全等三角形中辅助线的添加解析

合集下载

全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中罕有的帮助线的作法(有答案)泛论:全等三角形问题最重要的是结构全等三角形,结构二条边之间的相等,结构二个角之间的相等【三角形帮助线做法】图中有角等分线,可向双方作垂线. 也可将图半数看,对称今后关系现.角等分线平行线,等腰三角形来添. 角等分线加垂线,三线合一尝尝看.线段垂直等分线,常向两头把线连. 要证线段倍与半,延伸缩短可实验.三角形中两中点,衔接则成中位线. 三角形中有中线,延伸中线等中线.1.等腰三角形“三线合一”法:碰到等腰三角形,可作底边上的高,运用“三线合一”的性质解题2.倍长中线:倍长中线,使延伸线段与原中线长相等,结构全等三角形3.角等分线在三种添帮助线4.垂直等分线联络线段两头5.用“截长法”或“补短法”:碰到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后组成等边三角形7.角度数为30.60度的作垂线法:碰到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目标是组成30-60-90的特别直角三角形,然后盘算边的长度与角的度数,如许可以得到在数值上相等的二条边或二个角.从而为证实全等三角形创造边.角之间的相等前提.8.盘算数值法:碰到等腰直角三角形,正方形时,或30-60-90的特别直角三角形,或40-60-80的特别直角三角形,常盘算边的长度与角的度数,如许可以得到在数值上相等的二条边或二个角,从而为证实全等三角形创造边.角之间的相等前提.罕有帮助线的作法有以下几种:最重要的是结构全等三角形,结构二条边之间的相等,二个角之间的相等.1)碰到等腰三角形,可作底边上的高,运用“三线合一”的性质解题,思维模式是全等变换中的“半数”法结构全等三角形.2)碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,运用的思维模式是全等变换中的“扭转”法结构全等三角形.3)碰到角等分线在三种添帮助线的办法,(1)可以自角等分线上的某一点向角的双方作垂线,运用的思维模式是三角形全等变换中的“半数”,所考常识点经常是角等分线的性质定理或逆定理.(2)可以在角等分线上的一点作该角等分线的垂线与角的双方订交,形成一对全等三角形.(3)可以在该角的双DCBAEDF CBA方上,距离角的极点相等长度的地位上截取二点,然后从这两点再向角等分线上的某点作边线,结构一对全等三角形.4)过图形上某一点作特定的等分线,结构全等三角形,运用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延伸,是之与特定线段相等,再运用三角形全等的有关性质加以解释.这种作法,合适于证实线段的和.差.倍.分等类的标题.6)已知某线段的垂直等分线,那么可以在垂直等分线上的某点向该线段的两个端点作连线,出一对全等三角形.特别办法:在求有关三角形的定值一类的问题时,常把某点到原三角形各极点的线段衔接起来,运用三角形面积的常识解答. 一.倍长中线(线段)造全等例 1.(“愿望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值规模是_________.例2.如图,△ABC 中,E.F 分离在AB.AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.例 3.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 等分∠BAE. 运用:1.(09崇文二模)以ABC ∆的双方AB.AC 为腰分离向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒衔接DE,M.N 分离是BC.DEEDCBADCBAPQCBA的中点.探讨:AM 与DE 的地位关系及数目关系.(1)如图①当ABC ∆为直角三角形时,AM 与DE 的地位关系是, 线段AM 与DE 的数目关系是; (2)将图①中的等腰RtABD∆绕点A 沿逆时针偏向扭转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否产生转变?并解释来由. 二.截长补短1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC2.如图,AD ∥BC,EA,EB 分离等分∠DAB,∠CBA,CD 过点E,求证;AB =AD+BC. 3.如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分离在BC,CA 上,并且AP,BQ 分离是BAC ∠,ABC ∠的角等分线.求证:BQ+AQ=AB+BP4.如图,在四边形ABCD 中,BC >BA,AD =CD,BD 等分ABC ∠,求证:0180=∠+∠C A5.如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上随意率性一点,求证;AB-AC >PB-PC 运用: 三.平移变换例1AD 为△ABC 的角等分线,直线MNDCBFED CBA⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .例2如图,在△ABC 的边上取两点 D.E,且BD=CE,求证:AB+AC>AD+AE.四.借助角等分线造全等1.如图,已知在△ABC 中,∠B=60°,△ABC 的角等分线AD,CE订交于点O,求证:OE=OD2.如图,△ABC 中,AD 等分∠BAC,DG ⊥BC BC,DE ⊥AB 于E,DF ⊥AC 于F.(1)解释BE=CF 的来由;(2)假如AB=a ,AC=b ,求AE.BE 的长. 运用:1.如图①,OP 是∠MON 的等分线,请你运用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA 的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 五.扭转例1正方形ABCD 中,E 为BC 上的一点,F 为(第23题图)OP AMNEB CD F ACEFBD图①图②图③ACD 上的一点,BE+DF=EF,求∠EAF 的度数.例2D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分离交BC,CA 于点E,F.(1)当MDN ∠绕点D 迁移转变时,求证DE=DF.(2)若AB=2,求四边形DECF 的面积例3如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以060角,使其双方分离交AB 于点M,交AC 于点N,衔接MN,则AMN ∆的周长为;运用: 1.