全等三角形经典辅助线做法汇总(供参考)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形问题中常见的辅助线的作法(有答案)

总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等

【三角形辅助线做法】

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题

2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形

3.角平分线在三种添辅助线

4.垂直平分线联结线段两端

5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,

6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形

7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变

D C B

A

E

D F C

B A

换中的“对折”法构造全等三角形.

2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的

思维模式是全等变换中的“旋转”法构造全等三角形.

3)遇到角平分线在三种添辅助线的方法

4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变

换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

5)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平

移”或“翻转折叠”

6)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条

线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

7)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连

线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.

一、倍长中线(线段)造全等

例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.

例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.

E D C

B

A

(一)中线倍长法:

例1 、求证:三角形一边上的中线小于其他两边和的一半。 已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤2

1

(AB+AC) 分析:要证明AD ﹤

2

1

(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。 证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。

在△ADB 和△EDC 中,

AD =DE ∠ADB =∠EDC BD =DC

∴△ADB ≌△EDC(SAS) ∴AB=CE

又 在△ACE 中,

AC+CE >AE

∴AC+AB >2AD ,即AD ﹤2

1

(AB+AC)

小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。

课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC

C

例2:中线一倍辅助线作法

△ABC中

方式1:延长AD到

E,AD是BC边中线

使DE=AD,

连接BE

方式2:间接倍长

作CF⊥AD于F,延长MD到N,

作BE⊥AD的延长线于使DN=MD,

连接BE 连接CD

例3:△ABC中,AB=5,AC=3,求中线AD的取值范围

例4:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE

相关文档
最新文档