苏科版八年级下册数学期中试卷(含答案)
(完整版)苏科版八年级数学下册期中试卷及答案doc

(完整版)苏科版八年级数学下册期中试卷及答案doc一、选择题1.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2602.下列调查中,适宜采用普查方式的是( ) A .对全国中学生使用手机情况的调查B .对五一节期间来花果山游览的游客的满意度调查C .环保部门对长江水域水质情况的调查D .对本校某班学生阅读课外书籍情况的调查3.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =4.如图,已知正方形ABCD ,对角线的交点M (2,2).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(﹣2012,2)B .(﹣2012,﹣2)C .(﹣2013,﹣2)D .(﹣2013,2)5.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(4,3),点D 是边OC 上的一点,点E 在直线OB 上,连接DE 、CE ,则DE+CE 的最小值为( )A.5B.7+1C.25D.24 56.下列调查中,适合普查方式的是()A.调查某市初中生的睡眠情况B.调查某班级学生的身高情况C.调查南京秦淮河的水质情况D.调查某品牌钢笔的使用寿命7.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8008.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件9.下列图形不是轴对称图形的是()A.等腰三角形B.平行四边形C.线段D.正方形10.下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.二、填空题11.若菱形的两条对角线分别为2和3,则此菱形的面积是.12.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x的取值范围是__________.13.在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有_____个.14.为了了解某校学生的视力情况,随机抽取了该校50名学生进行调查.整理样本数据如表:根据抽样调查结果,估计该校1200名初中学生视力不低于4.8的人数是_____.15.如图,在 ABCD中,若∠A=2∠B,则∠D=________°.16.在△ABC中,点D,E分别为BC,AC的中点,若DE=2,则AB的长为_____.17.若正方形的对角线长为2,则该正方形的边长为_____.18.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图.19.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.20.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为_____.三、解答题21.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?22.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.23.用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.24.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?25.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了名学生;(2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 ;(4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.26.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.27.阅读下列材料:已知:实数x 、y 满足22320.25x xy x x +=++(0.75)x ≠-,求y 的最大值. 解:将原等式转化成x 的方程,得21(3)(2)04y x y x y -+-+=①. 若3y =,代入①得0.75x =-,0.75x ≠-,3y ∴≠,因此①必为一元二次方程.21(2)4(3)404y y y y ∴∆=---⨯=-+≥,解得4y ≤,即y 的最大值为4. 根据材料给你的启示,解决下面问题:已知实数x 、y 满足223221x x y x x ++=++15x ⎛⎫≠- ⎪⎝⎭,求y 的最小值.28.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验: 第一步:如图1在一张纸上画了一个平角∠AOB ;第二步:如图2在平角∠AOB 内画一条射线,沿着射线将平角∠AOB 裁开;第三步:如图3将∠AO'C'放在∠COB 内部,使两边分别与OB 、OC 相交,且O'A =O'C'; 第四步:连接OO', 测量∠COB 度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB . 你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB 的关系是 ;(2)线段O'A 与O'C'的关系是 . 请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知: 求证: 证明:【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人), ∴1000×28100=280(人), 即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人. 故选A.2.D解析:D 【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】解:A .对全国中学生使用手机情况的调查适合抽样调查; B .对五一节期间来花果山游览的游客的满意度调查适合抽样调查; C .环保部门对长江水域水质情况的调查适合抽样调查; D .对本校某班学生阅读课外书籍情况的调查适合普查; 故选:D . 【点睛】本题考查判别普查的方式,关键在于熟记抽样调查和普查的定义.3.D解析:D 【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】解:A.∵//AB CD , AB CD∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意; C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意. 故选:D 【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.4.A解析:A 【分析】根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2﹣n ,﹣2),当n 为偶数时为(2﹣n ,2),继而求得结果. 【详解】解:∵对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2﹣1,﹣2),即(1,﹣2), 第2次变换后的点M 的对应点的坐标为:(2﹣2,2),即(0,2), 第3次变换后的点M 的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n 次变换后的点M 的对应点的为:当n 为奇数时为(2﹣n ,﹣2),当n 为偶数时为(2﹣n ,2),∴连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为(﹣2012,2). 故选:A . 【点睛】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n 次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.5.D解析:D【解析】【分析】首先根据菱形的对角线性质得到DE+CE的最小值=CF,再利用菱形的面积列出等量关系即可解题.【详解】解:如下图,过点C作CF⊥OA与F,交OB于点E,过点E作ED⊥OC与D,∵四边形OABC是菱形,由菱形对角线互相垂直平分可知EF=ED,∴DE+CE的最小值=CF,∵A的坐标为(4,3),∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积),即24=CF×5,解得:CF= 24 5,即DE+CE的最小值=24 5,故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E的位置并熟悉菱形面积的求法是解题关键.6.B解析:B【分析】根据抽样调查和普查的特点作出判断即可.