已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,.当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情形下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF 又有如何的数目关系?请写出你的猜测,不需证实.2.(西城09年一模)已知,PB=4,以AB 为一边作正方形(图1) A B CDEFM N(图2)C(图3)ABC DE F MNDC BAABCD,使P.D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变更,且其它前提不变时,求PD 的最大值,及响应∠APB 的大小.3.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图 2图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之间的数目关系是; 此时=LQ; (II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示). 参考答案与提醒 一.倍长中线(线段)造全等例 1.(“愿望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值规模是_________.解:延伸AD 至E 使AE =2AD,连BE,由三角形性质知 AB-BE <2AD<AB+BE 故AD 的取值规模是1<AD<4EDF CBA例2.如图,△ABC 中,E.F 分离在AB.AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.解:(倍长中线,等腰三角形“三线合一”法)延伸FD 至G 使FG =2EF,连BG,EG, 显然BG =FC,在△EFG 中,留意到DE ⊥DF,由等腰三角形的三线合一知 EG =EF在△BEG 中,由三角形性质知 EG<BG+BE 故:EF<BE+FC例 3.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 等分∠BAE.解:延伸AE 至G 使AG =2AE,连BG,DG, 显然DG =AC,∠GDC=∠ACD 因为DC=AC,故∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG,AD =AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG故△ADB ≌△ADG,故有∠BAD=∠DAG,即AD 等分∠BAE 运用:1.(09崇文二模)以的双方AB.AC 为腰分离向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒衔接DE,M.N 分离是ABC ∆BC.DE的中点.探讨:AM与DE的地位关系及数目关系.∆为直角三角形时,AM与DE的地位关系是,(1)如图①当ABC线段AM与DE的数目关系是;(2)将图①中的等腰Rt ABD∆绕点A沿逆时针偏向扭转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否产生转变?并解释来由.C∴DE AM ⊥,DE AM 21=二.截长补短1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC 解:(截长法)在AB 上取中点F,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知 DF ⊥AB,故∠AFD =90° △ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2.如图,AD ∥BC,EA,EB 分离等分∠DAB,∠CBA,CD 过点E,求证;AB =AD+BC解:(截长法)在AB 上取点F,使AF =AD,△ADE ≌△AFE (SAS )∠ADE =∠AFE, ∠ADE+∠BCE =180° ∠AFE+∠BFE =180°CBA故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3.如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P,Q 分离在BC,CA 上,并且AP,BQ 分离是BAC ∠,ABC ∠的角等分线.BQ+AQ=AB+BP解:(补短法, 盘算数值法)延伸AB 至D,使BD BP,连DP在等腰△BPD 中,可得∠BDP =40° 从而∠BDP =40°=∠ACP △ADP ≌△ACP (ASA ) 故AD =AC又∠QBC =40°=∠QCB 故 BQ =QC BD =BP从而BQ+AQ=AB+BP4.如图,在四边形ABCD 中,BC >BA,AD =CD,BD 等分ABC ∠,求证: 0180=∠+∠C A解:(补短法)延伸BA 至F,使BF =BC,连△BDF ≌△BDC (SAS ) 故∠DFB =∠DCB ,FD =DC 又AD =CD故在等腰△BFD中∠DFB=∠DAF故有∠BAD+∠BCD=180°5.如图在△ABC中,AB>AC,∠1=∠2,P为AD上随意率性一点,求证;AB-AC>PB-PC解:(补短法)延伸AC至F,使AF=AB,连PD△ABP≌△AFP(SAS)故BP=PF由三角形性质知PB-PC=PF-PC < CF=AF-AC=AB-AC运用:剖析:此题衔接AC,把梯形的问题转化成等边三角形的问题,然后运用已知前提和等边三角形的性质经由过程证实三角形全等解决它们的问题.B∴FEC AED ∠=∠ 在ADE ∆与FCE ∆中CFE EAD ∠=∠,EF AE =,FEC AED ∠=∠∴FCE ADE ∆≅∆ ∴FC AD = ∴AE AD BC +=点评:此题的解法比较新鲜,把梯形的问题转化成等边三角形的问题,然后运用全等三角形的性质解决. 三.平移变换例1 AD 为△ABC 的角等分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .解:(镜面反射法)延伸BA 至F,使AF =AC,连FEAD 为△ABC 的角等分线, MN ⊥AD 知∠FAE =∠CAE 故有△FAE ≌△CAE (SAS ) 故EF =CE在△BEF 中有: BE+EF>BF=BA+AF=BA+AC 从而P B =BE+CE+BC>BF+BC=BA+AC+BC=P A例 2 如图,在△ABC 的边上取两点 D.E,且BD=CE,求证:O ED CB AAB+AC>AD+AE.证实:取BC中点M,连AM并延伸至N,使MN=AM,连BN,DN.∵BD=CE,∴DM=EM,∴△DMN≌△EMA(SAS),∴DN=AE,同理BN=CA.延伸ND交AB于P,则BN+BP>PN,DP+PA>AD,相加得BN+BP+DP+PA>PN+AD,各减去DP,得BN+AB>DN+AD,∴AB+AC>AD+AE.