北京中考常用定理
北京中考专题复习几何综合

北京中考专题复习几何综合几何综合题型一般以基本图形为载体,如正方形、特殊平行四边形、等边、等腰、直角三角形等。
这些题目考查的是运用图形变换(平移、旋转、轴对称)分析图形中基本量之间的数量关系的探究过程。
初中数学中,涉及到九大几何模型,包括中点类辅助线、角平分线、垂直平分线类辅助线、相似模型、旋转之手拉手模型、旋转之对角互补模型、旋转之半角模型、旋转之构造等边三角形、旋转之费马点模型和最短距离问题。
解题思路是从复杂的图形中抽出简单图形,在简单图形中进行逻辑推导,应用相关几何模型,找到解题思路。
中点类辅助线是一种重要的几何模型,其中倍长中线是常用的方法。
凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。
在△ABC中,AD是BC边中线,可以直接倍长,延长AD到E,使DE=AD,然后连接BE。
另外,也可以通过间接倍长的方法,即作CF⊥AD于F,作BE⊥AD 的延长线于E,然后连接BE。
还可以利用平行线间线段有中点的特点,如AD∥BE,F为DE中点,可构造8字全等△ADF≌△HEF。
在矩形ABCD中,BD=BE,F为DE中点,可以探究AF与CF之间的位置关系。
在平行四边形ABCD中,BC=2AB,M为AD中点,CE⊥AB,可以求证∠EMD=3∠___。
另一个常用的几何模型是构造中位线,其中已知三角形的两边有中点时,可以连接这两个中点构造中位线。
已知一边中点时,可以在另一边上取中点,连接构造中位线。
如果已知一边中点,过中点作平行线可构造相似三角形。
在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H,可以求证∠BGE=∠CHE。
此外,在直角三角形中,有斜边中点时常作斜边中线;有斜边的倍分关系线段时,也常常作斜边中线。
在三角形Rt△ABC中,点D是斜边AB的中点。
连接CD可以得到CD=AD=BD,从而构造出等腰三角形。
中考定理知识点大总结

中考定理知识点大总结一、数学1. 二次函数的定理二次函数的一般式为f(x) = ax^2 + bx + c,其中a≠0。
定理1:二次函数的图像是抛物线。
定理2:二次函数的图像开口方向由a的正负决定。
定理3:二次函数的图像在x轴的交点称为零点,可解方程f(x) = 0求得。
定理4:二次函数的顶点坐标为(-b/2a,f(-b/2a))。
2. 相似三角形的定理定理1:对应角相等,对应边成比例的两个三角形是相似的。
定理2:在两个相似三角形中,相似比等于边长比。
定理3:两个角相等的三角形一定相似,但两个相似的三角形不一定两个角相等。
3. 三角形的定理定理1:三角形内角和为180°。
定理2:等腰三角形的底角相等。
定理3:直角三角形的斜边是直角边的平方和的平方根。
定理4:在一个三角形中,两角之和大于第三个角。
4. 勾股定理定理1:直角三角形中,斜边的平方等于两直角边的平方和。
定理2:若a^2 + b^2 = c^2,则三角形ABC是直角三角形,其中∠C是直角。
5. 点到直线的距离定理定理1:点P(x1, y1)到直线Ax + By + C = 0的距离为d = |Ax1 + By1 + C|/√(A^2 + B^2)。
6. 三角函数定理定理1:sin^2θ + cos^2θ = 1。
定理2:tanθ = sinθ/cosθ。
定理3:cotθ = 1/tanθ。
定理4:sin(90°-θ) = cosθ。
定理5:tan(90°-θ) = cotθ。
二、物理1. 力的定理定理1:牛顿第一定律,又称惯性定律,物体静止或匀速直线运动时,受力为零;定理2:牛顿第二定律,又称动力定律,力的大小与物体加速度成正比,与物体质量成反比;定理3:牛顿第三定律,又称作用与反作用定律,对于任何两个物体,彼此之间存在着相互作用力,且这两个作用力大小相等,方向相反。
2. 能量与功的定理定理1:功的大小等于力的大小乘以力的方向的位移的大小:W = F·s·cosθ;定理2:动能定理,动能与物体的速度成正比,与物体质量成正比:K = 1/2·mv^2。
北京中考数学定义总结(3篇)

北京中考数学定义总结第1篇二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)(2)系数化1:将二次项系数化为1(3)移项:将常数项移到等号右侧(4)配方:等号左右两边同时加上一次项系数一半的平方(5)变形:将等号左边的代数式写成完全平方形式(6)开方:左右同时开平方(7)求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
代数式1、代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2、整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
中考数学考点大串讲(北师大版):勾股定理必刷基础30题(解析版)

