1.知识点汇总_细胞骨架

1.知识点汇总_细胞骨架
1.知识点汇总_细胞骨架

细胞生物学知识点汇总

I说明:

本文档是王飞老师细胞生物学课上容的精炼和总结,也是考试出题的主要依据。容过于精炼则必有若干舍弃之处,希望同学不要为了考试而学习,将这份文字资料为你节省的复习时间用于阅读中英文教材和查找感兴趣的细胞生物学领域的前沿资料,这样才能对这门课程有一个更加全面的了解。

本文档中出现的英文不要求掌握(名词解释部分除外),只是对复杂中文名词或重点容的一个辅助的英文注解。由于某些中文名称的翻译过于繁琐且不合理,不如英文名称容易记忆,因此中英文只要掌握一种即可,在考试过程中无论是中文、英文还是英文缩写,只要写对任何一种即可得分。

容编写过程中缺乏足够的审核步骤,如发现错别字或容明显错误之处请及时联系老师确认容的正确性。

II细胞骨架知识点汇总:

核心知识点(约占考试总分值的60%): 1 7 20 25 29 32 41 44 45 49 51 普通知识点(约占考试总分值的30%): 3 9 11 12 14 16 17 18 19 23 26 28 30 31 35 37 38 39 43 47 48 50 54

扩展知识点(约占考试总分值的10%) : 2 4 5 6 8 10 13 15 21 22 24 27 33 34 36 40 42 46 52 53 55

1细胞骨架(cytoskeleton)的定义与种类:

定义:细胞骨架是贯穿整个细胞的复杂的纤维状蛋白网络结构

细胞有三种类型的细胞骨架,分别是微丝(microfilament,MF),微管(microtubule,MT)和中间丝(in termediate filame nt, IF)。

2肌动蛋白(actin)的种类及分布

真核细胞的肌动蛋白主要分为三大类,名称及分布情况如下:

a肌动蛋白

主要存在于肌肉细胞的收缩性结构中,目前已发现的四种a肌动蛋白分别属于

横纹肌、心肌、血管平滑肌和肠道平滑肌。

B肌动蛋白

存在于所有种类的细胞,是细胞绝大部分微丝骨架的基本组分。

丫肌动蛋白

在所有细胞都有分布,主要存在于与应力纤维相关的结构中。

3微丝的组成与极性

A微丝由肌动蛋白单体聚合而成。

B肌动蛋白是一种球状蛋白,其三维构象具有一道很深的裂缝,在裂缝部有一个

核苷酸结合位点(可与ATP 或ADP 结合)和一个二价阳离子结合位点(可与

Mg2^ CF结合)。

C 肌动蛋白单体聚合形成螺距为36nm(7 个单体分子) 的双股螺旋状微丝纤维。每个肌动蛋白单体都与四个其他肌动蛋白单体紧密相邻。

D 微丝中的所有肌动蛋白单体分子的缝隙开口端或缝隙底部都朝着同一方向排列,因此整个微丝纤维具有极性。缝隙开口端指向的是微丝的负极 (minus end),缝隙底部指向的是微丝的正极( plus end)。

4 微丝和微管的正负极的定义对于微丝和微管的极性,人们习惯性的以同等条件下蛋白单体分子在纤维末端组装和去组装的速度大小来定义。速度快的是正极,速度慢的是负极。

5 胞外微丝组装反应的动力学过程

A 试管中的微丝组装需要的反应组分包括:G-actin,ATP,Mg2+,K+,Na+

B 微丝的组装和去组装是一对可逆反应。反应平衡点受外部反应环境影响。

C在存在Mg2+且K+、Na+较高的环境里,微丝趋向于聚合。在存在Ca2+且K+、Na+较低的环境里微丝趋向于解聚。

D单体肌动蛋白以G-actin表示(G for global),结合在微丝中的肌动蛋白以

F-actin 表示( F for fibrous)。

F反应过程中C G-actin不断减小,C F-actin不断增加,直到达到平衡点。平衡点处的

C G-actin定义为整个反应的临界浓度C c( critical concentration)。

G 反应共分三个阶段:延迟期,是发生成核反应的时期,在此时期数个肌动蛋白单体分子自发聚合成为可供进一步延伸的“核”,是整个反应的限速步骤;延长期,是微丝快速组装的时期,C G-actin>C c,聚合反应速度>解聚反应速度;稳定期,是反应达到平衡点之后的时期,C G-actin=C c,聚合反应速度=解聚反应速度;