四.借助角等分线造全等1.如图,已知在△ABC中,∠B=60°,△ABC的角等分线AD,CE 订交于点O,求证:OE=OD,DC+AE =AC证实(角等分线在三种添帮助线,盘算数值法)∠B=60度,则∠BAC+∠BCA=120度;AD,CE均为角等分线,则∠OAC+∠OCA=60度=∠AOE=∠COD;∠AOC=120度.在AC上截取线段AF=AE,衔接OF.又AO=AO;∠OAE=∠OAF.则⊿OAE≌ΔOAF(SAS),OE=OF;AE=AF;∠AOF=∠AOE=60度.则∠COF=∠AOC-∠AOF=60度=∠COD;又CO=CO;∠OCD=∠OCF.故⊿OCD≌ΔOCF(SAS),OD=OF;CD=CF.OE=ODDC+AE=CF+AF=AC.2.如图,△ABC中,AD等分∠BAC,DG⊥BC且等分BC,DE⊥AB于E,DF⊥AC于F.(1)解释BE=CF的来由;(2)假如AB=a,AC=b,求AE.BE的长.解:(垂直等分线联络线段两头)衔接BD,DCDG垂直等分BC,故BD=DC因为AD等分∠BAC, DE⊥AB于E,DF⊥ACEDGFC BA于F,故有 ED =DF故RT △DBE ≌RT △DFC (HL ) 故有BE =CF. AB+AC =2AE AE =(a+b )/2 BE=(a-b)/2 运用:1.如图①,OP 是∠MON 的等分线,请你运用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA 的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 解:(1)FE 与FD 之间的数目关系为FD FE = (2)答:(1)中的结论FD FE =仍然成立.证法一:如图1,在AC 上截取AE AG =,贯穿连接FG ∵21∠=∠,AF 为公共边, ∴AGF AEF ∆≅∆(第23题图) OP A MN E B C D F ACEFBD图①图②图③FED CBA∴AFG AFE ∠=∠,FG FE =∵︒=∠60B ,AD .CE 分离是BAC ∠.BCA ∠的等分线 ∴︒=∠+∠6032∴︒=∠=∠=∠60AFG CFD AFE ∴︒=∠60CFG∵43∠=∠及FC 为公共边 ∴CFD CFG ∆≅∆ ∴FD FG = ∴FD FE =证法二:如图2,过点F 分离作AB FG ⊥于点G ,BC FH ⊥于点H ∵︒=∠60B ,AD .CE 分离是BAC ∠.BCA ∠∴可得︒=∠+∠6032,F 是ABC ∆的心坎 ∴160∠+︒=∠GEF ,FG FH =又∵1∠+∠=∠B HDF ∴HDF GEF ∠=∠ ∴可证DHF EGF ∆≅∆ ∴FD FE = 五.扭转例 1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.证实:将三角形ADF 绕点A 顺时针扭转90度,至三角形ABG图 1图 2则GE=GB+BE=DF+BE=EF又AE=AE,AF=AG,所以三角形AEF全等于AEG所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF又∠EAF+∠BAE+∠DAF=90所以∠EAF=45度例 2 D为等腰Rt ABC∆斜边AB的中点,DM⊥DN,DM,DN分离交BC,CA于点E,F.(1)当MDN∠绕点D迁移转变时,求证DE=DF.(2)若AB=2,求四边形DECF的面积.解:(盘算数值法)(1)衔接DC,D为等腰Rt ABC∆斜边AB的中点,故有CD⊥AB,CD=DA CD等分∠BCA=90°,∠ECD=∠DCA=45°因为DM⊥DN,有∠EDN=90°因为 CD⊥AB,有∠CDA=90°从而∠CDE=∠FDA=故有△CDE≌△ADF(ASA)故有DE=DF(2)S△ABC=2, S四DECF= S△ACD=1例3 如图,ABC∆是等腰三角形,且∆是边长为3的等边三角形,BDC60角,使其双方分离交AB于点M,∠=,以D为极点做一个0BDC120交AC于点N,衔接MN,则AMN∆的周长为;解:(图形补全法, “截长法”或“补短法”, 盘算数值法) AC 的延伸线与BD的延伸线交于点F,在线段CF上取点E,使CE=BM∵△ABC为等边三角形,△BCD为等腰三角形,且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°-∠ACD=180°-∠ABD=90°,又∵BM=CE,BD=CD,∴△CDE≌△BDM,∴∠CDE=∠BDM,DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,∵在△DMN和△DEN中,DM=DE∠MDN=∠EDN=60°DN=DN∴△DMN≌△DEN,∴MN=NE∵在△DMA和△DEF中,DM=DE∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF (∠CDE=∠BDM)∠DAM=∠DFE=30° ∴△DMN ≌△DEN (AAS), ∴MA=FEAMN ∆的周长为AN+MN+AM=AN+NE+EF=AF=6运用: 1.已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,.当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情形下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF 又有如何的数目关系?请写出你的猜测,不需证实.解:(1)∵AD AB ⊥,CD BC ⊥,BC AB =,CF AE =∴CBF ABE ∆≅∆(SAS ); ∴CBF ABE ∠=∠,BF BE =∵︒=∠120ABC ,︒=∠60MBN∴︒=∠=∠30CBF ABE ,BEF ∆为等边三角形 ∴BF EF BE ==,BE AE CF 21==∴EF BE CF AE ==+(图1) A B C D EF MN (图2)AB C DE F MN(图3)ABC DE F MN(2)图2成立,图3不成立.证实图2,延伸DC 至点K ,使AE CK =,衔接BK 则BCK BAE ∆≅∆∴BK BE =,KBC ABE ∠=∠ ∵︒=∠60FBE ,︒=∠120ABC ∴︒=∠+∠60ABE FBC ∴︒=∠+∠60KBC FBC ∴︒=∠=∠60FBE KBF ∴EBF KBF ∆≅∆ ∴EF KF = ∴EF CF KC =+ 即EF CF AE =+图3不成立,AE .CF .EF 的关系是EF CF AE =- 2.(西城09年一模)已知以AB 为一边作正方形ABCD,使P.D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变更,且其它前提不变时,求PD 的最大值,及响应∠APB 的大小.