北师大版八年级下册数学试题(3)

合集下载

北师大版八年级下册数学3.2图形旋转(有关旋转图形的旋转方向、旋转中心、旋转角)(含解析)

北师大版八年级下册数学3.2图形旋转(有关旋转图形的旋转方向、旋转中心、旋转角)(含解析)

找出旋转图形的旋转方向、旋转中心、旋转角一、选择题1、如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°2、如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为()A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)3、在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△,则其旋转中心可能是( )A .点AB .点BC .点CD .点D4、如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)5、在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D6、如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°7、如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q8、如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°二、填空题9、如图,在▱ABCD中,∠A=70°,将▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1= __________ .10、分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是__________度.11、如图所示,两个全等的正方形ABCD与CDEF,旋转正方形ABCD能和正方形CDEF重合,则可以作为旋转中心的点有__________个.三、解答题12、在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.13、如图,在△BDE中,∠BDE=90°,BD=4,点D的坐标是(5,0),∠BDO=15°,将△BDE旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为 __________ .14、如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE= __________ ,正方形ABCD的边长= __________ ;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.15、如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 __________ .16、如图是两个等边三角形拼成的四边形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心.(2)若△ACD旋转后能与△ABC重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.17、如图1,△ABC为边长为6的等边三角形,点D为AB边上的点,且AD=2BD;过D作DE∥BC交AC边于E;AH⊥BC于H,AH交于DE于点O.(1)求梯形BDEC的面积;(2)将图1中的△ADE以每秒1个单位长度的速度沿直线AH从上往下平移,直到点A与点H重合为止,设运动时间为t秒,△ADE与四边形BDEC重叠部分的面积为S,请求出S与t的函数关系,并写出相应的t的取值范围;(3)将图1中的△ADE沿直线DE向下翻折得△A′DE,连接CO:将△A′DE绕点O旋转,设直线A′O与直线BC相交于点P.问:是否存在这样的时刻,使得△CPO为等腰三角形?若存在,直接写出△A′DE绕点O旋转的方向(顺时针或逆时针)以及对应的旋转角度α的大小(0°<α<180°);若不存在,请说明理由.找出旋转图形的旋转方向、旋转中心、旋转角的答案和解析一、选择题1、答案:A试题分析:利用旋转的性质计算.解:∵∠ABC=60°,∴旋转角∠CB=180°-60°=120°.∴这个旋转角度等于120°.故选:A.2、答案:B试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1).故选B.3、答案:B试题分析:连接、、,分别作、、的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.解:∵△MNP绕某点旋转一定的角度,得到△,∴连接、、,作的垂直平分线过B、D、C,作的垂直平分线过B、A,作的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.4、答案:B试题分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心。