专题01勾股定理(基础30题3种题型)一、探索勾股定理1.(2023春·黑龙江佳木斯·八年级校考期中)在Rt ABC △中,90C ,12a ,16b ,则c 的长为()A .26B .18C .20D .21【答案】C【分析】根据勾股定理222 a b c ,即可.【详解】∵在Rt ABC △中,90C ,12a ,16b ∴2222121620c a b 故选:C .【点睛】本题考查勾股定理的知识,解题的关键是掌握勾股定理的运用.2.(2022秋·江苏扬州·八年级仪征市第三中学校考阶段练习)下列各组数中,是勾股数的为()A .1,2,3B .4,5,6C .6,8,10D .7,8,9【答案】C【分析】根据勾股定理的逆定理分别进行分析,从而得到答案.【详解】解:A 、221236 ∵, 这组数不是勾股数;B 、222456+¹Q , 这组数不是勾股数;C 、2226810 ∵, 这组数是勾股数;D 、222789 ∵, 这组数不是勾股数,故选:C .【点睛】此题主要考查了勾股数的定义,解答此题要用到勾股定理的逆定理:已知三角形ABC 的三边满足222 a b c ,则ABC 是直角三角形.3.(2023春·河北廊坊·八年级廊坊市第四中学校考期中)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则正方形E 的面积是()A .47B .37C .34D .13【答案】A 【分析】根据勾股定理:两条直角边的平方和等于斜边的平方,而正方形的面积等于边长的平方,故可得到以斜边为边长的正方形的面积等于两个以直角边为边长的面积之和.【详解】解:由勾股定理得:正方形F 的面积 正方形A 的面积 正方形B 的面积223534 ,同理,正方形G 的面积 正方形C 的面积 正方形D 的面积222313 ,∴正方形E 的面积 正方形F 的面积 正方形G 的面积341347 .故选:A .【点睛】此题考查的是勾股定理,掌握以直角三角形斜边为边长的正方形的面积等于两个以直角边为边长的正方形面积之和是解决此题的关键.4.(2023春·福建福州·八年级统考期中)在ABC 中,90C ,若3AB ,则222AB BC AC .【答案】6【分析】利用勾股定理得222BC AC AB ,再代入计算即可.【详解】解:在ABC 中,90C ∵,222BC AC AB ,2222222(3)6AB BC AC AB ,故答案为:6.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理解题的关键.5.(2023·北京丰台·二模)如图所示,正方形网格中,三个正方形A ,B ,C 的顶点都在格点上,用等式表示三个正方形的面积A B C S S S ,,之间的关系.【答案】A B CS S S 【分析】根据勾股定理以及正方形的面积公式即可得到结论.【详解】解:239A S ,2525B S ,正方形C 的边长为223534 ,∴ 23434C S ,∴A B C S S S ,,之间的关系为A B C S S S ,故答案为:A B C S S S ,【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.6.(2022秋·七年级单元测试)数组3、4、5;5、12、13;7、24、25;9、40、41;……都是勾股数,若n 为直角三角形的一较长直角边,用含n 的代数式表示斜边为.【答案】1n /1n【分析】首先确定各勾股数中的较长直角边、斜边,认真观察,总结规律,不难得出.【详解】解:因为3、4、5中较长直角边是4、斜边是541 ;5、12、13中较长直角边是12、斜边是13121 ;7、24、25中较长直角边是24、斜边是25241 ;9、40、41中较长直角边是40、斜边是41401 ;…∴若n 为直角三角形的一较长直角边,用含n 的代数式表示斜边为1n .【点睛】此题考查勾股数之间的规律,认真观察是关键.7.(2023春·陕西安康·八年级统考期末)已知在ABC 中,906cm 2cm ACB AC BC ,,,求AB 的长.【答案】210cm【分析】利用勾股定理进行求解即可.【详解】解:∵在ABC 中,906cm 2cm ACB AC BC ,,,∴由勾股定理得222262210cm AB AC BC .【点睛】本题主要考查了勾股定理,熟知勾股定理是解题的关键.8.(2023春·山东聊城·八年级统考期中)如图,某人从A 地到B 地共有三条路可选,第一条路是从A 地沿AB 到达B 地,AB 为10米,第二条路是从A 地沿折线AC CB 到达B 地,AC 为8米,BC 为6米,第三条路是从A 地沿折线AD DB 到达B 地共行走26米,若,,C B D 刚好在一条直线上.(1)求证:90C ;(2)求AD 和BD 的长.【答案】(1)见解析(2)AD 的长为17米,BD 的长为9米【分析】(1)通过计算得出222AC BC AB ,再根据勾股定理的逆定理即可证明.(2)先设一条线段长x ,根据已知条件及勾股定理可列出关于x 的方程,然后求解即可.【详解】(1)证明:∵8AC 米,6BC 米,10AB 米,∴222AC BC AB ,∴ABC 是直角三角形,即90C ;(2)解:设AD x 米,则 26BD x 米,∴ 62632CD BC BD x x (米),在Rt ACD 中,由勾股定理得:2228(32)x x ,解得:17x ,则2626179x .答:AD 的长为17米,BD 的长为9米.【点睛】本题考查了勾股定理及其逆定理的应用,设未知数、运用方程解题是本题的关键所在.9.(2022秋·吉林长春·八年级统考期中)如图①、图②均为43 的正方形网格,每个小正方形的顶点称为格点,边长均为1.在图①、图②中按下列要求各画一个三角形.