函数定义域的方法求函数定义域的方法是求解一元函数的最基本的原理,用于确定一元函数中的变量可以取到的取值范围,即函数定义域。

在统计学、数学分析和微积分等课程中,都会了解函数定义域的概念,掌握如何求解函数定义域对于更好地理解函数运算有重大意义。

那么,求函数定义域的方法有哪些呢?首先,正式定义函数定义域。

函数定义域就是函数f(x)中x可以取到的所有可能取值的集合,求函数定义域就是要确定这个集合。

其次,把函数定义域分解成几个个子集。

通常情况下,函数定义域可以分解为三个子集:函数值有界,有理界限和无理界限。

1. 函数值有界:如果函数f(x)中x可以取到有限个取值,则函数定义域就被称为函数值有界。

例如,函数f(x)=x^2,当x取到0或1时,函数的值都有界。

2. 有理界限:如果函数f(x)中x可以取到有理数,则函数定义域就被称为有理界限。

例如,函数f(x)=x^2 - 3x + 2,当x取到有理数时,函数的值都有理界限。

3. 无理界限:如果函数f(x)中x可以取到无理数,则函数定义域就被称为无理界限。

例如,函数f(x)=lnx,当x取到无理数时,函数的值都无理界限。

最后,对几个子集中的变量可能取到的取值范围,进行综合考虑。

根据上文提出的三个子集,可以简单总结函数定义域的求解过程:先确定函数f(x)是否有限个取值,如果有,则函数定义域是函数值有界;如果函数f(x)的取值范围包括有理数,则函数定义域是有理界限;如果函数f(x)的取值范围包括有无理数,则函数定义域是无理界限。