北师大版数学八年级下册期末考试试卷附答案

北师大版数学八年级下册期末考试试卷附答案

北师大版数学八年级下册期末考试试题一.选择题(每小题3分,共36分)1.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2y C.x+3<y+3D.2.下列各式从左到右的变形中,是因式分解的为()A.a(x+y)=ax+ayB.y2﹣4y+4=(y﹣2)2C.t2﹣16+3t=(t+4)(t﹣4)+3tD.6x3y2=2x2y•3xy3.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠4.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.55.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC6.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm9.关于x的方程=有增根,则k的值是()A.2B.3C.0D.﹣310.如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC 于点F,连接AF,则∠FAB的度数()A.50°B.35°C.30°D.25°11.如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG 绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm.A.3B.2C.4﹣1D.312.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()A.4B.4C.8D.8二.填空题(共6小题)13.分式的值为0,那么x的值为.14.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=.15.正十边形的每个外角都等于度.16.如图,已知一次函数和y=ax﹣2的图象交于点P(﹣1,2),则根据图象可得不等式>ax﹣2的解集是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是.18.把一副三角板如图1放置,其中∠ACB=∠DEC=90°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转使CD边恰好过AB的中点O,得到△D1C1E1,如图2,则线段AD1的长度为.三.解答题19.将下列各式因式分解:(1)m3n﹣9mn(2)a3+a﹣2a220.解不等式组:,并把解集在数轴上表示出来.21.先化简(1﹣)÷,再从0,1,2中选择一个合适的x值代入求值.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1)、B(1,﹣2)、C(3,﹣3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于原点的中心对称的△A2B2C2;(3)请写出A1、A2的坐标.25.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.求第一次每个足球的进价是多少元?26.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.27.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM 与BN的数量关系:.参考答案与试题解析一.选择题(共12小题)1.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2y C.x+3<y+3D.【分析】各项利用不等式的基本性质判断即可得到结果.【解答】解:由x<y,可得:x﹣1<y﹣1,﹣2x>﹣2y,x+3<y+3,,故选:B.2.下列各式从左到右的变形中,是因式分解的为()A.a(x+y)=ax+ayB.y2﹣4y+4=(y﹣2)2C.t2﹣16+3t=(t+4)(t﹣4)+3tD.6x3y2=2x2y•3xy【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:y2﹣4y+4=(y﹣2)2,故B正确,故选:B.3.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案.【解答】解:分式有意义,则2x﹣3≠0,解得,x≠,故选:C.4.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.5【分析】根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.【解答】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=3,∴BC=2×3=6.故选:C.5.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵AB∥CD,∠B=∠D,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵AB∥CD,AD=BC,不能得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.6.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:既是轴对称图形也是中心对称图形,故选:C.7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm【分析】首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【解答】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=8cm.故选:A.9.关于x的方程=有增根,则k的值是()A.2B.3C.0D.﹣3【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.10.如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC 于点F,连接AF,则∠FAB的度数()A.50°B.35°C.30°D.25°【分析】先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF =∠B,进而可得出结论.【解答】解:∵AB=AC,∠BAC=130°,∴∠B=(180°﹣130°)÷2=25°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=25°,故选:D.11.如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG 绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm.A.3B.2C.4﹣1D.3【分析】如图,连接AF,CF,AC.利用勾股定理求出AF,AC即可解决问题.【解答】解:如图,连接AF,CF,AC.∵正方形ABCD与正方形AEFG的边长分别为4cm、1cm,∴∠B=∠G=90°,AB=BC=4cm,AG=GF=1cm,∴AF===,AC===4,∵CF≥AC﹣AF,∴CF≥3,∴CF的最小值为3,故选:D.12.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x 从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()A.4B.4C.8D.8【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,如图1,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8.故选:C.二.填空题(共6小题)13.分式的值为0,那么x的值为3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.14.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=3.【分析】利用勾股定理求解即可.【解答】解:∵∠A=∠B=45°,∴AC=BC=3,∠C=90°,∴AB===3,故答案为3.15.正十边形的每个外角都等于36度.【分析】直接用360°除以10即可求出外角的度数.【解答】解:360°÷10=36°.故答案为:36.16.如图,已知一次函数和y=ax﹣2的图象交于点P(﹣1,2),则根据图象可得不等式>ax﹣2的解集是x>﹣1.【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】解:∵一次函数和y=ax﹣2的图象交于点P(﹣1,2),∴不等式>ax﹣2的解集是x>﹣1,故答案为:x>﹣1.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是2.【分析】连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF===4,∵H是AF的中点,∴CH=AF=×4=2.故答案为:2.18.把一副三角板如图1放置,其中∠ACB=∠DEC=90°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转使CD边恰好过AB的中点O,得到△D1C1E1,如图2,则线段AD1的长度为5.【分析】如图2中,作D1H⊥CA交CA的延长线于H.在Rt△AHD1中,求出AH,HD1利用勾股定理即可解决问题.【解答】解:如图2中,作D1H⊥CA交CA的延长线于H.∵CA=CB,∠ACB=90°,AO=OB,∴OC⊥AB,OC=OA=OB=3,∴AC=3,∵D1H⊥CH,∴∠HCD1=90°,∵∠HCD1=∠ACB=45°,CD1=7,∴CH=HD1=,∴AH=CH﹣AC=,在Rt△AHD1中,AD1===5,故答案为5.三.解答题19.将下列各式因式分解:(1)m3n﹣9mn(2)a3+a﹣2a2【考点】55:提公因式法与公式法的综合运用.【专题】44:因式分解;66:运算能力.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=mn(m2﹣9)=mn(m+3)(m﹣3);(2)原式=a(a2﹣2a+1)=a(a﹣1)2.20.解不等式组:,并把解集在数轴上表示出来.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【专题】524:一元一次不等式(组)及应用.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:.21.先化简(1﹣)÷,再从0,1,2中选择一个合适的x值代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=0时,原式=.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:C;(2)错误的原因为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形.【考点】59:因式分解的应用;KS:勾股定理的逆定理.【专题】1:常规题型.【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【解答】解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形,故答案为:△ABC是等腰三角形或直角三角形或等腰直角三角形.23.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】555:多边形与平行四边形.【分析】只要证明AB∥CD即可解决问题.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形.24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1)、B(1,﹣2)、C(3,﹣3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于原点的中心对称的△A2B2C2;(3)请写出A1、A2的坐标.【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】558:平移、旋转与对称;69:应用意识.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用关于原点对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可;(3)由(1)、(2)得到A1、A2的坐标.【解答】解:(1)如图,△A1B1C1;为所作;(2)如图,△A2B2C2为所作;(3)A1的坐标为(2,3),A2的坐标(﹣2,1).25.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.求第一次每个足球的进价是多少元?【考点】B7:分式方程的应用.【专题】513:分式.【分析】设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据数量关系:第一次购进足球的数量﹣10个=第二次购进足球的数量,可得分式方程,然后求解即可.【解答】解:设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据题意得,﹣=10,解得:x=100,经检验:x=100是原方程的根,答:第一次每个足球的进价是100元.26.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【专题】537:函数的综合应用.【分析】(1)利用同角的余角相等可得出∠OBC=∠ECD,由旋转的性质可得出BC=CD,结合∠BOC=∠CED=90°即可证出△BOC≌△CED(AAS);(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设OC=m,则点D的坐标为(m+3,m),利用一次函数图象上点的坐标特征可求出m值,进而可得出点C,D的坐标,由点B,C的坐标,利用待定系数法可求出直线BC的解析式,结合B′C′∥BC及点D在直线B′C′上可求出直线B′C′的解析式,再利用一次函数图象上点的坐标特征可求出点C′的坐标,结合点C的坐标即可得出△BCD平移的距离;(3)设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3),分CD为边及CD为对角线两种情况考虑,利用平行四边形的对角线互相平分,即可得出关于m,n的二元一次方程组,解之即可得出点P的坐标.【解答】(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).27.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM 与BN的数量关系:CM=BN.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】15:综合题.【分析】(1)AG=EC,AG⊥EC,理由为:由正方形BEFG与正方形ABCD,利用正方形的性质得到两对边相等,一对直角相等,利用SAS得出三角形ABG与三角形CBE全等,利用全等三角形的对应边相等,对应角相等得到CE=AG,∠BCE=∠BAG,再利用同角的余角相等即可得证;(2)∠EMB的度数为45°,理由为:过B作BP⊥EC,BH⊥AM,利用SAS得出三角形ABG与三角形BEC全等,由全等三角形的面积相等得到两三角形面积相等,而AG=EC,可得出BP=BH,利用到角两边距离相等的点在角的平分线上得到BM为角平分线,再由∠BAG=∠BCE,及一对对顶角相等,得到∠AMC为直角,即∠AME为直角,利用角平分线定义即可得证;(3)CM=BN,在AN上截取NQ=NB,可得出三角形BNQ为等腰直角三角形,利用等腰直角三角形的性质得到BQ=BN,接下来证明BQ=CM,即要证明三角形ABQ 与三角形BCM全等,利用同角的余角相等得到一对角相等,再由三角形ANM为等腰直角三角形得到NA=NM,利用等式的性质得到AQ=BM,利用SAS可得出全等,根据全等三角形的对应边相等即可得证.【解答】解:(1)AG=EC,AG⊥EC,理由为:∵正方形BEFG,正方形ABCD,∴GB=BE,∠ABG=90°,AB=BC,∠ABC=90°,在△ABG和△BEC中,,∴△ABG≌△BEC(SAS),∴CE=AG,∠BCE=∠BAG,延长CE交AG于点M,∴∠BEC=∠AEM,∴∠ABC=∠AME=90°,∴AG=EC,AG⊥EC;(2)∠EMB的度数不发生变化,∠EMB的度数为45°理由为:过B作BP⊥EC,BH⊥AM,在△ABG和△CEB中,,∴△ABG≌△CEB(SAS),=S△EBC,AG=EC,∴S△ABG∴EC•BP=AG•BH,∴BP=BH,∴MB为∠EMG的平分线,∵∠AMC=∠ABC=90°,∴∠EMB=∠EMG=×90°=45°;(3)CM=BN,理由为:在NA上截取NQ=NB,连接BQ,∴△BNQ为等腰直角三角形,即BQ=BN,∵∠AMN=45°,∠N=90°,∴△AMN为等腰直角三角形,即AN=MN,∴MN﹣BN=AN﹣NQ,即AQ=BM,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN,在△ABQ和△BCM中,,∴△ABQ≌△BCM(SAS),∴CM=BQ,则CM=BN.故答案为:CM=BN。