(1)与ABC 全等,以点B 为一个顶点,另外两个顶点也在格点上.(2)与ABC 全等,且不与ABC 重合.【答案】(1)见解析(2)见解析【分析】(1)根据题意画出符合题意的格点三角形即可;(2)根据题意画出对应的全等三角形即可.【详解】(1)解:如图①中,BCE 即为所求,(2)解:如图②所示,BFK 即为所求;【点睛】本题主要考查了画格点三角形,画全等三角形,正确理解题意是解题的关键.10.(2022春·黑龙江哈尔滨·八年级哈尔滨市虹桥初级中学校校考阶段练习)如图所示,在△ABC 中,CD ⊥AB 于D ,AC =4,BC =3,165AD ,求CD 、BD 的长.【答案】CD 的长为125,BD 的长为95【分析】在Rt △ACD 中,利用勾股定理列式求出CD ,在Rt △BCD 中,利用勾股定理列式计算即可求出BD .【详解】解:∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴△ADC 和△BDC 是直角三角形,在Rt △ACD 中,222AC AD CD ,∴22221612455CD AC AD ,在Rt △BCD 中,222BC CD BD ,∴2222129355BD BC CD ,答:CD 的长为125,BD 的长为95.【点睛】本题考查了勾股定理,根据图形判断出所求的边所在的直角三角形是解题的关键.11.(2023·山西忻州·统考模拟预测)如图是3世纪我国汉代的赵爽在注解《周髀算经》时给出的“赵爽弦图”.他通过对图形的切割、拼接,巧妙地利用面积关系证明的重要数学定理是()A .三角形内角和定理B .勾股定理C .勾股定理的逆定理D .斜边、直角边定理【答案】B 【分析】“赵爽弦图”通过对图形的切割、拼接,巧妙地利用面积关系证明了勾股定理.【详解】解:由勾股定理相关的数学背景可知:“赵爽弦图”是对勾股定理的验证故选:B【点睛】本题考查了勾股定理的数学背景.熟知相关数学史即可.12.(2023春·山西吕梁·八年级统考期末)如图,毕达哥拉斯用图1,图2证明了.个重要的数学定理,他的思路是图1中拼成的正方形与图2中拼成的正方形面积相等,通过面积相等可以得到:222114422a b ab c ab ,整理得222 a b c .证明的这个定理是()A .勾股定理B .勾股定理的逆定理C .祖暅原理D .费马定理【答案】A 【分析】根据勾股定理作答即可.【详解】解:由222114422a b ab c ab ,整理得222 a b c .而a 、b 、c 是直角三角形的三边,∴证明的定理是勾股定理,故选:A .【点睛】本题主要考查了勾股定理,熟记勾股定理的内容是解题的关键.13.(2023春·河南驻马店·八年级统考期中)我国是最早了解勾股定理的国家之一.早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于下列哪部著名数学著作中()A .《周髀算经》B .《九章算术》C .《海岛算经》D .《几何原本》【答案】A【分析】加强教材的阅读,熟记相关知识的来源与出处.【详解】解:早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中.故选:A .【点睛】本题考查了勾股定理的历史渊源,仔细阅读教材,熟记知识是解题的关键.14.(2023春·黑龙江绥化·八年级校考期中)如下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为2cm .【答案】49【分析】根据勾股定理计算即可【详解】解:最大的正方形的面积为22749cm ,由勾股定理得,正方形E 、F 的面积之和为249cm ,∴正方形A 、B 、C 、D 的面积之和为249cm ,故答案为49.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222 a b c .15.(2023秋·全国·八年级专题练习)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形密铺构成的大正方形.如图,设勾3a ,弦5c ,则小正方形ABCD 的边长..是.【分析】根据勾股定理计算即可解题.【详解】解:根据勾股定理可得2222534b c a ,∴小正方形ABCD 的边长为431 ,故答案为:1.【点睛】本题考查勾股定理,掌握勾股定理是解题的关键.16.(2023春·湖北宜昌·八年级校考期中)如图,数轴上点A 所表示的数为a ,求 a .【答案】15 /51【分析】根据勾股定理算出斜边长度解题即可,注意是从-1开始.【详解】解:如图,由勾股定理得221115BC CA .∵点C 表示-1,∴点A 表示的数是15a .故答案为:15 .【点睛】本题主要考查了数轴的意义和勾股定理,理解数轴的意义的是解答关键.17.(2023秋·全国·八年级专题练习)如图,将两个全等的直角三角形按照如下的位置摆放,使点A ,E ,D 在同一条直线上,90A D ,AE CD a ,AB ED b ,BE CE c .(1)填空:BEC ______ ,根据三角形面积公式,可得BEC 的面积 ______;根据割补法,由梯形的面积减去阴影部分的面积,可得BEC 的面积 ______.(2)求证:222 a b c .