MIDAS入门-支座模拟

合集下载

midas分析弯桥的一点经验总结

midas分析弯桥的一点经验总结

midas分析弯桥的一点经验总结分析弯桥的一点经验总结(2007-05-24 21:23:31)今天看了桥头堡的一个帖子感觉不错可以作为设计弯桥的借鉴。

关于MIDAS曲线桥双支座的模拟用MIDAS建立了一个曲线桥的试验模型,模型所采用的材料是有机玻璃。

模型分析的目的是根据各种工况下不同支承布置方式的不同来验证曲线梁桥支承布置方式的不同对桥梁内力分布的影响。

实验基本资料见附图一。

首先我采取的是相关书籍都比较推崇的两端采用抗扭支座,而中间采用点铰支承。

我分别用MIDAS的梁单元以及板单元对该模型进行了模拟。

加载工况是在外腹板处加一个F=400N的力其中,梁单元采取两种方式布置支座1.截面下偏心,然后用弹性连接的刚性连接截面形心和沿桥横向即Y轴正负方向的两个节点,分别建立两个支左。

2.截面上偏心,先用刚性连接形心节点和其Y轴正负两侧的两个节点,然后用弹性连接中的刚性连接这两个节点和它们沿Z轴负向所对应的支左节点。

板单元则直接在支座相应的节点进行约束即可。

得出的分析结果梁单元的两种支座布置方式所得的支反力结果是相同的,均是曲桥内侧产生支座悬空现象出现拉力。

而它们跟板单元的支反力却有很大的差别(最明显的地方是表现在梁两端的抗扭支座的数值上,方向还是大致一样的)我自己分析结果的差别主要是因为对梁单元进行分析的时候,我所加的集中力进行了力的平移动,也就是把位于腹板处的集中力平移到了箱梁质心处,变为了一个集中力加一个力矩,力矩的值为F*E(腹板中心到截面中心的距离)。

但是我们知道曲线桥的实际的扭转中心并不是位于各截面形心的连线处的,所以我认为我的这个作用力的简化有问题。

因此板单元所得出的分析结果肯定是相对准确的,可是按理说这个小小的错误也不能导致支座反力会有如此大的差别啊。

请大家讨论下MIDAS梁单元双支座的模拟,应该还有更多的错误需要发现,请大家指教一二。

我发现了自己模拟支座时的错误。

原来我在用梁单元进行双支座模拟的时候,端部两侧的支座的间距跟用板单元分析的时候不一致,所以这就直接导致了结果的不同。

MIDAS迈达斯入门教程

MIDAS迈达斯入门教程

MIDAS迈达斯入门教程MIDAS(Mechanical Integrated Design and Analysis System,机械集成设计和分析系统)是一种基于计算机辅助工程技术的产品设计和工程分析的软件平台。