北师大版八年级数学下册全册综合测试题

北师大版八年级数学下册全册综合测试题

北师大版八年级数学下册全册综合测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分, 共100分,考试时间100分钟.第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.要使分式1x+3有意义,则x 的取值应满足 ( )A .x ≥3B .x<-3C .x ≠-3D .x ≠32.若x>y ,则下列式子中错误的是( )A .x-3>y-3B .x 3>y3 C .x+3>y+3 D .-3x>-3y3.下面的图形中,既是轴对称图形又是中心对称图形的是( )图14.如果一个正多边形的外角与它相邻的内角之比为1∶4,那么这个多边形的边数为 ( )A .8B .9C .10D .125.因式分解4-4a+a 2正确的是 ( )A .(2-a )2B .(2+a )2C .(2-a )(2+a )D .4(1-a )+a 26.按图2中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是 ( )图2图37.如图4是一次函数y=kx+b 的图象,则关于x 的不等式kx+b ≤0的解集在数轴上可以表示为 ( )图4图58.若关于x 的分式方程3x -4+x+m 4−x=1有增根,则m 的值是( )A .m=0或m=3B .m=3C .m=0D .m=-19.如图6,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A .20B .12C .14D .13图6图710.如图7,将含30°角的直角三角尺ABC 绕点B 顺时针旋转150°后得到△EBD ,连接CD.若AB=4 cm ,则△BCD 的面积为 ( )A .4√3 cm 2B .2√3 cm 2C .3 cm 2D .2 cm 2请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分 答案第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.如图8,在直角三角形OAB 中,∠AOB=30°,将△AOB 绕点O 按逆时针方向旋转100°得到△A 1OB 1,则∠A 1OB 的度数为 .图812.如果a b =25,那么a b -a= .13.已知4y 2+my+9是完全平方式,把4y 2+my+9因式分解得 .14.若关于x 的不等式组{x -a ≥0,5−2x >1只有四个整数解,则实数a 的取值范围是 .15.如图9,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'的位置,则四边形ACE'E 的形状是 .图9图1016.如图10,在平行四边形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,∠EAF=45°,且AE+AF=2√2,则平行四边形ABCD 的周长是 . 三、解答题(共52分) 17.(5分)解分式方程:1−x x -2+2=1x -2.18.(5分)解不等式组{x2>−1,2x +1≥5(x -1),并写出它的所有整数解.19.(5分)先化简:x 2+x x 2-2x+1÷2x -1-1x,再从-2<x<3的范围内选取一个你喜欢的整数作为x 的值代入求值.20.(6分)如图11,四边形ABCD是平行四边形,E,F是对角线BD上的点,BE=DF.求证:(1)∠1=∠2;(2)AF∥CE.图1121.(6分)如图12,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若AB=AC=12,△CBD的周长为20,求线段BC的长.图1222.(8分)2016年太原市地铁2号线一期工程建设如火如荼.预计2020年底投入运营.从此省城将进入立体大交通新时代.甲、乙两个工程队计划参与其中的一项工程建设,甲队单独施工40天完成该项工程的23,这时乙队加入,两队还需同时施工8天才能完成该项工程. (1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过45天,则乙队至少施工多少天才能完成该项工程?23.(9分)如图13,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)若△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;若△AOC绕原点O顺时针旋转得到△DOB,则旋转角可以是度(填一个即可);(2)连接AD,交OC于点E,求∠AEO的度数;(3)连接CD,图中有个平行四边形,分别是(不必证明).图1324.(8分)如图14,四边形ABCD是平行四边形,点P是CD边上的一点,且AP和BP分别平分∠DAB 和∠CBA.(1)求∠APB的度数;(2)如果AD=5 cm,AP=8 cm,求△APB的周长.图14答案1.C2.D3.C4.C5.A6.B7.B8.D9.C10.C11.70°12.2313.(2y±3)214.-3<a≤-215.平行四边形16.817.解:方程两边同乘(x-2),得1-x+2(x-2)=1,即1-x+2x-4=1,解得x=4.检验:把x=4分别代入原分式方程的左边和右边,左边=12,右边=12,左边=右边,所以x=4是原方程的根.18.解:解不等式x2>-1,得x>-2,解不等式2x+1≥5(x-1),得x≤2,所以不等式组的解集为-2<x≤2.它的所有整数解为-1,0,1,2.19.解:原式=x(x+1)(x-1)2÷2x-(x-1)x(x-1)=x(x+1)(x-1)2·x(x-1)x+1=x2x-1.因为-2<x<3,又x≠-1,0,1,所以可取x=2.当x=2时,原式=222−1=4.20.证明:(1)如图,连接AC,交BD于点O,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,∴AE∥FC,∴∠1=∠2.(2)由(1)知四边形AECF是平行四边形,∴AF∥CE.21.解:(1)证明:∵DE垂直平分AB,∴AD=BD,∴△ABD是等腰三角形.(2)∵△CBD的周长为20,∴BC+CD+BD=BC+CD+AD=BC+AC=20.∵AC=12,∴BC=8.22.解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工40天完成该项工程的23,∴甲队单独施工60天完成该项工程,根据题意可得23+8×160+1x=1,解得x=40,检验得x=40是原方程的根且符合题意.答:乙队单独施工,需要40天才能完成该项工程.(2)设乙队参与施工y天才能完成该项工程,根据题意可得160×45+140y≥1,解得y≥10,答:乙队至少施工10天才能完成该项工程.23.解:(1)2120(2)由旋转得OA=OD,∠AOD=120°,∵△AOC是等边三角形,∴∠AOC=60°,∴∠COD=∠AOD-∠AOC=60°,∴∠COD=∠AOC.∵OA=OD,∴OC⊥AD,∴∠AEO=90°.(3)2▱AODC,▱COBD24.解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,∴∠DAB+∠CBA=180°.∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=12(∠DAB+∠CBA)=90°.∴在△APB中,∠APB=180°-(∠PAB+∠PBA)=90°.(2)∵AP平分∠DAB且AB∥CD,∴∠DAP=∠PAB=∠DPA,∴DP=AD=5 cm.同理,PC=CB=5 cm,即AB=DC=DP+PC=10 cm.在Rt△APB中,AB=10 cm,AP=8 cm,∴BP=√AB2-AP2=√102-82=6(cm),∴△APB的周长是6+8+10=24(cm).。

八年级数学下册《分式方程》练习题及答案(北师大版)

八年级数学下册《分式方程》练习题及答案(北师大版)

八年级数学下册《分式方程》练习题及答案(北师大版)一、单选题 1.方程123x x=-的解为( ) A .6x =-B .2x =-C .2x =D .6x = 2.方程2113x =+的解的情况是( ). A .5x = B .4x = C .3x = D .无解3.学校为满足学生体育运动的需求,计划购买一定数量的篮球和足球.若每个足球的价格比篮球的价格贵15元,且用600元购买篮球的数量与用800元购买足球的数量相同.设每个篮球的价格为x 元,则可列方程为( )A .60080015x x =+ B .60080015x x =- C .60080015x x =+ D .60080015x x=- 4.甲、乙两人同时开始栽树,栽了一小时,两人共栽了20棵,两人均保持栽树速度不变,当甲栽27棵时,乙恰好栽33棵。