【答案】(1)90,212c ,212c【分析】(1)根据全等三角形的判定和性质以及三角形的面积公式即可得到结论;(2)用两种不同的方法表示梯形ABCD 的面积,计算化简后,即可得出222 a b c .【详解】(1)解:AE CD a ∵,AB ED b ,BE CE c ,BAE ≌ SSS EDC ,ABE DEC ,90ABE AEB ∵,90AEB DEC ,90BEC ,BEC 的面积21122BE CE c,由梯形的面积减去阴影部分的面积,可得BEC 的面积22222111112222222a b a b ab a ab b ab a b ab ab c ,故答案为:90,212c ,212c ;(2)证明:Rt ABE ∵ ≌Rt DEC △,AEB DCE ,BE EC c ,90D ∵,90DCE DEC ,90AEB DEC ,90BEC ,BEC 是等腰直角三角形,Rt ABE Rt CDE Rt BEC ABCD S S S S ∵梯形,2222AB CD AD AE AB ED DC BE EC,即2222a b a b ab ba ca ,2222222a ab bc ab ,222a b c .【点睛】本题考查了梯形,勾股定理的证明,用两种不同的方法表示同一个图形的面积是解决问题的关键.18.(2021秋·黑龙江绥化·八年级校考阶段练习)已知某开发区有一块四边形空地ABCD ,如图所示,现计划在空地上种植草皮,经测量∠A =90°,∠CBD =90°,DB =5m ,CD =13m ,DA =4m ,若每平方米草皮需要200元,问需要多少投入【答案】需要投入资金为7200元【分析】仔细分析题目,需要求得四边形的面积才能求得结果,连接BD,在直角三角形CBD中由勾股定理可求BC的长,在直角三角形ABD中可求得BA的长,由此看,四边形ABCD由Rt△ABD和Rt△DBC 构成,则容易求解.【详解】证明:连接BD∵∠A=90°,∠CBD=90°,∴△CBD,△ABD为直角三角形,在Rt△CBD中,BC2=CD2-BD2∴222213512BC CD BDm在△ABD中,AB2=BD2-AD2∴AB=2222543BD ADm∴四边形ABCD面积=S△BAD十S∆DBC=12∙AD∙AB+12∙DB∙BC=1143+512=6+30=3622m2,36×200=7200(元)所以需要投入资金为7200元.【点睛】此题主要考查了勾股定理的应用,得出△CBD,△ABD为直角三角形,用勾股定理求出BC,AB 的长是解题的关键.19.(2022春·八年级单元测试)洋洋想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多2米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.【答案】214米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+2)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度为x米,则绳子的长度为(x+2)米,根据勾股定理可得:x2+52=(x+2)2,解得,x=21 4.答:旗杆的高度为214米.【点睛】此题考查学生利用勾股定理解决实际问题的能力,关键是利用勾股定理即可求得AB的长.20.(2022秋·全国·八年级专题练习)如图,请在数轴上找到表示17的P点.(保留作图痕迹,不写作法)【答案】见解析【分析】因为17=16+1,则首先作出以1和4为直角边的直角三角形,则其斜边的长即是17,再以原点为圆心,以17为半径画弧,和数轴的正半轴交于一点即可.【详解】解:如图,点P即为所求.【点睛】本题考查运用数轴上的点来表示一个无理数,比较基础.21.(2023春·重庆忠县·八年级统考期末)把5米长的梯子斜靠在墙上,若梯子底端离墙4米,则梯子顶端到离地面()A.2米B.3米C.4米D.4.5米【答案】B【分析】根据勾股定理求解即可.【详解】解:∵梯子的长度为5米,梯子底端离地面4米,将梯子长度看作直角三角形的斜边,梯子底端离地面距离看作一条直角边,梯子顶端到地面的距离为:22543 (米),故选B .【点睛】本题考查勾股定理的实际应用,理解题意将实际问题转化为数字问题是解题的关键.22.(2023·浙江·八年级假期作业)如图,垂直地面的旗杆在离地3m 处断裂,旗杆顶部落地点离旗杆底部4m ,则旗杆折断前的高度为()A .6B .7C .8D .9【答案】C 【分析】根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【详解】解:旗杆折断后,落地点与旗杆底部的距离为4m ,旗杆离地面3m 折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为 22345m ,所以旗杆折断之前高度为3m 5m 8m .故选:C .【点睛】本题考查了勾股定理在解实际问题中的运用,弄清勾股定理存在的条件是重点,解题的关键是理解文字语言的含义.23.(2023秋·八年级课前预习)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7m ,梯子顶端到地面的距离AC 为2.4m .如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A D 为1.5m ,则小巷的宽为().A .2.4mB .2mC .2.5mD .2.7m【答案】D【分析】,ACB A BD △△是直角三角形,根据勾股定理即可求解.