它是一种综合性的分析软件,可以用于进行结构、流体和多物理场的分析和仿真。

MIDAS软件的应用范围广泛,涉及到建筑、土木、机械、汽车、电子等领域。

首先,打开MIDAS软件后,您会看到一个简洁明了的用户界面。

主要界面包括了菜单栏、工具栏、工程树、工作区和结果展示等区域。

菜单栏和工具栏提供了各种功能和命令的选项,工程树用于组织和管理工程的各个部分,工作区是您进行建模和分析的主要区域,结果展示区用于显示分析结果。

在开始建模之前,首先需要创建一个新的工程文件。

您可以通过菜单栏中的“文件”选项来创建新的工程文件。

然后,选择合适的建模单元(Unit)和坐标系(Coordinate System)。

建模单元用于定义建模的单位制,坐标系用于定义建模的基准坐标。

建模完成后,接下来就可以进行分析了。

MIDAS提供了各种分析功能和工具,包括静力分析、动力分析、热力学分析、流体分析等。

您可以通过菜单栏中的“分析”选项来选择适合您的分析类型,并设置相应的分析参数和条件。

在进行分析之前,还需要定义材料和边界条件。

通过菜单栏中的“材料”选项,您可以定义材料的力学性能和热力学性质。

通过菜单栏中的“边界条件”选项,您可以定义约束和载荷等边界条件。

完成分析设置后,即可开始进行分析。

MIDAS将根据您的分析参数和条件,自动进行求解和计算。

在分析完成后,您可以通过结果展示区查看分析结果,包括变形、应力、应变、位移等。

您还可以通过菜单栏中的“报告”选项生成分析报告,以便后续的工程设计和决策。

除了上述基本功能外,MIDAS还提供了许多高级功能和扩展模块。

例如,您可以通过MIDAS Civil模块进行土木工程分析和设计,通过MIDAS FEA模块进行有限元分析,通过MIDAS GTS模块进行地质和地下工程分析等。

盆式橡胶支座刚度计算及设置

盆式橡胶支座刚度计算及设置

midas Civil 技术资料----盆式橡胶支座刚度计算及设置目录midas Civil 技术资料1 ----盆式橡胶支座刚度计算及设置 1 1 概述2 1.1盆式橡胶支座简介 2 1.2 分类 2 1.3结构形式2 1.4相关规范条文对盆式支座选用的规定 4 2 利用midas Civil 模拟普通盆式支座 4 3利用midas Civil 模拟抗震型盆式支座5 3.1反应谱法分析 5 3.2非线性时程分析6 4 例题-盆式橡胶支座的模拟7 4.1不同边界模拟方式 7 4.2模型简介及支座初选 10 4.3支座参数修正 11 5小结 13 参考文献13北京迈达斯技术有限公司 桥梁部2013/04/281 概述1.1盆式橡胶支座简介与普通金属支座相比,橡胶支座具有构造简单,加工方便,造价低,支座高度小,安装便捷等优点。

此外,橡胶支座能方便地适应各方向上的变形,故适合应用户各类变宽桥、斜桥、弯桥等工程[1]P174。

目前应用于桥梁支座的橡胶主要是化学合成的氯丁橡胶(适用温度:-25℃至60℃),三元乙炳橡胶及天然橡胶(适用温度:-40℃至+60℃)。

盆式橡胶支座的主要特点:(一)将纯氯丁橡胶块放置在钢制的凹形金属盆内,由于橡胶处于有侧向受压状态,大大提高了支座的承载能力;(二)金属盆顶面的聚四氟乙烯板与不锈钢板相对摩擦系数小,使活动支座满足了梁的水平移动的要求。

1.2 分类根据通用的使用性能,盆式橡胶支座可分为:(1)双向活动(SX):具有竖向承载、竖向转动和多向滑移性能(多向滑动铰支座);(2)单向活动(DX):具有竖向承载、竖向转动和单一方向滑移性能(单向滑动支座);(3)固定(GD):具有竖向承载和竖向转动性能(固定铰支座)1.3结构形式双向活动支座、单向活动支座的滑动向位移量分为五级:±50mm,±100mm,±150mm,±200mm,±250mm。