那么甲每小时栽树多少棵?设甲每小时裁树x 棵,则列方程为( )A .273320x x =+B .273320x x =-C .273320x x =+D .273320x x=- 5.如果关于x 的分式方程4122ax x x =+--有解,则a 的值为( ) A .1a ≠B .2a ≠C .1a ≠-且2a ≠-D .1a ≠且2a ≠ 6.方程21211x x =--的解为( ) A .1 B .-1 C .-2 D .无解7.九年级(3)班小王和小张两人练习跳绳,小王每分钟比小张少跳60个,小王跳120个所用的时间和小张跳180个所用的时间相等.设小王跳绳速度为x 个每分钟,则列方程正确的是( )A .12018060x x =+ B .12018060x x =- C .12018060x x =+ D .12018060x x=- 8.分式方程101m x x -=-有解,则m 的取值范围是( ) A .0m ≠ B .1m ≠ C .0m ≠或1m ≠ D .0m ≠且1m ≠9.已知关于x 的方程11a x =+的解是负数,则a 的取值范围是( ) A .1a < B .1a <且0a ≠ C .1a ≤ D .1a ≤ 或0a ≠10.关于x 的分式方程28222m x x x x +=--无解,则m =( ) A .2 B .4 C .2或4D .2或0二、填空题 11.分式方程33x -=2x的解是________. 12.若分式方程11322x x x-+=--有增根,则增根为x =_________. 13.如果分式22224x x x x x x ⎛⎫-÷ ⎪---⎝⎭的值为1,则x 的值为___________. 14.关于x 的方程2322x m x x-+--=3有增根,则m 的值为___________. 15.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,依题意列方程,得_____________.三、解答题 16.解分式方程:3201(1)x x x x +-=--.17.(1)计算:()20120193π-⎛⎫-+- ⎪⎝⎭ (2)计算:()()()22242x y x y x y --+(3)因式分解:22363ax axy ay -+(4)解方程:2216124x x x ++=---18.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾桶,学校先用2400元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外使用的大号垃圾桶,已知一个大号垃圾桶的价格是小号垃圾桶的4倍.且大号垃圾桶购买的数量比小号垃圾桶少50个,求一个小号垃圾桶的价格.19.解分式方程:211 33x x+= --20.新会柑是国家地理标志保护产品,新会柑普茶入口甘醇香甜,保健作用突出,很受市场欢迎.某茶店用4000元购进了A款新会柑普茶若干盒,用8400元购进了B款新会柑普茶若干盒,所购的B款新会柑普茶比A款新会柑普茶多10盒,且B款新会柑普茶每盒进价比A款贵40%.问:A、B两款新会柑普茶每盒进价分别是多少元?。

北师大版八年级数学下册第一章三角形的证明测试题(原题版 )

北师大版八年级数学下册第一章三角形的证明测试题(原题版 )

【北师大版八年级数学(下)单元测试卷】第一章:三角形的证明一.选择题:(每小题3分共30分)1.等腰三角形两边长分别为4和9,则该三角形第三边的长为( )A .4B .9C .4或9D .大于5且小于132.如图,在ABC 中,90ACB ∠=︒,CD 是高,30A ∠=︒,若3BD a =,则AD 的长度为( )A .6aB .9aC .12aD .15a3.如图,在ABC 中,DE 是AC 的垂直平分线,若ABC 的周长为19cm ,ABD △的周长为13cm ,则AE 的长为( )A .2cmB .3cmC .4cmD .6cm4.如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点D 是AB 的中点,ED AB ⊥于点D,交BC 于点E,连接AE ,若2DE =,则BC 的值是( )A .3B .4C .5D .65.如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D,交AB 于E,若DB=10cm,则CD 的长为( )6.如图,点C 为∠AOB 的角平分线l 上一点,D,E 分别为OA,OB 边上的点,且CD =CE,作CF ⊥OA,垂足为F,若OF =5,则OD+OE 的长为( )A .10B .11C .12D .157.如图,等腰三角形ABC 的底边BC 长为4,面积是18,腰AC 的垂直平分线EF 分别交AC 、AB 边于点E 、F .若点D 为BC 的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A .6B .8C .9D .118.如图,ABC 中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则下列关系式正确的是( )A .3180αβ+=︒B .2180αβ+=︒C .3180αβ-=︒D .290αβ-=︒9.如图,已知等边ABC 和等边ADE ,其中点A 、D 、B 在同一条直线上,连接BE 交AC 于点M ,连接DC 交AE 于点N ,BE 和DC 交于点P ,则下列结论中:(1)MN BD ∥;(2)60BPC ∠=︒;(3)DN DE =;(4)BAM CAN ≅△△.正确的个数有( )A .1个B .2个C .3个D .4个侧作等边△ADE 和等边△ADF,分别和AB,AC 交于点G,H,连接GH .若∠BOC=120°,AB=a,AC=b,AD=c .则下列结论中正确的个数有( )①∠BAC=60°;②△AGH 是等边三角形;③AD 与GH 互相垂直平分;④()12ABC S a b c =+△. A .1个 B .2个 C .3个 D .4个 二.填空题:(每小题3分共15分)11.在ABC 中,AB AC =,64BAC ∠=︒,BAC ∠的角平分线与AB 的垂直平分线交于点O ,将C ∠沿EF 折叠,点C 与点O 恰好重合,则CFO ∠的度数为__________.12.如图,已知CD 是△ABC 的角平分线,DE ⊥BC,垂足为E,若AC =4,BC =10,△ABC 的面积是14,则DE =_____.13.如图,1230∠=∠=︒,A B ∠=∠,AE BE =,点D 在边AC 上,AE 与BD 相交于点O,则∠C 的度数为______.14.如图,在等腰△ABC 中,AB=AC=10,BC=16,AD 是BC 边上的中线且AD=6,F 是AD 上的动点,E 是AC 边上的动点,则CF+EF 的最小值等于______.15.如图,已知等腰△ABC,AB=AC,∠BAC=120°,AD ⊥BC 于点D,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP=OC,下面结论:①∠ACO=15°;②∠APO+∠DCO=30°;③△OPC 是等边三角形;④AC=AO+AP ; 其中正确的有 ______(填上所有正确结论的序号).三.解答题:(共55分)16.(5分)如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.BD ,CE 相交于点F .BD ,AC 相交于点M .(1)求证:BD CE =;(2)求BFC ∠的度数.17.(8分)如图,在ABC 中,60ACB ∠=︒,点D 在AC 上,BC CD =,以AB 为边向左侧作等边三角形ABE ,连ED .(1)求证:ABC EBD ≌△△; (2)过点B 作BF ED ⊥于点F ,2DF =,求BD 的长.18.(8分)点C 、D 都在线段AB 上,且AD =BC,AE =BF,∠A =∠B,CE 与DF 相交于点G .(1)求证∠E =∠F ;(2)若CE =10,DG =4,求 EG 的长.19.(8分)在平面直角坐标系中,等腰直角△ABC 顶点A 、C 分别在y 轴、x 轴上,且∠ACB=90°,AC=BC .(1)如图1,当A(0,−2),C(1,0),点B 在第四象限时,求点B 的坐标.(2)如图2,当点C 在x 轴正半轴上运动,点A(0,a)在y 轴正半轴上运动,点B(m,n)在第四象限时,作BD ⊥y 轴于点D,求a,m,n 之间的关系.20.(8分)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,AD 是BC 的中线,AE BF =.(1)求证:DE DF =(2)DEF 是什么形状的三角形?请说明理由.连接AD,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BDA =115°时,∠EDC =______,∠DEC =_____;(2)当DC 等于多少时,△ABD ≌△DCE,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.22.(9分)如图,在平面直角坐标系中,直线()140y x m m=-+>分别与x 轴,y 轴交于A,B 两点,把线段(1)当54m 时,求点C的坐标;(2)当m值发生变化时,△BOC的面积是否保持不变?若不变,计算其大小;若变化,请说明理由;(3)当S△AOB=2S△BOC时,在x轴上找一点P,使得△PAB是等腰三角形,求满足条件的所有P点的坐标.。