【详解】解:根据题意可知,,ACB A BD △△是直角三角形,在Rt ABC △中, 2.4AC ,0.7BC ,∴22222(2.4)(0.7) 5.760.49 6.25AB AC BC , 2.5AB ,在Rt A BD 中, 2.5A B AB , 1.5A D ,则2 2.25A D ,∴22 6.25 2.252BD A B A D,∴小巷的宽为0.72 2.7m CB BD ,故选:D .【点睛】本题主要考查勾股定理的运用,掌握勾股定理的运算方法是解题的关键.24.(2023秋·八年级课前预习)如图,一个圆桶底面直径为5cm ,高12cm ,则桶内所能容下的最长木棒为cm .【答案】13【分析】根据题意画出示意图,再根据勾股定理求解,即可.【详解】解:如图,AC 为圆桶底面直径,BC 为圆桶的高,∵5cm AC ,12cm BC ,∴2222512=13cm AB AC BC ,∴桶内所能容下的最长木棒为:13cm .故答案为:13.【点睛】本题考查勾股定理的运用,解题的关键是将实际问题转化为数学问题,灵活运用勾股定理.25.(2023春·新疆乌鲁木齐·八年级校考期中)已知,一轮船以4海里/时的速度从港口A 出发向东北方向航行,另一轮船以3海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距海里.【答案】10【分析】根据方位角可知两船所走的方向正好构成了直角,然后根据路程=速度×时间,得两条船分别走了8海里和6海里,再根据勾股定理,即可求得两条船之间的距离.【详解】解:∵两船行驶的方向是东北方向和东南方向,∴90BAC ,两小时后,两艘船分别行驶了428 ,326 海里,根据勾股定理得:228610 (海里).故答案为:10.【点睛】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.26.(2023秋·全国·八年级专题练习)如图,台阶A 处的蚂蚁要爬到B 处搬运食物,则它爬行的最短距离为.【答案】13m/13米【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】解:如图所示,台阶平面展开图为长方形,5AC ,9312BC ,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.由勾股定理得:222AB AC BC ,13AB ,故答案为:13m .【点睛】本题主要考查了平面展开图—最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.27.(2023秋·全国·八年级专题练习)已知一架5m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动多远?【答案】1米【分析】根据勾股定理求解即可.【详解】解:在直角三角形ABO 中,根据勾股定理可得,22534m OA ,如果梯子的顶度端下滑1米,则413m OA .在直角三角形A B O 中,根据勾股定理得到:4m OB ,则梯子滑动的距离就是431m OB OB .【点睛】本题考查的知识点是勾股定理的应用,掌握勾股定理是解题的关键.28.(2023春·河北廊坊·八年级统考期末)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根三尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?【答案】9120尺【分析】设折断处离地的高度为x 尺,利用勾股定理建立方程,解方程即可得.【详解】解:设折断处离地的高度为x 尺,由勾股定理得: 222310x x ,解得9120 x ,答:折断处离地的高度为9120尺.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.29.(2023秋·全国·八年级专题练习)如图,点O是位于东西海岸线的一个港口,A,B两艘客轮从港口O 同时出发,A客轮沿北偏东75°航行,航速是每小时18海里,B客轮沿北偏西15°方向航行,航速是每小时24海里,请计算3小时之后两客轮之间的距离.【答案】90海里【分析】根据题意得:∠AOB=75°+15°=90°,OA=18×3=54(海里),OB=24×3=72(海里),再由勾股定理,即可求解.【详解】解:根据题意得:∠AOB=75°+15°=90°,OA=18×3=54(海里),OB=24×3=72(海里),根据勾股定理得:2222547290AB AO BO海里,即3小时之后两客轮之间的距离90海里.【点睛】本题主要考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.30.(2023秋·全国·八年级专题练习)如图是一个棱长为6cm的正方体的有盖纸盒,一只蚂蚁想从盒底的A 点爬到盒顶的B点,其中BC=2cm,那么蚂蚁爬行的最短行程是多少?【答案】10cm【分析】将正方体侧面展开图展开,由勾股定理计算即可.【详解】解:如图所示.∵BC=2cm,棱长为6cm,∴AD=6+2=8(cm),BD=6cm由勾股定理得,AB=2222=10(cm),BD AD86答:蚂蚁爬行的最短行程是10cm.【点睛】此题考查了平面展开一最短路径问题,利用勾股定理是解题的关键.。