MIDAS教程用MIDAS学习结构力学

MIDAS教程用MIDAS学习结构力学

MIDAS教程用MIDAS学习结构力学首先,我们需要了解MIDAS的基本功能。

MIDAS主要由四个模块组成:模型构建、负荷定义、边界条件和分析求解。

模型构建模块用于创建结构模型,可以通过绘制模型、导入CAD数据或者使用现有的模板来进行。

负荷定义模块用于指定结构模型上的载荷情况,可以包括重力荷载、点荷载、分布荷载等。

边界条件模块用于设置结构模型的边界条件,如支座或约束。

分析求解模块用于进行结构力学分析,可以使用静力分析、动力分析、非线性分析等方法进行。

在开始使用MIDAS之前,我们需要明确分析的目标和步骤。

通常,结构力学分析的步骤包括:建立结构模型、应用载荷、设置边界条件、选择合适的分析方法,进行分析求解、查看分析结果。

下面我将以一个梁的弯曲分析为例,介绍如何使用MIDAS来学习结构力学。

首先,我们需要在MIDAS中创建一个新的工程文件,并在模型构建模块中绘制一个梁的结构模型。

可以使用MIDAS提供的绘图工具绘制出梁的形状,并定义梁的尺寸和材料属性。

在完成模型构建后,我们可以在负荷定义模块中指定梁上的载荷情况,比如在梁的中间施加一个集中力。

然后,我们可以在边界条件模块中设置梁的边界条件,如支座或固定约束。

完成以上步骤后,我们可以转到分析求解模块,选择合适的分析方法来进行弯曲分析。

在分析求解完成后,我们可以在MIDAS中查看分析结果,比如最大应力、位移等。

除了基本的结构力学分析,MIDAS还提供了许多高级功能和工具,可以帮助工程师进行结构设计和优化。

例如,MIDAS可以通过参数化建模来实现结构的自动化设计,可以通过灵敏度分析来优化结构的性能。

此外,MIDAS还可以进行静态和动态耦合分析,能够模拟结构在地震或风载作用下的响应。

MIDAS还可以进行非线性分析,可以模拟结构在大变形、材料非线性或接触非线性等情况下的行为。

总结而言,MIDAS是一款功能强大的结构力学软件,可以帮助工程师进行结构分析、设计和优化。

[整理]Midas建模技巧总结

[整理]Midas建模技巧总结

[整理]Midas建模技巧总结《Midas建模技巧总结》-如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接?可以在主梁之间隔一定间距用横向虚拟梁连接,并且将横向虚拟梁的两端的弯矩约束释放。

此类问题关键在于横向虚拟梁的刚度取值。

可参考有关书籍,推荐E.C.Hambly写的"Bridge deck behaviour",该书对梁格法有较为详尽的叙述。

3、如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接?可否自己编辑截面形式可以在定义截面对话框中点击"数值"表单,然后输入您自定义的截面的各种数据。

您也可以在工具>截面特性值计算器中画出您的截面,然后生成一个截面名称,程序会计算出相应截面的特性值。

您也可以从CAD 中导入截面(比如单线条的箱型截面,然后在截面特性值计算器中赋予线宽代表板宽)。

4、如果截面形式在软件提供里找不到,自己可否编辑再插入变截面,如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过**C计算再填入A、I、J等。

也就是说全桥的单元截面都要用ACAD画出来再导入**C,如果我划分的单元较小这样截面就很多很麻烦,**C有没有提供象这种变截面的简单计算方法目前MIDAS中的变截面组支持二次方程以下的小数点形式的变截面方程,如1.5次等。

您可以先在SPC 中定义控制位置的两个变截面,然后用变截面组的方式定义方程。

然后再细分变截面组。

我们将尽快按您的要求,在变截面组中让用户可以输入方程的各系数。

谢谢您的支持!>如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过**C计算再填入A、I、J等。

也就是说全桥的单元截面都要用ACAD画出来再导入**C,如果我划分的单元较小这样截面就很多很麻烦,**C有没有提供象这种变截面的简单计算方法5.弯桥支座如何模拟?用FCM建模助手建立弯箱梁桥模型后,生成的是梁单元(类似平面杆系),请问在如何考虑横向的问题?(假如横向设置两个抗扭支座,分别计算每个支座的反力)?采用梁单元能否计算横向的内力和应力(例如扭距、横梁的横向弯距等)?提个建议,因建模后梁单元已赋予了箱型截面,横向尺寸均有,能否程序加入把梁单元自动转换成块单元的功能,那就很方便了。

【MIDAS】midas分析总结2

【MIDAS】midas分析总结2

7、请教实体单元和梁单元的连接问题,还有实体单元是不是不能加预应力?我现在建一个模型,是个异型块的. 一部分使用粮单元,一部分使用实体单元. 但是图纸上这是一个整体,我应该怎么连接他们?主要考虑节点的自由度耦合的问题,实体每节点有三个自由度,而梁有六个,直接相连,相当于绞接,所以,得用局部的虚拟梁来实现。