剖析:(1)作帮助线,过点A 作PB AE ⊥于点E ,在PAE Rt ∆中,已知APE ∠,AP 的值,依据三角函数可将AE ,PE 的值求出,由PB 的值,可求BE 的值,在ABE Rt ∆中,依据勾股定理可将AB 的值求出;求PD 的值有两种解法,解法一:可将PAD ∆绕点A 顺时针扭转︒90得到K ABCDE FMN图 2AB P '∆,可得AB P PAD '∆≅∆,求PD 长即为求B P '的长,在P AP Rt '∆中,可将P P '的值求出,在B P P Rt '∆中,依据勾股定理可将B P '的值求出;解法二:过点P 作AB 的平行线,与DA 的延伸线交于F ,交PB 于G ,在AEG Rt ∆中,可求出AG ,EG 的长,进而可知PG 的值,在PFG Rt ∆中,可求出PF ,在PDF Rt ∆中,依据勾股定理可将PD 的值求出;(2)将PAD ∆绕点A 顺时针扭转︒90,得到AB P '∆,PD 的最大值即为B P '的最大值,故当P '.P .B 三点共线时,B P '取得最大值,依据PB P P B P +'='可求B P '的最大值,此时︒='∠-︒=∠135180P AP APB .解:(1)①如图,作PB AE ⊥于点E ∵PAE Rt ∆中,︒=∠45APB ,2=PA∴()1222===PE AE∵4=PB∴3=-=PE PB BE 在ABE Rt ∆中,︒=∠90AEB ∴1022=+=BE AE AB②解法一:如图,因为四边形ABCD 为正方形,可将将PAD ∆绕点A 顺时针扭转︒90得到AB P '∆,,可得AB P PAD '∆≅∆,B P PD '=,A P PA '=∴︒='∠90P PA ,︒='∠45P AP ,︒='∠90PB P ∴2='P P ,2=PA∴52422222=+=+'='=PB P P B P PD ;解法二:如图,过点P 作AB 的平行线,与DA 的延伸线交于F ,设DA 的延伸线交PB 于G .EPA DCBP ′PA CBDEP ′PACBDP ′PACBD在AEGRt ∆中,可得310cos cos =∠=∠=ABE AE EAG AE AG ,31=EG ,32=-=EG PE PG在PFG Rt ∆中,可得510cos cos =∠=∠=ABE PG FPG PG PF ,1510=FG 在PDF Rt ∆中,可得(2)如图所示,将PAD ∆绕点A 顺时针扭转︒90,得到AB P '∆,PD 的最大值,即为B P '的最大值∵B P P '∆中,PB P P B P +'' ,22=='PA P P ,4=PB 且P .D 两点落在直线AB 的两侧∴当P '.P .B 三点共线时,B P '取得最大值(如图)此时6=+'='PB P P B P ,即B P '的最大值为6此时︒='∠-︒=∠135180P AP APB3.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之G FP A CBDE间的数目关系是; 此时=LQ; (II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示).剖析:(1)假如DN DM =,DNM DMN ∠=∠,因为DC BD =,那么︒=∠=∠30DCB DBC ,也就有︒=︒+︒=∠=∠903060NCD MBD ,直角三角形MBD .NCD 中,因为DC BD =,DN DM =,依据HL 定理,两三角形全等.那么NC BM =,︒=∠=∠60DNC BMD ,三角形NCD 中,︒=∠30NDC ,NC DN 2=,在三角形DNM 中,DN DM =,︒=∠60MDN ,是以三角形DMN 是个等边三角形,是以BM NC NC DN MN +===2,三角形AMN 的周长=++=MN AN AM QABAC AB NC MB AN AM 2=+=+++,三角形ABC 的周长ABL 3=,是以3:2:=L Q .(2)假如DN DM ≠,我们可经由过程构建全等三角形来实现线段的转换.延伸AC 至E ,使BM CE =,衔接DE .(1)中我们已经得出,︒=∠=∠90NCD MBD ,那么三角形MBD 和ECD 中,有了一组直角,CEMB =,DCBD =,是以两三角形全等,那么DE DM =,CDE BDM ∠=∠,︒=∠-∠=∠60MDN BDC EDN .三角形MDN 和EDN中,有DE DM =,︒=∠=∠60MDN EDN ,有一条公共边,是以两三角形全等,NE MN =,至此我们把BM 转换成了CE ,把MN 转换成了NE ,因为CE CN NE +=,是以CN BM MN +=.Q与L 的关系的求法同(1),得出的成果是一样的.图 1N MAD CB (3)我们可经由过程构建全等三角形来实现线段的转换,思绪同(2)过D 作MDB CDH ∠=∠,三角形BDM 和CDH 中,由(1)中已经得出的︒=∠=∠90MB DCH ,我们做的角CDH BDM ∠=∠,CD BD =,是以两三角形全等(ASA ).那么CH BM =,DH DM =,三角形MDN 和NDH 中,已知的前提有DH MD =,一条公共边ND ,要想证得两三角形全等就须要知道HDN MDN ∠=∠,因为MDB CDH ∠=∠,是以︒=∠=∠120BDC MDH ,因为︒=∠60MDN ,那么︒-︒=∠60120NDH︒=60,是以NDH MDN ∠=∠,如许就组成了两三角形全等的前提.三角形MDN 和DNH 就全等了.那么BM AC AN NH NM -+==,三角形AMN 的周长+++=++=BM AB AN MN AM AN QAB AN BM AC AN 22+=-+.因为x AN =,L AB 31=,是以三角形AMN 的周长L x Q 322+=. 解:(1)如图1,BM .NC .MN 之间的数目关系:MN NC BM =+;此时32=LQ .(2)猜测:结论仍然成立.证实:如图2,延伸AC 至E ,使BM CE =,衔接DE ∵CD BD =,且︒=∠120BDC ∴︒=∠=∠30DCB DBC 又ABC ∆是等边三角形 ∴︒=∠=∠90NCD MBD 在MBD ∆与ECD ∆中 ∴ECD MBD ∆≅∆(SAS )E 图 2NMAD CB NA∴DE DM =,CDE BDM ∠=∠ ∴︒=∠-∠=∠60MDN BDC EDN 在MDN ∆与EDN ∆中 ∴EDN MDN ∆≅∆(SAS ) ∴BM NC NE MN +== 故AMN∆的周长=++=MN AN AM Q ()()AB AC AB NC AN BM AM 2=+=+++而等边ABC ∆的周长AB L 3= ∴3232==ABAB LQ(3)如图3,当M .N 分离在AB .CA 的延伸线上时,若x AN =,则L x Q 322+=(用x .L 暗示).点评:本题考核了三角形全等的剖断及性质;标题中线段的转换都是依据全等三角形来实现的,当题中没有显著的全等三角形时,我们要依据前提经由过程作帮助线来构建于已知和所求前提相干的全等三角形.。