北京中考几何综合题方法总结

北京中考几何综合题方法总结
几何综合题是中考数学中的重要内容之一,考查的是学生对几何概念和几何知识的掌握程度以及解题能力。
下面是一些解决几何综合题的方法总结:
1. 理清题意:阅读题目时要仔细理解题意,画出所给图形,并标记出已知条件和待求量。
2. 运用几何性质:根据已知条件运用几何性质进行推理,找到与待求量有关的几何关系。
3. 设辅助线:根据题目需要,可以设法引入一个或多个辅助线,从而将题目转化为更简单的几何问题。
4. 利用相似性质:通过观察图形的形状和条件,判断是否存在相似三角形,从而利用相似性质求解。
5. 利用比例关系:在相似三角形中,可以利用比例关系求解未知量。
6. 利用面积关系:根据题目中给出的面积关系和几何性质,利用面积关系求解未知量。
7. 利用三角关系:根据三角形内角和、外角和等关系,利用三角关系进行求解。
8. 利用平行线性质:根据平行线和交叉线的性质,利用平行线
性质进行推导和求解。
9. 利用余弦定理和正弦定理:如果题目中给出了三角形的三边、三角形的一个角和两边或者两个角和一边的关系,可以利用余弦定理和正弦定理进行求解。
10. 利用勾股定理:如果题目中给出了直角三角形的两个直角
边或者一个直角边和一个锐角边的关系,可以利用勾股定理求解。
总之,在解决几何综合题时,需要综合运用几何性质、相似性质、比例关系、面积关系、三角关系和平行线性质等知识,善于将题目进行转化和简化,注重思维的灵活运用。
此外,还需要进行合理的假设和辅助线的引入,以帮助解题。
最后,注意检查答案,查漏补缺,确保解题过程和结果的准确性。
2020北京中考数学必备学科知识及高频考点

2020北京中考数学必备学科知识及高频考点一、初中数学基本内容1.“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。
2.“图形与几何”的主要内容有:空间和平面基本图形的认识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。
3.“统计与概率”的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。
4.“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。
在学习活动中,学生将综合运用“数与代数”“图形与几何”“统计与概率”等知识和方法解决问题。
“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。
二、《2019北京中考说明》中提出的初中学段目标要求1.知识技能(1)体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。
(2)探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握基本的证明方法和基本的作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;探索并理解平面直角坐标系,能确定位置。
(3)体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算一些简单事件的概率。
2.数学思考(1)通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思想,建立符号意识;在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。
北京中考必备知识点归纳
北京中考必备知识点归纳北京中考是北京市初中毕业生进入高中阶段的重要选拔考试,涵盖了语文、数学、英语、物理、化学、生物、历史、地理、政治等多个学科。
以下是对这些学科的一些必备知识点归纳:语文- 古诗词鉴赏:掌握常见的古诗词及其作者、背景和主题。
- 文言文阅读:熟悉文言文的基本句式和常用词汇,能够翻译和理解文言文。
- 现代文阅读:提高阅读理解能力,学会概括文章主旨、分析作者观点。
- 作文技巧:掌握记叙文、议论文等不同文体的写作技巧。
数学- 代数:掌握代数方程、不等式、函数等基本概念和运算法则。
- 几何:理解平面几何和立体几何的基本定理和性质。
- 统计与概率:熟悉统计图表的绘制和解读,概率的计算方法。
- 解题技巧:培养逻辑推理和问题解决的能力。
英语- 词汇:扩大词汇量,掌握常用词汇的拼写、发音和用法。
- 语法:熟悉各种时态、语态、从句等语法结构。
- 阅读理解:提高阅读速度和理解能力,学会快速获取信息。
- 写作:掌握不同类型文章的写作方法,如记叙文、议论文等。
物理- 力学:理解力的作用效果、运动的描述、牛顿运动定律等。
- 热学:掌握温度、热量、热力学第一定律等概念。
- 电磁学:学习电场、磁场、电磁感应等基础知识。
- 实验技能:培养实验操作能力和数据分析能力。
化学- 物质的组成:了解元素、化合物、分子、原子等概念。
- 化学反应:掌握化学反应的类型、条件和平衡。
- 化学计算:学习物质的量、摩尔质量、浓度等计算方法。
- 化学实验:熟悉实验操作和实验现象的观察。
生物- 细胞生物学:理解细胞结构、功能和生命活动。
- 遗传与进化:学习遗传规律、基因突变和生物进化。