6 核苷酸ATP/ADP 在微丝组装中的作用

A 肌动蛋白本身也是一种ATP 酶,能够水解与之结合的ATP 分子使之转变为ADP,肌动蛋白的ATP酶活性只有在其组装到微丝末端之后才开始生效。

B在游离状态下肌动蛋白分子与ATP的亲和力远高于ADP,与肌动蛋白结合的ADP 分子很容易被ATP分子所替换,因此游离状态下的肌动蛋白携带的核苷酸分子以ATP 为主。

C带有ATP的肌动蛋白更容易发生聚合反应,带有ADP的肌动蛋白更容易发生解聚反应。

D细胞中的微丝组装时新组装上去的肌动蛋白总是携带ATP分子的,该ATP分

子在停留一段很短的时间后即被水解为ADP,在水解发生前新的携带ATP分子的肌动蛋白单体已经在末端聚合,使得整根微丝最前端的几个肌动蛋白总是携带ATP 的,这样的末端定义为T型末端。

E 细胞中微丝的去组装总是发生在末端肌动蛋白携带ADP 的时候,这样的末端定义为 D 型末端。

F 细胞的D 型微丝末端主要是由于负极端成核蛋白的脱落形成的。

7 微丝组装的踏车行为( treadmilling) A 理论上如果没有ATP 水解为ADP 的过程,那么微丝组装时正极和负极的Cc 是相等的。在实际反应过程中由于有ATP水解过程的存在,正负极反应的Cc不再相等,Cc+

B当反应环境里Cc+ vC G-actin V Cc「的时候,正极端发生的是聚合反应,负极端发生的是解聚反应,这种反应形式称为踏车行为。

C在试管的微丝组装反应的总Cc介于正负极Cc之间,因此试管聚合反应达到平衡期之后实际上发生的是踏车反应。正极端的聚合速度等于负极端的解聚速度。

D 踏车行为是细胞微丝动态组装和去组装的主要形式之一。

8 影响微丝组装的药物

A细胞松弛素(cytochalasin):能够切割微丝并与游离的末端结合,结合后能够阻止新的肌动蛋白单体分子在末端的组装,同时并不影响末端肌动蛋白分子的解离。因此细胞松弛素的总体效果是促进微丝解聚。

B鬼笔环肽(phalloidin):与微丝中的肌动蛋白(F-actin)结合,阻止其解离。总体效果是阻断微丝解聚,稳定微丝。

9 微丝网络结构的调节方式细胞微丝网络结构的调节主要是通过各种微丝结合蛋白的共同作用来实现的。

10 细胞微丝结合蛋白的种类

有六大类,分别是肌动蛋白单体结合蛋白,成核蛋白与加帽蛋白,延伸保护蛋白,交联蛋白,割断及解聚蛋白,马达蛋白。

11 肌动蛋白单体结合蛋白的种类及作用

A胸腺素34(thymosin斡):与肌动蛋白单体结合并封闭其发生聚合反应的位点,其作用是维持细胞游离态肌动蛋白库的总容量远大于微丝组装反应的临界浓度,有利于细胞大规模组装微丝的快速启动。

B 前纤维蛋白( profilin ):只与肌动蛋白单体的正极端(底部)结合,抑制其在微丝负极端的聚合,不影响其在微丝正极端的聚合。因此前纤维蛋白的作用是增加微丝组装反应的极性,促进正极端的生长。

12 成核蛋白与加帽蛋白

A 成核蛋白:成核蛋白包括Arp2 Arp3 和与之相关的其他几种蛋白质,这些蛋白共同组成Arp2/3 复合物。

Arp2 和Arp3 在结构上与肌动蛋白单体分子极其相似,在复合物中形成异源二聚体,肌动蛋白单体以Arp2/3 异源二聚体为基点开始新微丝的组装。

Arp2/3 复合物的组装受到胞信号转导系统的控制。可以凭空出现,诱发新的微丝的组装。也可以在微丝快速生长的T型末端处组装,诱导微丝的分叉生长。

Arp2/3 复合物的存在具有稳定微丝负极的作用,一但Arp2/3 从微丝末端脱落,暴露出来的负极 D 型末端会迅速降解。

B 加帽蛋白:在微丝停止生长之后,与正极端结合并使其稳定的一类蛋白质。被加帽

蛋白稳定的微丝正极端由于ATP的水解作用,属于D型末端,但加

帽蛋白的存在保护其不发生解聚反应加帽蛋白的代表:CapZ。

C 成核蛋白和加帽蛋白都是对微丝末端进行调节的蛋白,其中成核蛋白作用于负极,加帽蛋白作用于正极。二者在微丝相应末端的结合与解离是造成微丝网络结构动态性的主要原因之一。