2、实体上加预应力,还是得模拟出预应力的等效荷载。

这个等效荷载就是预应力的效应扣除预应力损失后的值。

一般可以在实体的模型中设置出很多桁架单元,桁架单元之间用连起来的样子就是预应力的形状,每段预应力加一个初拉力(或一个等效的降温效果),而这个初拉力就是预应力扣除损失后的值。

实体与预应力之间怎么连?以前的一般思路是实体分实体的网格,预应力分预应力的单元,然后将预应力的节点与最近的实体的节点之间耦合起来(加一个刚臂)。

怎么求最近的节点,分别将实体的节点与预应力的节点坐标输出,然后用一个小程序自动找。

还有一个思路就是在分实体网格时,直接将实体的节点与预应力的节点位置分得一样,这样就是自动耦合了。

这时得感谢MIDAS,现在有了FX+,用FX+就能很容量实现这个功能。

8、求教Midasl里面抗扭问题的计算进行PSC设计时,需要输入抗扭钢筋,其中间距为横向箍筋的间距,Awt为单支箍筋的面积,Alt为四周所有纵向钢筋的面积,这里的纵向钢筋不包括顶、底板的钢筋,对于单箱多室的箱梁来说不知道是否应该包括所有腹板的纵向钢筋还是只包括周边的纵向钢筋。

另外Midas里面对于单箱多室截面的抗扭惯性矩是如何计算的,采用什么公式?规范上没有明确说明啊。

得看个人的理解了。

我个人认为,这二者应该分开考虑的。

这里的Ixx的计算是按定义来计算的。

9、midas荷载组合和规范中的冲突我在用midas进行自动组合时,发现正常使用极限状态下,midas没有区分长期和短期组合,但是规范规定的长期和短期组合作用项目是不同的,长期组合不组合如沉降、温度等的间接作用,那么用psc设计检算的东西就不是很可*。

Midas 使用经验

从04年工作后开始学习midas,将所作的计算挑选10个典型,由简入难做一简单总结.附图,因涉及实际设计图纸,模型未附上,仅介绍一下思路和注意事项即自己曾走的弯路。