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法

典例1:如图,△ABC中, ∠C =90 o,BC=10,BD=6, AD平分∠BAC,则点D到AB的距离等于 4 .
过点D作DE⊥AB
A
构造全等的 直角三角形
E
B
D
C
三.用角平分线的性质构造全等
典例2:如图,梯形中, ∠A= ∠D =90o,
BE、CE均是角平分线, 求证:BC=AB+CD.
B
A
F
过点E作EF⊥BC
E
构造全等的 直角三角形
C
还有其他的方法吗?
D
四、截长与补短
四、截长与补短
典例1、已知在△ ABC中, AD是∠BAC 的角平分线 ,
∠C=2∠B, 求证 :AB=AC+CD
A
E
12
B
D
C
在AB 上取点E使得AE=AC ,连接DE
F
在AC的延长线上取点F使得CF=CD,连接DF
A
D
B
C
1 2 3 *
一题多解
典例3:如图,已知在四边形 ABCD中,BD是∠ABC的 角平分线, AD=CD,求证:∠ BAD+∠BCD=180 °
A
D
1 2
B
34
E
C
在BC上截取BE,使BE=AB ,连结DE。
1 2 3 *
一题多解
典例3:如图,已知在四边形 ABCD中,BD是∠ABC的 角平分线, AD=CD,求证:∠ BAD+∠BCD=180 ° F
四、截长与补短
变题:已知在△ ABC中, AD是∠BAC的角平分线 ,
AB=AC+CD, 求证:∠C=2∠B
A
E
12

三角形全等添加辅助线的5种常用方法

三角形全等添加辅助线的5种常用方法

三角形全等添加辅助线的5种常用方法
三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是高频出现。

全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目,不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。