北师大版八年级数学下册第一章测试题及答案

北师大版八年级数学下册第一章测试题及答案

北师大版八年级数学下册第一章测试题及答案第一章达标测试卷一、选择题(每题3分,共30分)1.若等腰三角形的底角为40°,则它的顶角度数为() A.40° B.50° C.60° D.100°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是() A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a与b相交D.a⊥b4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,4, 5 B.1,2, 3 C.6,7,8 D.2,3,4 5.如图,直线a∥b,直线l与a,b分别相交于A,B两点,过点A 作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为() A.58° B.42° C.32° D.28°(第5题) (第6题) (第7题) 6.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.107.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于点E ,则下列说法错误的是( )A .∠CAD =30°B .AD =BDC .BE =2CD D .CD =ED8.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD(第8题) (第9题)9.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为( )A .7B .14C .17D .2010.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,E ,F 为垂足,则下列四个结论:(第10题)①∠DEF =∠DFE ;②AE =AF ;③DA 平分∠EDF ;④EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD =________.(第11题) (第12题) (第14题) 12.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是________.(第15题) (第16题) (第17题) 16.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC=________.17.如图,已知∠ABD=∠BDA=∠ADC=∠DCA=75°.请你写出由已知条件能够推出的三个有关线段关系的正确结论(注意:不添加任何字母和辅助线):①______________;②______________;③______________.18.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE=________.(第18题) (第19题) (第20题) 19.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为________.20.如图,等边△ABC的边长为12,AD是BC边上的中线,M是AD 上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.已知:如图,∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)(第21题)22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE 和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.(第22题)23.如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.(第23题)24.如图,在4×4的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画图.(1)在图①中画出一个面积为4的等腰三角形ABC(点C在格点上),使A,B,C中任意两点都不在同一条网格线上;(2)在图②中画出一个面积为5的直角三角形ABD(点D在格点上),使A,B,D中任意两点都不在同一条网格线上.(第24题)25.如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C 时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.(第25题)26.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.答案一、1.D2.D3.C4.B5.C6.C7.C8.D9.C 10.C点拨:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠AFD =90°,DE=DF.∴∠DEF=∠DFE.∵AD=AD,∴Rt△ADE≌Rt△ADF.∴AE=AF,∠ADE=∠ADF.∴AD垂直平分EF.∴①②③正确,④不正确.二、11.110°12.313.如果两个三角形的面积相等,那么这两个三角形全等;假14.20°15.416.70°17.(答案不唯一)①BD=CD②AB=AD=AC③AD⊥BC18.2点拨:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠DAC +∠DCA=90°.∵∠ACB=90°,∴∠ECB+∠DCA=90°.∴∠DAC=∠ECB.又∵AC=CB,∴△ACD≌△CBE.∴AD=CE=3,CD=BE=1.∴DE=CE-CD=3-1=2.19.3320.47点拨:如图,在AB上截取AE′=4,易知E′与E关于AD对称,则ME′=ME.连接CE′,当点M为CE′与AD的交点时,EM+CM的值最小,即为线段CE的长度.过点C作CF⊥AB,垂足为F.(第20题)∵△ABC 是等边三角形,∴AF =12AB =6,CF =AC 2-AF 2=6 3.∴E ′F =AF -AE ′=2. ∴CE ′=CF 2+E ′F 2=47.三、21.解:如图,△PBD 为所求作的三角形.(第21题)22.(1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE .∵∠A =∠B ,∴∠BEO =∠2.又∵∠1=∠2,∴∠1=∠BEO .∴∠AEC =∠BED .在△AEC 和△BED 中,⎩⎪⎨⎪⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED (ASA ).(2)解:∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE .在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°.∴∠BDE=∠C=69°.23.(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE,CD是两条高,∴∠BDC=∠CEB=90°.又∵BC=CB,∴△BDC≌△CEB(AAS).∴∠DBC=∠ECB.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的平分线上.理由:如图,连接AO.(第23题)∵△BDC≌△CEB,∴DC=EB.∵OB=OC,∴OD=OE.又∵∠BDC=∠CEB=90°,∴点O在∠BAC的平分线上.24.解:(1)如图①所示.(第24题)(2)如图②所示.25.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由:∵AB =AC =BC =6 c m ,∴当点Q 到达点C 时,BP =3 c m.∴点P 为AB 的中点.∴PQ ⊥AB .(2)能.∵∠B =60°,∴当BP =BQ 时,△BPQ 为等边三角形.∴6-t =2t ,解得t =2.∴当t =2时,△BPQ 是等边三角形.26.解:(1)若∠A 为顶角,则∠B =(180°-80°)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B =180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B =80°.故∠B =50°或20°或80°.(2)分两种情况:①当90≤x <180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x <90时,若∠A 为顶角,则∠B =⎝ ⎛⎭⎪⎫180-x 2°; 若∠A 为底角,∠B 为顶角,则∠B =(180-2x )°;若∠A 为底角,∠B 为底角,则∠B =x °.当180-x 2≠180-2x 且180-2x ≠x 且180-x 2≠x ,即x ≠60时,∠B 有三个不同的度数.综上所述,当0<x <90且x ≠60时,∠B 有三个不同的度数.。

2020-2021学年北师大版八年级数学下册 第一章三角形的证明 易错题之角平分线综合专练(三)