一、钢筋混凝土弯桥:刚工作后接触的第一个计算:4*20半径70m。

用gqjs直线桥、midas空间梁单元弯桥、桥博梁格法分别建模计算。

midas思路:当时做法excel中计算节点坐标,pl导入cad,dxf导入midas。

注意局部坐标系的建立,支座与主梁采用刚性连接。

仅与其他软件比较弯矩内力和支反力,未考虑支座预偏心。

二、3-30滑模施工:为与桥博作比较,截面顶面中心对齐,建模节点与梁底节点加刚性连接。

顺便做了模态分析,基频计算与规范理论计算差不多。

通过有效宽度系数考虑应力验算的有效宽度。

注意梯度温差中B的取值、支座沉降组沉降的正负、施工阶段分析中的单元组、混凝土龄期、边界组取变形后、psc设计注意施工阶段用的荷载定义为施工阶段荷载。

荷载组合中预应力乘以0.8需要手动修改,,但是psc设计用的混凝土设计中的组合系数不用修改,程序自动考虑。

当时对两个程序预应力损失的计算逐项做了一下对比,两者基本吻合。

第四项损失midas 未考虑逐根张拉。

我是在施工阶段中将预应力分组在子阶段分批张拉。

三、横向预应力:等效荷载我是定义为用户定义荷载;自动生成组合后用包络再与用户定义荷载组合。

注意1.单向张拉钢束特征值的数据;2.长期组合中仅考虑恒活载,其余可不计。

附:1.根部弯矩一般比计算值大0.15-0.3,可参考城市规范,自己酌情考虑。

2.规范中冲击系数为1.3,有疑问,一般为0.3吧,布置是否笔误。

取1.3的话,承载能力要求太高了。

四、下部结构的联合计算:1)m法对节点采用节点弹性支撑系数的计算。

2)支座刚度的计算,在墩顶考虑支座加了约束3)截面特征系数的调整:0.67或0.85。

五.小箱梁上下部联合计算:验算小箱梁预应力,计算盖梁与qlt简支计算结果作比较,结论桥梁通简支计算偏不安全。

Midas建模技巧总结

《Midas建模技巧总结》-如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接?可以在主梁之间隔一定间距用横向虚拟梁连接,并且将横向虚拟梁的两端的弯矩约束释放。

此类问题关键在于横向虚拟梁的刚度取值。

可参考有关书籍,推荐E.C.Hambly写的"Bridge deck behaviour",该书对梁格法有较为详尽的叙述。

3、如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接?可否自己编辑截面形式可以在定义截面对话框中点击"数值"表单,然后输入您自定义的截面的各种数据。

您也可以在工具>截面特性值计算器中画出您的截面,然后生成一个截面名称,程序会计算出相应截面的特性值。

您也可以从CAD 中导入截面(比如单线条的箱型截面,然后在截面特性值计算器中赋予线宽代表板宽)。

4、如果截面形式在软件提供里找不到,自己可否编辑再插入变截面,如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过**C计算再填入A、I、J等。

也就是说全桥的单元截面都要用ACAD画出来再导入**C,如果我划分的单元较小这样截面就很多很麻烦,**C有没有提供象这种变截面的简单计算方法目前MIDAS中的变截面组支持二次方程以下的小数点形式的变截面方程,如1.5次等。

您可以先在SPC中定义控制位置的两个变截面,然后用变截面组的方式定义方程。

然后再细分变截面组。

我们将尽快按您的要求,在变截面组中让用户可以输入方程的各系数。

谢谢您的支持! >如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过**C计算再填入A、I、J等。

也就是说全桥的单元截面都要用ACAD画出来再导入**C,如果我划分的单元较小这样截面就很多很麻烦,**C有没有提供象这种变截面的简单计算方法5.弯桥支座如何模拟?用FCM建模助手建立弯箱梁桥模型后,生成的是梁单元(类似平面杆系),请问在如何考虑横向的问题?(假如横向设置两个抗扭支座,分别计算每个支座的反力)?采用梁单元能否计算横向的内力和应力(例如扭距、横梁的横向弯距等)?提个建议,因建模后梁单元已赋予了箱型截面,横向尺寸均有,能否程序加入把梁单元自动转换成块单元的功能,那就很方便了。

MidasCivil配套资料-抗震专题时程分析3

内容
边界非线性时程分析
减隔震设计必要性 边界非线性分析必要性 边界非线性时程分析 减隔震支座模拟 时程分析工况定义 时程分析结果
midas Civil
边界非线性时程分析
减隔震设计必要性
midas Civil
边界非线性时程分析
减隔震设计必要性
midas Civil
边界非线性时程分析
边界非线性时程分析必要性
对于非规则的减隔震桥梁应进行非线性时程分析,即边界非 线性时程分析!
midas Civil
边界非线性时程分析
边界非线性时程分析
边界非线性时程分析是结构的一部分处于非线性时,适用的非线性时程分析方法。主要用于分析安装减隔震装 置的桥梁非线性特性的功能。减隔震装置防止结构构件在设计荷载下产生塑性变形,使结构处于弹性状态,非 线性主要发生在减隔震装置上。
设计参数
慢(快)时摩擦系数 (us)
程序处理方式 用户输入
时程分析时自动计算
摩擦系数变化参数r 用户输入
滞回变 量
(Z)
滑动前初始刚度k 摩擦摆轴力P 摩擦系数μ
用户输入 时程分析自动计算 根据公式3自动计算 时程分析自动计算
恢复力 (f)
滞回循环参数αβ
滑动面半径R 剪切位移d及摩擦摆轴力 P μ、 Z
注意: 1.高阻尼相对铅芯橡胶支座,仅输入参数发生变化。对于程序采用同样方法处理。 2.高阻尼中给出了竖向压缩刚度,便于我们输入竖向刚度。
midas Civil
边界非线性时程分析
减隔震支座模拟-摩擦摆式减隔震橡胶支座
midas Civil
边界非线性时程分析
减隔震支座模拟-摩擦摆式减隔震橡胶支座
摩擦系 数 (μ)