下面就简单介绍一下构造全等三角形的五种常用方法。

一、等腰三角形三线合一法
当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。

它的原理就是利用三角形全等变换中的对折重叠。

我们来看一个例题:
二、倍长中线法
遇到一个中点的时候,通常会延长经过该中点的线段。

倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。

如图所示,点D为△ABC边BC的中点.延长AD至点E,使得DE=AD,并连接BE,则△ADC≌△EDB(SAS)。

我们来看一个例题:
三、遇角平分线作双垂线法
在题中遇见角平分线,做双垂直,必出全等三角形。

可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。

在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。

看看在具体题目中怎么操作吧!
四、作平行线法
在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。

五、截长补短法
题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系。

构造全等三角形添加辅助线的方法

构造全等三角形添加辅助线的方法

构造全等三角形添加辅助线的方法构造全等三角形是初中数学中的一个重要内容,理解并掌握构造全等三角形的方法对同学们建立良好的几何直观和提高几何证明能力等方面有很大帮助。

添加辅助线是构造全等三角形的重要方法之一。

本文列举了10条关于构造全等三角形添加辅助线的方法,并详细描述了每一种方法的步骤和原理。

一、通过中位线构造全等三角形步骤:1、作出一个三角形ABC和它的一条中位线AD;2、将角BAD和角ACD作为两个角,作一个新的三角形BAD,使它的对边和AC平行;3、证明三角形BAC和三角形BAD全等。

原理:两个平行线截一组平行于它们的直线形成的线段,具有相等的长度。

二、通过角平分线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE;2、将角EAB和角EAC作为两个角,分别连线得到三角形EAB和三角形EAC;3、证明三角形ABC和三角形EAB全等。

原理:在一个三角形中,一边上的角平分线将这条边分成两个相等的线段,同时将对角的两个角平分为两个相等的角。

三、通过三角形内角和不变构造全等三角形步骤:1、作出两个全等三角形ABC和DEF;2、在三角形ABC内部选取一个点M;3、以点M为中心,作一个半径等于EF的圆,在这个圆上分别找到两个点P、Q;4、连接点P、Q和点M,分别得到三角形AMP和BMQ;5、证明三角形AMP和三角形BMQ全等。

原理:三角形中角的和不变,即两个全等三角形中任意两个内角之和相等。

四、通过角平分线和垂线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE,垂直于BC;2、在AE上选取一点G,将角GAB和角GAC作为两个角,分别连线得到三角形GAB和三角形GAC;3、以点B为中心,作一个半径等于CG的圆,在这个圆上分别找到两个点M、N;4、连接MN和点B,分别得到三角形MBC和NBC;5、证明三角形GAB和三角形MBC全等。