13 延伸保护蛋白

主要指的是形成蛋白(formin ),形成蛋白能在微丝正极端形成二聚体环状结构,二聚体环中的两个单体分子交错向正极端移动并募集新的肌动蛋白单体分子在正极端组装,同时保护正极端新形成的微丝不被降解或者是被Arp2/3 复合物接近。通过这种方式,形成蛋白能够维持微丝在正极端的稳定生长,形成长的、无分叉的微丝结构。

14 交联蛋白

A 交联蛋白根据微丝的排列方式可分为两类:成束蛋白和凝胶形成蛋白。

B 交联蛋白能够单独或以二聚体的形式将相邻的微丝交联起来。

C 起到交联作用的蛋白单体或二聚体都携带有两个肌动蛋白结合位点,两个位点间的距离决定了所形成的微丝束或网的松紧程度。

D成束蛋白包括丝束蛋白(fimbrin )、绒毛蛋白(villin )和a辅肌动蛋白

(a actinin),其两个肌动蛋白结合位点间的区域是僵直的,能够将多根微丝平行

交联成束。

E 成束蛋白中的丝束蛋白和绒毛蛋白以单体形式起作用,两个肌动蛋白结合位点间的距离较小,形成的微丝束比较紧密,部很难进入其他功能性蛋白分子。

F成束蛋白中的a辅肌动蛋白以二聚体的形式起作用,两个肌动蛋白结合位点间的距离较大,形成的微丝束比较松散,部能够进入其他功能性蛋白分子如肌球蛋白。

G凝胶形成蛋白包括细丝蛋白(filamin )和血影蛋白(spectrin),其两个肌动蛋白结合位点间的区域是柔软的,能以一定角度将两根相邻的微丝交联,最终形成二维网状结构或三维凝胶样结构。

15 割断及解聚蛋白

A主要包括凝溶胶蛋白(gelsolin)和肌动蛋白解聚因子/丝切蛋白(ADF/cofilin )。B 凝溶胶蛋白能够结合在微丝表面并切断微丝。在某些条件下,微丝切断后凝溶胶蛋白可以与暴露出来的正极末端结合,促进其进一步解聚。相反,在另一些条件下,微丝切断后产生的正极末端可以成为新的微丝生长点,从而加速微丝网络的形成。

C 丝切蛋白能与含有ADP 的微丝表面结合并加速其解聚速度,主要在脱离了加帽蛋白的微丝负极端起到促进微丝解聚的作用。

16肌球蛋白(myosin)的结构及种类

A 肌球蛋白是依赖于微丝的马达蛋白。

B 肌球蛋白的主要结构分为三部分,分别是马达结构域、调控结构域(或杠杆臂结构域)、尾部结构域。

C 马达结构域是肌球蛋白沿微丝运动的主要结构元件;尾部结构域是肌球蛋白与货物分子、其他细胞结构或自身形成多聚体时相连的部位;

D 细胞肌球蛋白的种类有很多,每种肌球蛋白的结构和功能都不相同。

E II 型肌球蛋白( myosin-II )因最先发现并研究被称为传统类型的肌球蛋白,其他肌球蛋白都是非传统类型的肌球蛋白。

F II 型肌球蛋白有两个马达结构域,在细胞以二聚体或多聚体的形式存在,主要在应力纤维的相互滑动以及肌纤维的收缩过程中起作用。

E I 型肌球蛋白( myosin-I )只有一个马达结构域,在细胞以单体形式存在,主要在细胞皮层区的囊泡运输以及皮层与细胞质膜的相对滑动过程中起作用。

17 细胞皮层( cell cortex)

A 细胞皮层是微丝通过交联形成的三维凝胶样网络结构。

B 细胞皮层存在于细胞质膜以下。

C 细胞皮层为质膜提供机械支撑,帮助质膜维持特定的形状,调节膜蛋白的流动性。

18 伪足( podium)

A 伪足是细胞迁移过程中在细胞前缘形成的突起结构

B 伪足按照形态和部骨架结构区分可以划分为两种类型:片状伪足

( lamellipodium )和丝状伪足( filopodium )