基于MIDAS深基坑地下连续墙支护数值模拟分析

基于MIDAS深基坑地下连续墙支护数值模拟分析引言:深基坑的施工是大规模土地开发的一项重要工程,它需要合理的设计和施工方案来确保工程安全和经济效益。

地下连续墙支护是一种常用的基坑支护结构,通过模拟分析可以预测基坑施工过程中的变形和应力情况,为工程提供科学依据。

本文将介绍如何使用MIDAS软件进行深基坑地下连续墙支护的数值模拟分析。

一、模拟对象和模型建立深基坑地下连续墙支护的模拟对象为深基坑结构和支护结构,模拟分析需要建立相应的有限元模型。

首先,根据实际工程情况,使用MIDAS软件的预处理模块,按照地下连续墙支护的布置方式,绘制出地下连续墙的几何形状和尺寸。

其次,根据地下连续墙支护的材料和截面特性,设置相应的材料参数和单元属性。

然后,根据实际载荷情况,设置边界条件和施工过程,并进行有限元网格的划分。

最后,完成模型建立和网格生成,并进行验证和调整。

二、材料参数和土层特性在模拟分析中,需要确定土体和支护结构的材料参数和土层特性。

首先,根据实际的地下连续墙和土体情况,确定土体的材料参数,包括弹性模量、泊松比、抗剪强度等。

其次,根据土体的工程地质特征,确定土体的非线性应力-应变关系,例如膨胀性土体和软黏土的本构模型。

然后,根据支护结构的材料和截面特性,确定地下连续墙的材料参数,包括弹性模量、泊松比、抗弯强度等。

最后,建立土体和支护结构的材料参数数据库,并在模型中进行调用。

三、边界条件和施工过程在模拟分析中,需要设置合理的边界条件和施工过程,以模拟实际基坑施工中的加载和变形过程。

首先,根据实际施工情况,确定边界条件,包括地表约束和基坑支护结构的支撑方式。

其次,根据实际施工方法,确定施工过程中的各个阶段,包括基坑开挖、支护结构施工和开挖后的回填过程。

然后,设置相应的施工步骤和施工进程,包括时间控制和加载方式。

最后,通过MIDAS软件进行动静结合的分析,模拟地下连续墙在不同施工阶段的变形和应力情况。

四、结果分析和工程优化通过MIDAS软件进行模拟分析后,可以得到地下连续墙支护在不同施工阶段的变形和应力分布情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 7
MIDAS中支座的模拟
弹性连接刚性与刚性连接的区别
1、概念解释:
1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接
由两个节点构成,两

节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大
刚度的1000倍,

此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接
的刚度过大,导致计

算奇异。
2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个
刚性连接是由一个

主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从
节点的相对位移由

刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间
无相对位移,如果

约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动
位移而导致主从节

点有相对的平动位移。
2、弹性连接定义多支座反力:
注:
如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分
配下部的支反
2 / 7

力越均匀,如左边显示,三个支座反力均相等;
而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反
力最大,这样的结

果是错误,建议选用刚性连接的方法来定义单梁多支座。
3、刚性连接定义多支座反力:
注:
定义多支座反力,尽量选用刚性连接来做。还有一个问题,用弹性连接的
刚性容易出错,

因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型
中有较大截面时,如

承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;
4、建议:
1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有
大刚度单元时,建