八年级数学下册第一章《三角形的证明》易错题之角平分线综合专练(三)1.如图,BD是∠ABC的平分线,AD=CD.求证:∠DAB+∠BCD=180°.2.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ACB的平分线交AD于E,交AB于F,FG⊥BC于G,请猜测AE与FG之间有怎样的关系,并说明理由.3.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.4.在△ABC中,AE、BF是角平分线,交于O点.(1)如图1,AD是高,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.(2)如图2,若OE=OF,AC≠BC,求∠C的度数.(3)如图3,若∠C=90°,BC=8,AC=6,AB=10,求S△AOB.5.如图,在△ABC中,AD平分∠BAC,则=吗?请说明理由.6.如图①,在平面直角坐标系中,点A的坐标为(0,4),OC=4OB.(1)若△ABC的面积为10,分别求点B、C的坐标;(2)如图①,向x轴正方向移动点B,使∠ABC﹣∠ACB=90°,作∠BAC的平分线AD交x轴于点D,求∠ADO的度数;(3)如图②,在(2)的条件下,线段AD上有一动点Q,作∠AQM=∠DQP,它们的边分别交x、y轴于点M、P,作∠FMG=∠DMQ,试判断FM与PQ的位置关系,并说明理由.7.如图,在Rt△ABC中,∠ACB=90°,D是BC上一点,DF∥AB交AC于点F,BD =DF=AF,DE⊥AB于点E.求证:(1)AD平分∠BAC;(2)CF=BE.8.小明采用如图所示的方法作∠AOB的平分线OC:将带刻度的直角尺DEMN按如图所示摆放,使EM边与OB边重合,顶点D落在OA边上并标记出点D的位置,量出OD 的长,再重新如图放置直角尺,在DN边上截取DP=OD,过点P画射线OC,则OC 平分∠AOB.请判断小明的做法是否可行?并说明理由.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.10.如图所示,OC平分∠AOB,OA=OB,P为OC上一点,PE⊥AC,PF⊥BC,垂足分别为E,F.求证:PE=PF.11.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC 相交于M、N两点,其它条件不变,那么又有相等关系AM+ =2AF,请加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC 交BC于D,∠MDN=120°,ND∥AB,求四边形AMDN的周长.12.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.13.如图直线EF∥GH,点A、点B分别在EF、GH上,连接AB,∠FAB的角平分线AD 交GH于D,过点D作DC⊥AB交AB延长线于点C,若∠CAD=36°,求∠BDC的度数.14.在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图①,当点D是BC边上的中点时,S△ABD:S△ACD=;(2)如图②,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代数式表示);(3)如图③,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S△BDE=6,求S△ABC的值.15.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.16.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.参考答案1.证明:作DE⊥BA于E,DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥BA,DF⊥BC,∴DE=DF,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠DAE=∠DCB,∵∠DAB+∠DAE=180°,∴∠DAB+∠BCD=180°.2.解:AE=FG,AE∥FG.理由如下:∵CF是∠ACB的平分线,∠BAC=90°,FG⊥BC,∴FA=FG,∠AFC=∠CED,∵∠AEF=∠CED,∴∠AEF=∠AFC,∴AE=AF,∴AE=FG,∵AD⊥BC,FG⊥BC,∴AE∥FG,∴AE=FG,AE∥FG.3.证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.4.解:(1)∵AD⊥BC,∴∠ADC=90°,∵∠C=70°,∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°,∴∠BAO=25°,∠ABC=60°,∵BF是∠ABC的角平分线,∴∠ABO=30°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°;(2)连接OC,∴AE、BF是角平分线,交于O点,∴OC是∠ACB的角平分线,∴∠OCF=∠OCE,过O作OM⊥BC,ON⊥AC,则OM=ON,在Rt△OEM与Rt△OFN中,,∴Rt△OEM≌Rt△OFN,(HL),∴∠EOM=∠FON,∴∠MON=∠EOF=180°﹣∠ACB,∵AE、BF是角平分线,∴∠AOB=90°+∠ACB,即90°+∠ACB=180°﹣∠ACB,∴∠ACB=60°;(3)连接OC,过O作OD⊥AB于D,OG⊥BC于G,OH⊥AC于H,∵AE、BF是角平分线,交于O点,∴OD=OG=OE,∴S△ABC=×8×6=×10OD+6×OG+8×OH,∴OD=2,∴S△AOB=10×2=10.5.解:=,理由如下:过点D作DE⊥AB于点E,作DF⊥AC于点F,过点A作AH⊥BC于点H,如图所示.∵AD平分∠BAC,∴DE=DF.∵S△ABD=AB•DE=BD•AH,S△ACD=AC•DF=CD•AH,∴===.6.解:(1)∵点A的坐标为(0,4),∴OA=4,∵△ABC的面积为10,∴×AO×BC=10,∴BC=5,∵OC=4OB,∴OB=,OC=,∴点B(,0),点C(,0);(2)∵∠ABC﹣∠ACB=90°,∠ABC=90°+∠BAO,∴∠BAO=∠ACB,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAD+∠DAC=∠BAO+∠BAD,∴∠DAO=∠ADO,∵∠DAO+∠ADO=90°,∴∠DAO=∠ADO=45°;(3)FM⊥PQ,理由如下:延长FM交QP于H,设∠DQP=∠AQM=x,∠FMG=∠DMQ=y,则∠DMH=∠FMG=y,∠AQM=∠QMD+∠QDM,即x=y+45°,∴∠1=180°﹣∠DQP﹣∠ADO=90°﹣y,则∠2=∠1=90°﹣y,∴∠2+∠DMH=y+90°﹣y=90°,∴∠MHQ=90°,即FM⊥PQ.7.证明:(1)∵DF=AF,∴∠FAD=∠FDA,∵DF∥AB,∴∠BAD=∠FDA,∴∠FAD=∠BAD,即AD平分∠BAC;(2)∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DC=DE,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL),∴CF=BE.8.解:小明的做法可行.理由如下:在直角尺DEMN中,DN∥EM,∴∠DPO=∠POM,∵DP=OD,∴∠DPO=∠DOP,∴∠POM=∠DOP,∴OC平分∠AOB.9.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.10.证明:在△AOC和△BOC中,,∴△AOC≌△BOC,∴∠ACO=∠BCO,又PE⊥AC,PF⊥BC,∴PE=PF.11.(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在△ADE和△ADF中,,∴△ADE≌△ADF(AAS),∴DE=DF,AE=AF;(2)解:AM+AN=2AF;证明如下:由(1)得DE=DF,∵∠MDN=∠EDF,∴∠MDE=∠NDF,在△MDE和△NDF中,,∴△MDE≌△NDF(ASA),∴ME=NF,∴AM+AN=(AE+ME)+(AF﹣NF)=AE+AF=2AF;(3)由(2)可知AM+AN=2AC=2×6=12,∵∠BAC=60°,AD平分∠BAC交BC于D,∴∠BAD=∠CAD=30°,∵ND∥AB,∴∠ADN=∠BAD=30°,∴∠CAD=∠ADN,∴AN=DN,在Rt△CDN中,DN=2CN,∵AC=6,∴DN=AN=×6=4,∵∠BAC=60°,∠MDN=120°,∴∠CDE=∠MDN,∴DM=DN=4,∴四边形AMDN的周长=12+4×2=20.12.证明:∵DE⊥AB,DF⊥AC,∴Rt△BDE和Rt△CDF是直角三角形.,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是角平分线.13.解:∵∠FAB的角平分线AD,∠CAD=36°,∴∠DAF=∠CAD=36°,∵DC⊥AB,∴∠ACD=90°,∴∠ADC=90°﹣36°=54°,∵EF∥GH,∴∠ADB=∠DAF=36°,∴∠BDC=∠ADC﹣∠ADB=54°﹣36°=18°.14.解:(1)如图1中,过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(×BD×AE):(×CD×AE)=1:1,故答案为:1:1;(2)如图2中,过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(×AB×DE):(×AC×DF)=m:n;(3)如图3中,∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=6,∴S△ABD=6,∵AC=2,AB=4,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,∴S△ACD=3,∴S△ABC=3+6=9.15.证明:延长AD交BC于F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠DFE=∠B+∠BAD,∠DAE=∠EAC+∠CAD,∵∠B=∠EAC,∴∠DFE=∠DAE,∴AE=FE,∵ED⊥AD,∴ED平分∠AEB.16.证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,∵P在∠BAC的平分线AD上,∴PM=PQ,P在∠ABC的平分线BE上,∴PM=PN,∴PQ=PN,∴点P在∠C的平分线.。