原理:在一个三角形中,角平分线和垂线的交点将底边分成相等的线段,在垂线上的任意一点到底边的两个端点距离相等。

(完整版)几种证明全等三角形添加辅助线的方法

(完整版)几种证明全等三角形添加辅助线的方法

教学过程构造全等三角形几种方法在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。

现分类加以说明。

一、延长中线构造全等三角形例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。

证明:延长AD至E,使AD=DE,连接CE。

如图2。

∵AD是△ABC的中线,∴BD=CD。

又∵∠1=∠2,AD=DE,∴△ABD≌△ECD(SAS)。

AB=CE。

∵在△ACE中,CE+AC>AE,∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。

求证:AB+BD=AC。

证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。

如图4。

∵∠1=∠2,AD=AD,AB=AE,∴△ABD≌△AED(SAS)。

∴BD=ED,∠ABC=∠AED=2∠C。

而∠AED=∠C+∠EDC,∴∠C=∠EDC。

所以EC=ED=BD。

∵AC=AE+EC,∴AB+BD=AC。

三、作平行线构造全等三角形例3. 如图5,△ABC中,AB=AC。

E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。

求证:EF=FD。

证明:过E作EM∥AC交BC于M,如图6。

则∠EMB=∠ACB,∠MEF=∠CDF。

∵AB=AC,∴∠B=∠ACB。

∴∠B=∠EMB。

故EM=BE。

∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF,∴△EFM≌△DFC(AAS)。

EF=FD。

四、作垂线构造全等三角形例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。

M是AC边的中点。

AD ⊥BM交BC于D,交BM于E。

求证:∠AMB=∠DMC。

证明:作CF⊥AC交AD的延长线于F。

如图8。

∵∠BAC=90°,AD⊥BM,∴∠FAC=∠ABM=90°-∠BAE。

∵AB=AC,∠BAM=∠ACF=90°,∴△ABM≌△CAF(ASA)。

全等三角形添加辅助线的方法

全等三角形添加辅助线的方法

全等三角形添加辅助线的方法1.中线法:将两条边的中点相连并延长,然后证明其与其他一条边的边长和角度相等。

具体步骤如下:a.连接三角形两条边的中点,并延长至交于一点O。

b.证明∆ABC与∆ADB全等,其中∠CAB=∠DAB(两对顶点角),且AB =AD各一边。

c.推导出AC=BD(全等三角形的边)2.垂直平分线法:通过构造两条垂直平分线使其中两个角相等,从而推导出三角形全等。

具体步骤如下:a.根据题意连接一个角的两边,并找出该两边的垂直平分线。

b.证明∆ABC的两个∠BAC和∠BCA各自与∠ACD和∠ACB相等(垂直平分线构成等腰三角形),即∠BAC=∠ACD,∠BCA=∠ACB。

c.推导出∆ABC和∆ACD的三个角相等,从而两个三角形全等。

3.夹边法(重心法):通过构造两个辅助三角形,使两个夹角相等,从而推导出三角形全等。

具体步骤如下:a.过三角形一边的顶点作该边对边的平行线,分别与另两边相交得到两个辅助三角形。

b.证明这两个辅助三角形的两个夹角分别与原三角形的两个对应夹角相等(平行线与三角形两边的交角),即∠BAC=∠EAB,∠CBA=∠DBA。

c.推导出∠ABC和∠EDB相等,从而两个三角形全等。

4.等腰三角形法:通过构造两个等腰三角形,使它们的顶点与原三角形的顶点相连,从而推导出三角形全等。

a.根据题意找到一个角的顶点为原三角形的顶点,并构造一个等腰三角形,顶点为该角的顶点。

b.构造另一个等腰三角形,顶点为原三角形的顶点,并使这两个等腰三角形的顶点分别与原三角形的顶点相连。

c.证明这两个等腰三角形的两个底边与原三角形的两个对应边相等,即AC=DE,BC=DF。

d.推导出∆ABC和∆DEF的三个角相等,从而两个三角形全等。

通过以上几种常见的方法,可以添加辅助线来证明三角形的全等关系。

在实际问题中,根据具体的几何信息和条件,选择合适的辅助线构造方法,可以简化证明过程,并加深对全等三角形的理解。

三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧.doc

三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧.doc

三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧以下六种常用的辅助线添加方法和技巧。

相互学习,一起进步。

方法一、双垂直构造三角形全等。

遇见角平分线,角平分线上的点向角两边做垂直,必出三角形全等。

例题1,是最基础,最简单的题型。

有些,需要我们证明角平分线的时候,同样可以向角两边做垂直,那么只要两个垂线段相等,到角两边距离相等的点在角平分线上。

例题2,过点P做MN平行BC,则出现在AB边和CD 边上,双垂直。

根据题意,证明三角形QNP全等于三角形PMB,结论得证。

方法二,倍长中线。

三角形中,遇见中点,很容易想到倍长中线。

例题3,倍长中线后,得出三角形ACE全等于三角形ACM。

例题4,延长AD至E,使DE=AD。

得出三角形ADC全等于三角形EDB。

第2小题,根据三角形的三边关系,等量代换,即可求出AD的取值范围。

方法三、截长补短法。

求证两个线段和等于一个线段的时候,很容易想到截长补短的辅助线添加方法。

截长补短法,包括了截长法和补短法,两种方法。

一般来说,一道题,既可以用截长法,也可以用补短法。

例题6、解析中用了延长AD至M,使MD=FD。

请认真看解答过程。

再请按照图3的辅助线,自行练习推理,举一反三,得出结论。

方法四、平行线发或者平移法。

解题方法1,过点O做OD平行BC。

还有两个方法,请自行推理,如图3和图4.方法五,旋转法。

把一个三角形,经过旋转,旋转后必出三角形全等,得出结论。

例8和例9,其实也就是,最近经典的半角模型。

之前也专门讲过,这个几何模型。

请认真参考,这个两个例题。

从中总结规律和解题方法。

方法六、翻折法,或者叫对称法。

例题10,看起来很难,当你认真看完解题过程,肯定会有所收获。

几种证明全等三角形添加辅助线的方法

几种证明全等三角形添加辅助线的方法

几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。

以下是几种常见的证明全等三角形添加辅助线的方法。

方法一:辅助线连接两个三角形的顶点和中点。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。

例如,可以连接点A和B的中点M,以及连接点D和E的中点N。

通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。

由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。

方法二:辅助线连接两个三角形的顶点和底边中点。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。

例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。

通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。

由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。

方法三:辅助线连接两个三角形的对应角的角平分线。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过连接每个三角形对应角的角平分线来添加辅助线。

通过连接辅助线,我们可以得到一些相似的三角形。

根据相似三角形的性质,我们可以得到一些相等的边和角。

通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。

方法四:辅助线连接两个三角形的中垂线。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形中辅助线的添加一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。

二.知识要点:1、添加辅助线的方法和语言表述(1)作线段:连接……;(2)作平行线:过点……作……∥……;(3)作垂线(作高):过点……作……⊥……,垂足为……;(4)作中线:取……中点……,连接……;(5)延长并截取线段:延长……使……等于……;(6)截取等长线段:在……上截取……,使……等于……;(7)作角平分线:作……平分……;作角……等于已知角……;(8)作一个角等于已知角:作角……等于……。

2、全等三角形中的基本图形的构造与运用常用的辅助线的添加方法:(1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。