- 生态学:了解生态系统的结构、功能和保护。
- 生物技术:了解基因工程、克隆技术等现代生物技术。
历史- 中国古代史:掌握重要朝代的更替、文化成就和历史事件。
- 中国近现代史:了解近现代中国的重大变革和发展。
- 世界历史:学习世界各主要文明的发展和交流。
地理- 自然地理:了解地球的构造、气候、水文等自然现象。
人教版初三数学《圆中三大切线定理》
1中考内容中考要求ABC圆的有关概念 理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系 能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题 圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题 垂径定理 会在相应的图形中确定垂径定理的条件和结论 能用垂径定理解决有关问题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点画圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系 了解圆与圆的位置关系 能利用圆与圆的位置关系解决简单问题弧长 会计算弧长 能利用弧长解决有关问题 扇形会计算扇形面积能利用扇形面积解决有关问题中考内容与要求2圆中三大切线定理圆锥的侧面积和全面积会求圆锥的侧面积和全面积能解决与圆锥有关的简单实际问题圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。
要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。
年份2011年2012年2013年题号20,25 8,20,25 8,20,25分值13分17分17分考点圆的有关证明,计算(圆周角定理、切线、等腰三角形、相似、解直角三角形);直线与圆的位置关系圆的基本性质,圆的切线证明,圆同相似和三角函数的结合;直线与圆的位置关系圆中的动点函数图像,圆的基本性质(垂径定理、圆周角定理),圆同相似和三角函数的结合;直线与圆的位置关系中考考点分析知识互联网23题目中已知圆的切线,可以“连半径,标直角”,然后在直角三角形中利用勾股、相似或锐角三角函数解决问题。
北京中考数学考纲,北京中考数学考纲详解知识点、难易度及备考经验
北京中考数学考纲,北京中考数学考纲详解知识点、难易度及备考经验1、考试知识点北京中考数学考试的知识点涵盖了初中数学的方方面面,包括数与公式、代数、函数、几何、统计、概率。
具体来说,考生需要掌握整数、分数、小数的基本性质,函数的概念,常用函数的图像,平面图形的特征和计算等。
考生在备考的过程中,要有意识地对每个知识点逐一进行复习,注意练习,尤其是一些细节和错误。
还要重点掌握一些重要的公式和思想,比如勾股定理、三角函数和初中数学的基本定理。
考生还要注意对数学语言的理解和运用,必要时阅读相关参考书或教材,更好地理解题意。
2、难易度分析北京中考数学考试难度逐渐加大,一般分为易、中、难三个等级。
选择题和填空题相对容易,但也有一些细节和难点需要考生注意。
解题和应用题难度相对较大,要求考生对所学知识有全面的把握,解题水平较高。
考生在备考过程中,要有意识地提高自己的解题能力,训练自己的思维方式和解题技巧。
可以通过同步练习、模拟考试等形式进行训练,更好地适应考试难度和解题时间。
考试过程中,考生需要冷静思考,由易到难,先解决简单题,充分利用时间,避免在简单题上浪费太多时间。
在解题和应用题中,要注意分析问题,构造思路,尤其要注意语言理解和计算的准确性。
3、备考经验准备数学考试需要周密的学习计划,合理分配时间。
首先要全面的复习知识点,找出自己的薄弱环节,有针对性的练习和加强。
可以通过做错题集和模拟考试来巩固,加深对知识点的理解。
建议考生在备考过程中,多做真题和模拟题,尽量分析错题原因,总结解题方法和技巧。
同时要注意对是非习题集的整理和反思,及时发现和纠正错误。
考前要保证充足的睡眠,保持身体健康,提高精神和身体状态。
考试时要做好时间安排,注意答题顺序。
我们可以跳过不会的题,集中精力攻克容易的题和高分的题。
2020北京中考数学必备学科知识及高频考点
2020北京中考数学必备学科知识及高频考点一、初中数学基本内容1.“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。
2.“图形与几何”的主要内容有:空间和平面基本图形的认识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。
3.“统计与概率”的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。
4.“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。
在学习活动中,学生将综合运用“数与代数”“图形与几何”“统计与概率”等知识和方法解决问题。
“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。
二、《2019北京中考说明》中提出的初中学段目标要求1.知识技能(1)体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。