C 片状伪足的微丝正极端结合了大量的Arp2/3 复合物,产生大量的分叉,形成片状的二维网状结构。

D 丝状伪足的微丝正极端在形成蛋白的保护下笔直生长,不分叉,形成笔直平行的束状结构。

19 应力纤维( stress fiber)

A应力纤维由微丝反相平行排列而成,主要通过a辅肌动蛋白二聚体交联,在

反相微丝束之间含有II 型肌球蛋白二聚体,使应力纤维具备收缩的能力。

B 应力纤维主要存在于细胞皮层区域,通过黏着斑与相邻细胞或胞外基质相连,在细胞形状发生变化时能够产生力并主动收缩,有助于细胞完成形状的改变。

20 细胞迁移( cell migration/crawling )过程

A 细胞迁移过程分为四个主要步骤。1外源信号触发细胞迁移2 细胞前缘产生突起

3 突起部分与胞外基质形成新的锚定位点

4 后放骨架收缩,锚定点分离,细胞整体前移。

B 细胞前缘形成的突起即为伪足,丝状伪足在前,片状伪足在后。丝状伪足为片状伪足提供更大的扩展面,加速突起前移速度。

C 细胞前缘部位微丝的快速组装依赖于三方面反应。1 Arp2/3 复合物在微丝正极端的装配成核2前纤维蛋白维持微丝的正极组装,抑制负极组装 3 形成蛋白维持丝状伪足微丝的笔直无分叉组装。

D 随着细胞前缘骨架的不断生长,伪足中组装的微丝网络在一段时间后便被新生的微丝落下,逐渐成为细胞质整体前移的障碍,此时Arp2/3 复合物从微丝负极端脱落,促使这部分微丝解聚。

E 前缘形成突起后,细胞皮层处于拉伸状态,细胞皮层的应力纤维产生力,在

II 型肌球蛋白的作用下应力纤维收缩,拖拽细胞后随部分前移。

F 在细胞迁移过程中,细胞质膜在I 型肌球蛋白的作用下沿皮层表面滑动,以适应细胞皮层的形状变化。

21 微绒毛(microvilli )

A 小肠上皮细胞的游离面存在大量的微绒毛。

B 微绒毛的轴心结构是同向平行排列的微丝束,微丝束正极端指向微绒毛顶端,负极端终止于端网结构。

C 微绒毛中的微丝束由绒毛蛋白和丝束蛋白紧密交联而成,微丝束部无肌球蛋白,因此微绒毛不具备运动的能力。

D 微绒毛轴心外围的微丝通过I 型肌球蛋白与微绒毛质膜相连。

22 胞质分裂环

A 胞质分裂环在细胞分裂过程中的胞质分裂期产生。迫使细胞质膜在两个子细胞核之间陷,将胞质均匀分配到子细胞中。

B 胞质分裂环由反相平行排列的微丝束组成,其间含有II 型肌球蛋白二聚体,具有收缩能力。

23 肌纤维收缩的原理及肌丝的组成

A 肌肉收缩的动力来源于肌球蛋白II 介导的粗细肌丝间滑动。

B 细肌丝是单股的微丝纤维。

C 粗肌丝由数百个II 型肌球蛋白通过尾部结构域聚合而成,所有马达结构域头部都暴露在粗肌丝两端的外表面。

D 粗细肌丝在肌纤维中平行交错分布,每根粗肌丝被六根细肌丝包围,每根细肌丝被两根粗肌丝所共用。

E 粗肌丝两端的数百个马达结构域头部沿相反方向拖拽细肌丝以形成粗细肌丝的滑动。

24 原肌球蛋白位移

A 在肌细胞处于静息状态时,原肌球蛋白(tropomyosin,Tm )与细肌丝紧密结

合,封闭了细肌丝与粗肌丝马达结构域头部的结合位点,收缩装置不启动。

B 在肌细胞接受到上游神经信号后,原肌球蛋白发生位移,暴露出细肌丝与粗肌丝马达结构与头部的结合位点,收缩装置启动。

25 肌球蛋白沿微丝运动的分子机制(以肌球蛋白II 为代表)