最新北师大版八年级数学下册单元测试题全套及答案

最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。

北师大版八年级数学下册第三章图形的平移与旋转周周测1(3.1)附答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】3.1图形的平移同步练习一、单选题(共8题)1、下列图案中,可以利用平移来设计的图案是()A、B、C、D、2、如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF 的位置,若CF=4,则下列结论中错误的是()A、BE=4B、∠F=30°C、AB∥DED、DF=53、在下列实例中,属于平移过程的个数有()①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A、1个B、2个C、3个D、4个4、如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A、3种B、6种C、8种D、12种5、如图五幅图案中,②、③、④、⑤哪一个图案可以通过平移图案①得到?()A、②B、③C、④D、⑤6、已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A、(3,0)B、(3,﹣3)C、(3,﹣1)D、(﹣1,3)7、如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A、6B、8C、10D、128、如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A、先向左平移5个单位,再向下平移2个单位B、先向右平移5个单位,再向下平移2个单位C、先向左平移5个单位,再向上平移2个单位D、先向右平移5个单位,再向下平移2个单位二、填空题(共5题)9、将图1剪成若干小块,再图2中进行拼接平移后能够得到①、②、③中的________.10、如图是一块长方形ABCD的场地,长AB=m米,宽AD=n米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为________.11、如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y= x上一点,则点B与其对应点B′间的距离为________.12、如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF 的面积为15,且DG=4,则CF=________.13、要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是40元,台阶宽为3米,侧面如图所示.购买这种红地毯至少需要________元.三、解答题(共5题)14、请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.15、如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?16、16、如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC先向右平移4个单位,再向下平移2个单位,得到△A′B′C′.在坐标系中画出△A′B′C′,并写出△A′B′C′各顶点的坐标.17、如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.①请利用平移的知识求出种花草的面积.②若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?18、如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;答案解析一、单选题1、D3、C4、B5、D6、C7、C8、A二、填空题9、①②10、(m-2)(n-1)米2 11、5 12、13、1200三、解答题14、解:如图所示:解说词:两只小船在水中向前滑行15、解:路等宽,得BE=DF,16、△ABE≌△CDF,17、由勾股定理,得BE= =80(m)18、S△ABE=60×80÷2=2400(m2)19、路的面积=矩形的面积﹣两个三角形的面积20、=84×60﹣2400×221、=240(m2).22、答:这条小路的面积是240m2.23、16、解:△A′B′C′如图所示;A'(2,2);B'(3,﹣2);C'(0,﹣6).17、解:①(8-2)×(8-1)=6×7=42 (米2)答:种花草的面积为42米2.②4620÷42=110(元)答:每平方米种植花草的费用是110元.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

北师大版数学八年级下册:1.3 线段的垂直平分线 同步练习(附答案)

3线段的垂直平分线第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为()A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是()A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为()A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是()A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点8.如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D.求证:点D在AB的垂直平分线上.9.在△ABC中,AB=AC,边AB的垂直平分线与边AC所在的直线相交所得的锐角为50°,则∠C的度数为.10.下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB;②若PA=PB,EA=EB,则直线PE是线段AB的垂直平分线;③若EA=EB,则直线EP是线段AB的垂直平分线;④若PA=PB,则点P在线段AB的垂直平分线上.其中正确的有()A.1个B.2个C.3个D.4个11.如图,在△ABC中,DE是AC的垂直平分线,AC=6 cm,且△ABD的周长为13 cm,则△ABC的周长为()A.13 cm B.19 cmC.10 cm D.16 cm第11题图第12题图12.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=.13.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.第13题图第14题图14.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°,则∠AOC=.15.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在()A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是()A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD.过点P作直线AB的垂线6.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE = ;(2)AE EC ;(填“=”“>”或“<”)(3)当AB =3,AC =5时,△ABE 的周长等于 .8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.9.在平面内,到三点A ,B ,C 距离相等的点( ) A .只有一个B .有两个C .有三个或三个以上D .有一个或没有10.如图,在△ABC 中,∠BAC =90°,AB >AC.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N ;②作直线MN ,与边AB 相交于点D ,连接CD. 下列说法不一定正确的是( )A .∠BDN =∠CDNB .∠ADC =2∠B C .∠ACD =∠DCB D .2∠B +∠ACD =90°A 村 ·B 村 ·C 村 ·11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则()A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.参考答案:第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为(D)A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是(B)A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为(B)A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为30°.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.证明:∵DE是AB的垂直平分线,∴EA=EB.∴∠EAB=∠B.∵∠C=90°,∴∠CAB +∠B =90°. 又∵∠AED +∠EAB =90°, ∴∠CAB =∠AED.6.如图,AC =AD ,BC =BD ,则有(A) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分 D .CD 平分∠ACB第6题图 第7题图7.如图,已知△ABC ,AB >AC >BC ,边AB 上存在一点P ,使得PA +PC =AB.下列描述正确的是(B)A .P 是AC 的垂直平分线与AB 的交点 B .P 是BC 的垂直平分线与AB 的交点 C .P 是∠ACB 的平分线与AB 的交点D .P 是以点B 为圆心,AC 长为半径的弧与边AB 的交点8.如图,在△ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC 交AC 于点D.求证:点D 在AB 的垂直平分线上.证明:∵∠C =90°,∠A =30°, ∴∠ABC =90°-30°=60°. ∵BD 平分∠ABC , ∴∠ABD =12∠ABC =30°.∴∠A =∠ABD. ∴DA =DB.∴点D 在AB 的垂直平分线上.9.在△ABC 中,AB =AC ,边AB 的垂直平分线与边AC 所在的直线相交所得的锐角为50°,则∠C 的度数为20°或70°.10.下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有(C)A .1个B .2个C .3个D .4个11.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6 cm ,且△ABD 的周长为13 cm ,则△ABC 的周长为(B)A .13 cmB .19 cmC .10 cmD .16 cm第11题图 第12题图12.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,将AB 边沿AD 折叠,发现B 点的对应点E 正好在AC 的垂直平分线上,则∠C =30°.13.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为76.第13题图 第14题图14.(2020·南京)如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O.若∠1=39°,则∠AOC =78°.15.如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,E 是BD 的垂直平分线与AB 的交点,DE 交AC 于点F.求证:点E 在AF 的垂直平分线上.证明:∵E 是BD 的垂直平分线上的一点, ∴EB =ED. ∴∠B =∠D.∵∠ACB=90°,∴∠A=90°-∠B,∠CFD=90°-∠D.∴∠CFD=∠A.又∵∠AFE=∠CFD,∴∠AFE=∠A.∴EF=EA.∴点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.解:(1)证明:∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD垂直平分BC.(2)选择A,证明:由(1),得AD⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠CAF=∠ADE.∴∠BAF=∠ADE.∴DE=AE.选择B,线段DE,AC,BE之间的等量关系为DE=BE+AC.证明:由(1),得AF⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠EDA=∠CAF.∴∠BAF=∠EDA.∴AE=DE.∵AE=EB+AB,AB=AC,∴DE=BE+AC.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定(D)A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形(C)A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是(D) A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在(A)A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是(D)A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD .过点P 作直线AB 的垂线6.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是(A)A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE =90°;(2)AE =EC ;(填“=”“>”或“<”) (3)当AB =3,AC =5时,△ABE 的周长等于7.8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.解:已知:A ,B ,C 三点不在同一直线上. 求作:作一点P ,使PA =PB =PC. 如图所示,点P 即为所求的点.9.在平面内,到三点A ,B ,C 距离相等的点(D) A .只有一个B .有两个C .有三个或三个以上D .有一个或没有10.如图,在△ABC 中,∠BAC =90°,AB >AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是(C)A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则(B)A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案③.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).解:作法:(1)作线段AD=a;(2)过点D作直线MN⊥AD于点D;(3)以点A为圆心,b为半径画弧,交MN于B,C两点,连接AB,AC,△ABC即为所求,如图所示.14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.解:(1)∵DM,EN分别垂直平分AC和BC,∴AM=CM,CN=BN.∴∠A=∠ACM,∠B=∠BCN.∴∠MCN=180°-(∠CMN+∠CNM)=180°-(2∠A+2∠B)=180°-2(180°-∠ACB)=60°.(2)∵AM=CM,BN=CN,∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB.∵△CMN的周长为15 cm,∴AB=15 cm.(3)∵∠MFN=70°,∴∠MNF+∠NMF=180°-70°=110°.∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠NMF+∠MNF=110°.∴∠A+∠B=90°-∠AMD+90°-∠BNE=70°.又∵∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°-2(∠A+∠B)=40°.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.解:(1)设∠PAQ=x,∠CAP=y,∠BAQ=z,∵MP和NQ分别垂直平分AB和AC,∴AP=PB,AQ=CQ.∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y.∵∠BAC=80°,∴∠B+∠C=100°,即x+y+z=80°,x+z+x+y=100°.∴x=20°.∴∠PAQ=20°.(2)∵△APQ周长为12,∴AQ+PQ+AP=12.∵AQ=CQ,AP=PB,∴CQ+PQ+PB=12,即BC+2PQ=12.∵BC=8,∴PQ=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011~2012学年第二学期八年级数学期末测试卷(3)
. 一、选择题1、1、在x1、21、212x、xy3、yx3、ma1中分式的个数有( )
A、2个 B、3个 C、4个 D、5个
2、如图,用不等式表示数轴上所示的解集,正确的是( )