议采用刚性连接来处理,防止计算奇异。
2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;
刚性连接就是两

个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方
式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能
激活,不能钝化。4)在在利用midas做分析的时候,如果模拟满堂支架,建议
刚度在10的6次方KN/m,如果

定义支座轴向刚度,大概在106~107次KN/m左右。
3 / 7

对于空间结构而言,墩柱与梁体连接条件,支座刚度的模拟至关重要。在
我们做的“多支座节点模拟”技术资料里,重点说明了多支座模拟的过程。

首先“在支座下端建立节点,并将所有的支座节点按固结约束”,这是一种
模拟实际情况的建模方法。意思是:

在墩顶处结构是全约束的,在各个方向都不可能有位移和转角。
然后“复制支座节点到梁底标高位置生成支座顶部节点,并将支座节点与复
制生成的顶部节点用“弹性连接”中的“一般类型”进行连接,并按实际支座刚度定
义一般弹性连接的刚度”,这句话的意思是相当于建立一个支座单元,它的三个
方向的刚度值则是由实际工程中支座的类型和尺寸来提供。

然后再建立支座顶部节点与主梁节点之间的联系。此时将利用Civil提供的
“刚性连接”,以主梁节点作为主节点,支座顶部单元作为从节点,将其连接起
来。这样做的意思是:

将主梁节点与支座顶部节点形成一个受力的整体,目的也是为了真实模拟
其受力情况。

在MIDAS中,在使用“弹性连接”中的一般类型时,会要求输入您说到的
SDX,SDY,SDZ这三个值,它们分别是指:

SDx:
单元局部坐标系x轴方向的刚度。SDy:
单元局部坐标系y轴方向的刚度。SDz:
单元局部坐标系z轴方向的刚度。另外,在弯桥中需要定义支座节点的局
部坐标系和BETA角。

这三个值是由由实际桥梁工程使用的橡胶支座类型决定的,也就是说与支
座的刚度系数指标有关。在桥梁工程中,一般使用较多的是板式支座和盆式支
座。其中大桥盆式支座使用相对较多,在输入这种类型支座的刚度值时,一般
要么很大,要么取0;中小桥多用板式支座,在输入刚度值时可以根据支座橡胶
层厚度来计算即可。具体的计算式如下:
4 / 7

板式橡胶支座的刚度计算式:
单元局部坐标系X轴方向刚度:
SDx=EA/L
单元局部坐标系y ,z轴方向刚度:
SDy =SDz=GA / L单元局部坐标系x轴方向转动刚度:
SRx=GIp/L
单元局部坐标系y.轴方向转动刚度:
SRy=EIy/L
单元局部坐标系y.轴方向转动刚度:
SRz=EIz/L
式中:
E、G为板式橡胶支座抗压、抗剪弹性模量;A为支座承压面积;Iy , Iz为支
座承压面对局部坐标轴y、z的抗弯惯性矩;Ip为支座抗扭惯性矩;L为支座净
高。

固定盆式支座以较大的刚度约束板体的位移而放松对转动的约束,因此模
拟在墩顶设置一个横、纵、竖二维抗压、抗剪的大值,各方向抗弯的小值.即
SDx=SDy=SDz=无穷大,而SRx=SRy=SRz=0的一个弹性连接

五.支座〔边界条件〕
1.几中常用边界条件
a.桥墩底部固接
在模型>边界条件>一般支承中将六个自由度全部选中。
b.主梁支座
5 / 7

只约束竖向:
在模型>边界条件>一般支承中仅选择Dz。
约束竖向和纵向:
在模型>边界条件>一般支承中选择Dz和Dx。
约束竖向和横向:
在模型>边界条件>一般支承中选择Dz和Dy。
约束竖向、纵向和横向:
在模型>边界条件>一般支承中选择Dz、Dx、Dz。
c.主梁与桥墩的连接
一般来说在主梁的建模点和主梁底〔也需要建立一个节点〕之间用刚性连
接〔使用模型>边界条件>刚性连接功能,主节点可选择为主梁建模点〕。