A 肌球蛋白每一个马达结构域都具有ATP 酶活性,包含一个ATP 结合位点和一个肌动蛋白结合位点。

B肌球蛋白马达结构域沿微丝运动时,每个运动周期消耗1分子ATP,移动一

步距离,即一个肌动蛋白单体的长度(约5nm)。

C 肌球蛋白马达结构域每一个运动周期可分为五个阶段。

1 在上一个运动周期结束后,释放了ADP 分子的II 型肌球蛋白头部马达结构域(以下简称头部)在一段很短暂的时间没有与任何核苷酸分子结合,此时的头部处于僵直状态,与细肌丝紧密结合。

2 僵直状态十分短暂,随后头部与1 分子ATP 结合,构象发生轻微变化,使

头部与细肌丝的紧密结合松开。

3松开细肌丝后头部的ATP酶活性启动,ATP水解为ADP和1分子Pi, ATP 水解释放的能量使得头部的构想发生很大改变,向正极端移动一个肌动蛋白分子的距离,此时的头部处于高能构象,ADP 和Pi 仍然停留在头部。

4 向前移动后的头部与前方下一个肌动蛋白分子的结合位点接触,这种分子接触使得头部的Pi 分子释放,Pi 的释放使得头部与肌动蛋白分子紧密结合并触发了头部的能量释放,头部恢复低能构象并向负极方向拖拽细肌丝,滑动距离为一个肌动蛋

白分子的距离。

5 在能量释放过程中,ADP 分子释放,头部在完成拖拽动作后重新恢复到僵直状态,与肌动蛋白分子紧密结合。

D II 型肌球蛋白的两个马达结构域头部独立运动,彼此间无明显协调性。

E II 型肌球蛋白每一个运动周期肌球蛋白头部与细肌丝紧密结合的时间只占总时间的5%。由于一根细肌丝同时与多个(约50 个)肌球蛋白头部相互作用,因此任意一个时间点总有一个以上的肌球蛋白头部与细肌丝紧密相连,使得粗细肌丝间的滑动可以连续进行而不会因肌球蛋白头部脱离细肌丝而回弹。

26 微管的组成与极性

A 组成微管的基本结构单元是由两种非常相似的微管蛋白亚基结合而成的异源二聚体,叫做a g微管蛋白二聚体(a书ubulin dimer )。

B a-微管蛋白二聚体由a微管蛋白(a tubulin)和g微管蛋白(g-tubulin)首尾相连而成。两个亚基部均有一个核苷酸结合位点(可与GTP 或GDP 结合),但由于构象上的原因,只有结合在g微管蛋白上的GTP可以被水解并在水解后被新的GTP分子所替换,而a微管蛋白上的GTP分子通常情况下不会被水解。

C微管管壁由a-微管蛋白二聚体纵向排列而成的原纤丝构成,13根原纤丝合拢构成中空的微管结构。

D微管中所有a $微管蛋白二聚体的极性方向都是相同的,指向微管正极端的都是g 微管蛋白,指向微管负极端的都是a微管蛋白。

27 胞外微管组装反应的动力学过程

A 与胞外微丝组装反应相似

B 分为三个时期:延迟期,延长期和稳定期

C 胞外微管组装反应中也会出现踏车行为,但踏车行为在细胞几乎不存在。

28 核苷酸GTP/GDP 在微管组装中的作用

A 微管蛋白本身也是一种GTP 酶,能够水解与之结合的GTP 分子使之转变为GDP,微管蛋白的GTP酶活性只有在其组装到微管末端之后才开始生效。

B在游离状态下微管蛋白与GTP的亲和力远高于GDP,与微管蛋白结合的GDP 分子很容易被GTP 分子所替换,因此游离状态下的微管蛋白携带的核苷酸分子以GTP 为主。

C带有GTP的微管蛋白更容易发生聚合反应,带有GDP的微管蛋白更容易发生解聚反应。

D细胞中的微管组装时新组装上去的微管蛋白总是携带GTP分子的,该GTP分

子在停留一段很短的时间后即被水解为GDP,在水解发生前新的携带GTP的微管蛋白二聚体已经在末端聚合,使得整根微管最前端的几个微管蛋白总是携带GTP的,称为GTP帽子(GTP cap)。这样的末端称为T型末端。

E 细胞中微管的去组装总是发生在末端微管蛋白携带GDP 的时候,这样的末端定义为 D 型末端。

F 细胞的D 型微管末端主要是由于正极端微管在远端未能及时找到起稳定作用的微管结合蛋白或是该微管结合蛋白因环境改变而脱落造成的。

相关主题
相关文档
最新文档