(2)探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握基本的证明方法和基本的作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;探索并理解平面直角坐标系,能确定位置。
(3)体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算一些简单事件的概率。
2.数学思考(1)通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思想,建立符号意识;在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用定理
基本定理
1、同角或等角的补角相等
2、同角或等角的余角相等
3、过一点有且只有一条直线和已知直线垂直
4、同位角相等,两直线平行
5、内错角相等,两直线平行
6、同旁内角互补,两直线平行
7、两直线平行,同位角相等
8、两直线平行,内错角相等
9、两直线平行,同旁内角互补
10、三角形内角和定理三角形三个内角的和等于180°
11、推论1 直角三角形的两个锐角互余
12、推论2 三角形的一个外角等于和它不相邻的两个内角的和
13、定理1 在角的平分线上的点到这个角的两边的距离相等
14、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
15、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
16、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相
等(等角对等边)
17、推论1 三个角都相等的三角形是等边三角形
18、推论2 有一个角等于60°的等腰三角形是等边三角形
19、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
20、直角三角形斜边上的中线等于斜边上的一半
21、定理线段垂直平分线上的点和这条线段两个端点的距离相等
22、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
23、平行四边形性质定理1 平行四边形的对角相等
24、平行四边形性质定理2 平行四边形的对边相等
25、平行四边形性质定理3 平行四边形的对角线互相平分
26、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
27、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
28、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
29、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
30、矩形性质定理1 矩形的四个角都是直角
31、矩形性质定理2 矩形的对角线相等
32、矩形判定定理1 有三个角是直角的四边形是矩形
33、矩形判定定理2 对角线相等的平行四边形是矩形
34、菱形性质定理1 菱形的四条边都相等
35、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
36、菱形判定定理1 四边都相等的四边形是菱形
37、菱形判定定理2 对角线互相垂直的平行四边形是菱形
38、正方形性质定理1 正方形的四个角都是直角,四条边都相等
39、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一
组对角
40、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
41、圆是到定点的距离等于定长的点的轨迹
42、同圆或等圆的半径相等
43、定理不在同一直线上的三点确定一个圆。
44、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
45、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
46、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦
心距相等
47、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组
量相等那么它们所对应的其余各组量都相等
48、定理一条弧所对的圆周角等于它所对的圆心角的一半
49、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
50、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
51、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
52、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
53、切线的性质定理圆的切线垂直于经过切点的半径
54、切线长定理从圆外一点引圆的两条切线,它们的切线长相等。
圆心和这一点的连线平分两条切线的夹角。