桥墩的顶点与主梁底的连接可用弹性连接,弹性连接的刚度可按厂家提供
的支座产品说明书上的竖向和水平向刚度。

只约束竖向:
在模型>边界条件>弹性连接中仅输入SDx。
约束竖向和纵向:
在模型>边界条件>弹性连接中仅输入SDx和SDz〔或SDz〕。
约束竖向和横向:
在模型>边界条件>弹性连接中仅输入SDx和SDyz〔或SDy〕。
约束竖向、纵向和横向:
在模型>边界条件>弹性连接中输入SDz、SDx、SDz。注意:
6 / 7

a.可在显示中选择显示弹性连接坐标轴查看要约束方向的坐标轴。
b.当用户希望使用单向〔只〕受压支座时,可在弹性连接中选择“只受压”。
一般来说不推荐用户使用只受压支座,当用户担心产生负反力时,可先用
既能受压又能受拉的弹性连接先分析一次,查看弹性连解是否受拉,如有受拉
的情况,通过结果>移动荷载追踪器查出发生负反力时的移动荷载布置,然后按
静力荷载加载且把弹性连接修改为只受压后重新分析即可。

c.释放梁端部约束
当梁与其他构件铰接时,可使用边界条件>释放梁端部约束功能释放弯曲约
束。

注意:
不能释放一个节点周边所有梁单元在此节点上的弯曲约束,否则产生奇
异。

1.边界定义中应注意的问题
a.在弯桥中一般沿着径向和切向约束,此时应事先给节点定义节点局部坐标
轴,这样在一般支承中定义的桥墩底部固结支座和主梁支座会沿着局部坐标轴
方向约束,输出的反力也是局部坐标轴方向的。

b.弯桥中双支座的模拟,可在实际支座位置〔实际支座位置在径向时,可通
过复制主梁节点,复制方向选择圆心和主梁节点即可。〕建立两个节点,节点
与主梁建模点用刚性连接,主节点选用主梁建模点。将这两个节点向下复制,
距离为支座高度+梁高〔梁截面以顶对齐时〕,复制生成的点与对应的点用弹性
连接,刚度参考厂家产品介绍。当弹性连接的下部没有模拟桥墩时,按固接处
理;下部模拟了桥墩时,则连接桥墩相应的点。

c.一定要注意支座节点的位置,特别是用板单元建立斜桥时,支座位置一定
要设置在板下。此时可在板的建模点支座位置节点向下复制半个板厚的距离,
用刚性连接将其连接起来,然后再向下复制相当于支座高度的距离,用弹性连
7 / 7

接将其连接起来,将弹簧下面点固结,这样才能正确地计算出是否产生负反
力。

d.当用户自行输入弹性连接的刚度值不要输的过大,一般来说模拟近似刚性
时可使用“刚性”或输入10e5~10e10之间值。

e.当用户用虚拟梁单元模拟刚臂时,虚拟梁单元的刚度也不应过大,可输入
10e5~10e10之间值,但当虚拟梁单元的材料中弹性模量值也输入的相当大时,
也会发生警告。此虚拟梁单元的弹性模量可用一般材料的值,容重可设为0。

f.虚拟梁单元的刚度过小或过大分析时均会出现警告,将会影响自振周期结
果,当虚拟梁单元的刚度过小时,可能会影响屈曲分析的结果〔在外力很小的
情况下会发生屈曲〕。

g.刚性连接与弹性连接的“刚性”,两者分析结果应接近〔会有精度差异〕。
刚性连接是通过强制将两个点的位移设置为相同来计算的,弹性连接的“刚性”
是将两点间的连接弹簧的刚度设置为很大来计算的。

h.非线性弹性连接特性值中的非线性特性仅适用于动力分析。静力分析时将
使用其在线性弹性支承中输入的值计算。

相关文档
最新文档