(2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。

①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。

(3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。

(4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。

(5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。

(6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。

三、基本模型:(1)△ABC中AD是BC边中线方式1:延长AD到E,使DE=AD,连接BEFD CBA方式2:间接倍长,作CF⊥AD于F,作BE⊥AD的延长线于E,连接BENDCBAM方式3:延长MD到N,使DN=MD,连接CD(2)由△ABE≌△BCD导出由△ABE≌△BCD导出由△ABE≌△BCD导出BC=BE+ED=AB+CD ED=AE-CD EC=AB-CD(3)角分线,分两边,对称全等要记全角分线+垂线,等腰三角形必呈现(三线合一)(4)①旋转:方法:延长其中一个补角的线段(延长CD到E,使ED=BM ,连AE或延长CB到F,使FB=DN ,连AF )结论:①MN=BM+DN②ABCCMN2=∆③AM、AN分别平分∠BMN和∠DNM②翻折:思路:分别将△ABM和△ADN以AM和AN 为对称轴翻折,但一定要证明M、P、N三点共线.(∠B+∠D=0180且AB=AD)(5)手拉手模型①△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC;(2)∠B0E=∠BAE=60°(“八字型”模型证明);(3)OA平分∠EOF拓展:条件:△ABC和△CDE均为等边三角形结论:(1)、AD=BE(2)、∠ACB=∠AOB(3)、△PCQ为等边三角形(4)、PQ∥AE(5)、AP=BQ(6)、CO平分∠AOE(7)、OA=OB+OC (8)、OE=OC+OD((7),(8)需构造等边三角形证明)②△ABD和△ACE均为等腰直角三角形结论:(1)、BE=CD (2)BE⊥CD③ABEF和ACHD均为正方形结论:(1)、BD⊥CF(2)、BD=CF变形一:ABEF和ACHD均为正方形,AS⊥BC交FD于T,求证:①T为FD的中点. ②.ADF ABCSS∆∆=方法一:方法二:方法三:变形二:ABEF 和ACHD 均为正方形,M 为FD 的中点,求证:AN ⊥BC④当以AB 、AC 为边构造正多边形时,总有:∠1=∠2=n360180.PFEDIHG BA21P G FEDKJIHABEDFCBAD CBA四、典型例题:考点一:倍长中线(或类中线)法:核心母题已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.练习:1、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.2、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBA3、如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC,求证:CD=2CE。

4、已知:如图,在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE.求证:AF=BC+FC.5、如图,D 是AB 的中点,∠ACB=90°,求证:2CD=AB.6、已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 。

7、已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 。

8、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠。

9、以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结FC ADFE第 1 题图ABFDEC论是否发生改变?并说明理由.10、已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ; (2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.变式1:已知:在Rt △ABC 中,AB=BC ,在Rt △ADE 中,AD=DE ,连结EC ,取EC 的中点M ,连结DM 和BM . (1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,探索BM 、DM 的关系并给予证明; (2)如果将图①中的△ADE 绕点A 逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.DCB AEMM EABC D图②MDBACE图① M BAC E变式:2:已知:△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°,点M 是CE 的中点,连接BM . (1)如图①,点D 在AB 上,连接DM ,并延长DM 交BC 于点N ,可探究得出BD 与BM 的数量关系为 ; (2)如图②,点D 不在AB 上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.变式3: 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

(1)如图24-1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及ECGC的值; (2)将图24-1中的BEF ∆绕点B 顺时针旋转至图24-2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图24-1中的BEF ∆绕点B 顺时针旋转α(090α︒<<︒),若1BE =,AB =E ,F ,D 三点共线时,求DF 的长及∠ABF 的度数。

图24-1图24-2A B CD备用图图aFECBA图bFECBA考点二:截长补短法:核心母题 如图,AD ∥BC ,EA ,EB 分别平分∠DAB ,∠CBA ,CD 过点E ,求证:AB=AD+BC .练习:1、① 如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;②、已知:如图,ABC ∆是等边三角形,120BDC ο∠=, 求证:AD BD CD =+.③、已知四边形ABCD 中,AB BC =,60ABC ο∠=°,P 为四边形ABCD 的对角线BD 上一点,且120APD ο∠=,求证:PA PD PC BD ++=ACDPBDCA2、在△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q ,求证:AB+BP=BQ+AQ 。

3、如图,在ABC ∆中,︒=∠60ABC ,AD ,CE 分别为ACB BAC ∠∠,的平分线,求证:AC=AE+CD4、如图,在△ABC 中,AB=AC ,D 是△ABC 外一点,且∠ABD=60°,∠ACD=60° 求证:BD+DC=AB5、已知:如图在△ABC 中,AB=AC ,D 为△ABC 外一点,∠ABD=60°,∠ADB=90°-21∠BDC ,求证:AB=BD +DC 。

考点三:一线三等角问题(“K ”字图) 核心母题 已知:如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,D 是BC 边上一点,∠ADE=45°,AD=DE ,求证:BD=EC.AB CDEO练习:1、已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.2、两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.3、如图,在ABC∆中,BCACACB=︒=∠,90,直线MN经过点C,且MNAD⊥于点D,MNBE⊥于点E。

(1)当直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问:DE,AD,BE有怎样的等量关系?请写出等量关系,并加以证明。

相关文档
最新文档