A.31xx或 B.31xx或 C.31x D.31x
3、已知32,5221xyxy,如果21yy,则x的取值范围是( )
A.2x B.2x C.2x D. 2x
4、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能
买笔记本( )本A.7 B.6 C.5 D.4
5、下列各式中从左到右的变形,是因式分解的是( )(A)(a+3)(a-3)=a2-9

(B)x2+x-5=(x-2)(x+3)+1 (C)a2b+ab2=ab(a+b) (D)x2+1=x(x+x1)
6、下列多项式中不能用平方差公式分解的是( ) (A)-a2+b2 (B)-x2-y2 (C)49x2y2-z2 (D)16m4-25n2p2 7、下列分解因式错误的是( ) A、15a2+5a=5a(3a+1) B、-x2-y2=-(x2-y2)=-(x+y)(x-y) C、k(x+y)+x+y=(k+1)(x+y) D、1-a2-b2+2ab=(1+a-b)(1-a+b) 8、当x为任意实数时,下列分式一定有意义的是( ) (A)212x; (B)112x ; (C)||1x; (D)21x . 9、若2249ykxyx是一个完全平方式,则k的值为( ) A、6 B、±6 C、12 D、±12 10、把分式baa2中的a、b都扩大2倍,则分式的值是( )。 A、扩大4倍 B、扩大2倍 C、缩小2倍 D、不变 11、下列四组线段中,不构成比例线段的一组是( ) A、1cm,2cm,3cm,6cm B、2cm,3cm,4cm,6cm C、1cm,cmcmcm632,, D、1cm,2cm,3cm,4cm A.1 B.-3 C.2 D.-2 13.下列说法中错误的是( )A.2x<-8的解集是x<-4 B.x<5的正整数解有无数个 C.x+7<3的解集是x<-4 D.x>3的正整数解有无限个 14.下列各式中不成立的是( )A.yxyx=-yxyx B.))((yxyxyx=x+y C.22yxyx=yx1 D.yyx2.005.01.0=yyx42 15.两个相似多边形面积之比为1∶2,其周长差为6,则两个多边形的周长分别为( ) A.6和12 B.62-6和62 C.2和8 D.62+6和62+12 16.下面的判断正确的是( )A.若|a|+|b|=|a|-|b|则b=0 B.若a2=b2,则a3=b3C.如果小华不能赶上7点40分的火车,那么她也不能赶上8点钟的火车 D.如果两个三角形面积不等,那么两个三角形的底边也不等 A.-81 B.81 C.-1 D.1 18.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论中不正确的是( )A、∠ADE=∠CDEB、DE⊥ECC、AD·BC=BE·DE D、CD=AD+BC
二、填空题19.若-2x+10的值不小于-5,则x的取值范围是_____________.

20、分解因式:m3-4m= .21、分式方程3xx+1=3xm有增根,

则m= 22、分解因式41x2-1= .
23、化简:329122mm的结果是_________.

24、当x 时,分式11x2x的值为零.25、如果ba=2,则

22
22
bababa


= .26、若222121,1yxyxyx则代数式的值是__________

27.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,
设每天应多做x件,则根据题意,可列方程为________________.
28.如图,在△ABC中,AD是BC边上的中线,BE是AC边上的中线,BE交AD于F,那么AF∶

FD=_______.

1
0123


线







_
_
_
_
_
_
_
_
_
_




_
_
_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_
A
B C
D

E
29、当x__________时,多项式642xx的最小值是__________
三、解答题
30、解不等式2-x≥2(x-3),并写出非负整数解。

31、把下列各式分解因式(1).(x2+y2)2-4x2y2 (2)、2236123xyyxx

32.解不等式组,并把它的解集表示在数轴上:2(2)3134xxxx≤ ① ②
33. 计算20092008200820062008220082323
34先化简再求值(1)1,2),()2(222222babaabaababaabaa其中
(2)11211222xxxxxx,其中21x。
35已知20,9xyyx,求1111yxxy的值;

36解方程(1)2244212xxxx (2)32xx+x235=4
37某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率
是原来的1.5倍,结果提前5天完成任务,求该文具厂原来每天加工多少套这种学生画图工具。
38有一群猴子,一天结伴去偷桃子,在分桃子时,如果每个猴子分了3个,那么还剩55个;如果每一
个猴子分5个,都能分得桃子,但剩下一个猴子分得的桃子不够4个,你能求出有几只猴子,几个桃
子吗?

39、2012年夏季降至,太平洋服装超市计划进A,B两种型号的衬衣共80件,超市用于买衬衣的资金不
少于4288元,但不超过4300元,两种型号的衬衣进价和售价如下表
A B
进价 (元/件) 50 56
售价(元/件) 60 68
该超市对这两种型号的衬衣有哪几种进货方案?
假如你是该超市的经理,要使超市获取最大利润 ,应如何进货?此时最大利润是多少

40.我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售。按计划,20辆汽车都要
装运,每辆汽车只能装运同一种脐橙,且必须装满。根据下表提供的信息,解答以下问题:
脐 橙 品 种
A B C
每辆汽车运载量(吨)
6 5 4
每吨脐橙获得(百元)
12 16 10
(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方
案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值

41.将两块完全相同的等腰直角三角形摆成如图所示的样子,假设图形中的所有点、线都在同一平面
内,回答下列问题:

图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来.
42.一次科技知识竞赛,两组学生成绩如下:
分数
50 60 70 80 90 100
甲组人数
2 5 10 13 14 6
乙组人数
4 4 16 2 12 12
已经算得两个组人均分都是80分,请根据你所学过的统计知识进一步判断这两个组这次竞赛中成
绩谁优谁次,并说明理由.

相关文档
最新文档