总结起来,求函数定义域的方法主要是先正式定义函数定义域,然后把函数定义域分解成几个个子集,最后对几个子集中的变量可能取到的取值范围,进行综合考虑。

求解函数定义域有助于更好地理解函数运算,是统计学、数学分析和微积分等课程中最基本的原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义域的求法
一、常规型
注意根号,分式,对数,幂函数,正切
2、常见的定义域
①当fx 是整式时,定义域为R;
②当fx 是分式时,定义域为使分母不为零的x 的取值的集合;
③偶次根式的定义域是使被开方式非负的x 的取值的集合;
④零指数幂或负指数幂的定义域是使幂的底数不为0的x 的取值的集合;
⑤对数式的定义域是使真数大于0且底大于0不等于1的x 的取值的集合; ⑥正切函数y=tanx, , y=x x 1 x 1 x a log tan x 21-x 32
-x x 0
1求函数8|3x |15x 2x y 2-+--=的定义域;2 求函数2x
161x sin y -+=的定义域; 复合函数定义域的求法
1已知)x (f 的定义域,求)]x (g [f 的定义域;
其解法是:已知)x (f 的定义域是a,b 求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域;
测试:设函数()f x 的定义域为[]0,1,求函数()()(0)y f x a f x a a =++->的定义域;
2已知)]x (g [f 的定义域,求fx 的定义域;
其解法是:已知)]x (g [f 的定义域是a,b,求fx 定义域的方法是:由b x a ≤≤,求gx 的值域,即所求fx 的定义域;
测试:已知函数(1)f x +的定义域为[]2,3-,求函数fx 的定义域;
2已知)]x (g [f 的定义域,求ftx 的定义域;
其解法是:已知)]x (g [f 的定义域是a,b,求fx 定义域的方法是:由b x a ≤≤,求gx 的值域,也就是tx 的值域,求出tx 的定义域
测试、已知函数(1)f x +的定义域为[]2,3-,求函数(21)y f x =-的定义域;
三、逆向型
即已知所给函数的定义域求解析式中参数的取值范围;特别是对于已知定义域为R,求参数的范围问题通常是转化为恒成立问题来解决;
例1 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围;
例2 已知函数3
kx 4kx 7kx )x (f 2+++=
的定义域是R,求实数k 的取值范围; 四 参数型
对于含参数的函数,求定义域时,必须对分母分类讨论;
例6 已知)x (f 的定义域为0,1,求函数)a x (f )a x (f )x (F -++=的定义域;
解:因为)x (f 的定义域为0,1,即1x 0≤≤;故函数)x (F 的定义域为下列不等式组的解集:
⎩⎨⎧≤-≤≤+≤1a x 01a x 0,即⎩⎨⎧+≤≤-≤≤-a 1x a a 1x a 即两个区间-a,1-a 与a,1+a 的交集,比较两个区间左、右端点,知
1当0a 21≤≤-时,Fx 的定义域为}a 1x a |x {+≤≤-;
2当2
1a 0≤≤时,Fx 的定义域为}a 1x a |x {-≤≤;
3当21a >或21a -<时,上述两区间的交集为空集,此时Fx 不能构成函数; 五 对数有关定义域为R
1y =log 2
2c bx ax ++a ≠0的定义域为R,则满足 2当值域为R 则满足
定义域的作用分析
一.利用函数的定义域判断函数是否是同一函数
例1.判断函数2()lg f x x =与()g x =2lg x 是否同一函数
二.函数定义域是构成函数关系式的重要组成部分
函数关系式包括定义域和对应法则,所以在求函数关系式时必须考虑所求函数的定义域,否则所求函数关系式就可能出错.另外,根据函数定义可知函数定义域是非空的数的集合,若一个关系式中某一个变量取值范围的集合是空集,那么这个关系式中的几个变量之间就不能构成一个函数关系式.
例1.把截面半径为25cm 的圆形木头锯成矩形木料,求矩形面积S 与矩
形长x 的函数关系式.
解:设矩形的长为x cm,则宽为2250x -cm,由题意得: 2250x x S -=,故所求的函数关系式为:2250x x S -=.
如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量x 的范围,解题思路还不够严密.因为当自变量x 取负数或不小于50的数时,S 的值是负数或零,即矩形的面积为非正数,这与实际问题相矛盾,故还要补上自变量x 的范围:500<<x ,所以函数关系式为:2250x x S -=500<<x .
评析:从此例可以看出,用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响.若考虑不到这一点,结果很有可能出错.
例3.判断式子
解:要使上面的式子有意义,则1-x 2≥0且x 2-1>0,其解集为空集,由函数定义
可知这个式子不表示函数关系式.
评注:解题时若忽视了定义域的作用,则很可能得到一个错误结果.
三.函数定义域对函数值域的限制作用
函数的值域是指全体函数值的集合,当定义域和对应法则确定后,函数值也随之而定.因此在求函数值域时,应特别注意函数定义域.
其实以上结论只是对二次函数)0(2>++=a c bx ax y 在R 上适用,而在指定的定义域区间],[q p 上,它的最值应分如下情况:
⑴当p a
b <-
2时)(x f y =在],[q p 上单调递增函数)()(),()(max min q f x f p f x f ==; ⑵当q a b >-2时,)(x f y =在],[q p 上单调递减函数)()(),()(min max q f x f p f x f ==; ⑶当q a
b p ≤-≤2时)(x f y =在],[q p 上最值情况是:a b a
c a b f x f 44)2()(2min -=-=, )}(),(m ax {)(max q f p f x f =.即最大值是)(),(q f p f 中最大的一个值;
例4.求函数32-+=x x y 的值域.
错解:令3,32+=-=t x x t 则
∴22)1(322)3(222≥++=++=++=t t t t t y ,故所求的函数值域是),2[+∞.
四.函数定义域对函数奇偶性的作用
例1.判断函数
错解∵21)(x x f --=,∴)()(x f x f =-,∴函数 例6:判断函数y=sinx,x ∈0,6π的周期性.
六.函数定义域对函数单调区间的作用
函数单调性是指函数在给定的定义域区间上函数自变量增加时,函数值随着增减的情况,而函数的单调区间是函数定义域的子集,所以讨论函数单调性一定要在函数的定义域内讨论函数的单调区间.
例1.指出函数)3lg()(2x x x f +=的单调区间.
七.函数定义域对求反函数的影响
有些函数不存在反函数,但在其单调区间内存在反函数,在求这类函数的反函数时,除注意其值域外,也要注意定义域
例8.求函数)20(242≤≤++-=x x x y 的反函数.
错解:函数)20(242≤≤++-=x x x y 的值域为y ∈ 2 , 6,
又6)2(2+--=x y ,即y x -=-6)2(2,∴y x -±=-62,
∴所求的反函数为y=2 ±错误!2≤x ≤6.
八.函数定义域对解不等式、方程或求值的作用
有时巧用函数的定义域,可以避免复杂的变形与讨论,
例9.设x 、y 为实数,
且1y x
=+,试求lgx+y 之值. 解:x 应满足⎪⎩
⎪⎨⎧≠+≥-≥-01010122x x x ,即x =1,将其代入已知等式,得y =0,
故lgx+y=lg1=0.。

相关文档
最新文档