【详解】A、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;B、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;C、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;D、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;故选:B.【点睛】本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.7.C解析:C【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,⨯=次,故选C.所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近10000.5500【点睛】本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.8.B解析:B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.9.B解析:B【分析】根据轴对称图形的概念判断即可.【详解】等腰三角形是轴对称图形,故A错误;平行四边形不是轴对称图形,故B正确;线段是轴对称图形,故C错误;正方形是轴对称图形,故D错误;故答案为:B.【点睛】本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.10.B解析:B【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B【点睛】此题考查中心对称图形,难度不大二、填空题11.3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=×2×3=3,故答案为3.考点:菱形的性质.解析:3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=12×2×3=3,故答案为3.考点:菱形的性质.12.1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.解析:1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.13.3【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:由题可得,既是轴对称图形,又是中心对称图形的有3个:矩形、菱形、正方形,故答案为:3.【点睛】本题考查解析:3【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:由题可得,既是轴对称图形,又是中心对称图形的有3个:矩形、菱形、正方形,故答案为:3.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.720【分析】先根据表格中的数据可得初中学生视力不低于4.8的人数占比,再乘以1200即可得.【详解】由表可知,初中学生视力不低于4.8的人数占比为则(人)即估计该校1200名初中学生视解析:720【分析】先根据表格中的数据可得初中学生视力不低于4.8的人数占比,再乘以1200即可得.【详解】由表可知,初中学生视力不低于4.8的人数占比为7914100%60% 50++⨯=则120060%720⨯=(人)即估计该校1200名初中学生视力不低于4.8的人数是720故答案为:720.【点睛】本题考查了利用样本所占百分比估计总体的数量,理解题意,掌握样本估计总体的方法是解题关键.15.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.16.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.17.【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.【详解】解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt解析:【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.【详解】解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt△ADC中,∵AD2+CD2=AC2即x2+x2=(2)2解得:x=1,(x=﹣1舍去)所以该正方形的边长为1故答案为:1.【点睛】本题考查正方形的性质,一元二次方程的应用和勾股定理的应用,根据题意列出方程求解是解题的关键.18.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.19.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.20.【分析】已知S△PAB=S矩形ABCD ,则可以求出△ABP的高,此题为“将军饮马”模型,过P点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE 的长就是所求的最短距离.【详解解析:41【分析】已知S△PAB=13S矩形ABCD,则可以求出△ABP的高,此题为“将军饮马”模型,过P点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.【详解】解:设△ABP中AB边上的高是h.∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=22225441+=+=AB AE,即PA+PB的最小值为41.故答案为:41.【点睛】本题主要考查的是勾股定理以及“将军饮马”的模型,“将军饮马”模型主要是用来解决最小值问题,掌握这模型是解题的关键.三、解答题21.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.22.(1)见解析;(2)15;见解析.【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求.(2)证明△ABE 的周长=AB +AD 即可.【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.23.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12317317,44x x +==. 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x2﹣4x﹣5=0,分解因式得:(x+1)(x﹣5)=0,则x+1=0或x﹣5=0,解得:x1=-1,x2=5.(2)y(y﹣7)=14﹣2y,移项得,y(y﹣7)-14+2y=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.(3)2x2﹣3x﹣1=0,∴a=2,b=﹣3,c=﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x1,x2【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.24.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.25.(1)200;(2)图见解析;(3)144;(4)6 500人【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出;(4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可.【详解】(1)本次调查共随机抽取了:50÷25%=200(名);(2)课外阅读时长“2~4小时”的有:200×20%=40(人),课外阅读时长“4~6小时”的有:200-30-40-50=80(人),故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°; (4)10000×(1-20%-15%)=6500(人).【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键.26.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.27.2316【分析】类比阅读材料给出的方法,分类探讨得出函数的最小值即可.【详解】解:将原等式转化成关于x 的方程,得:2(3)(21)(2)0y x y x y -+-+-=①,若3y =,代入①得15x =-, ∵15x ≠-, ∴3y ≠,因此①必为一元二次方程.∵3a y =-,21b y =-,2c y =+,∴224(21)4(3)(2)0b ac y y y ∆=-=----≥, 解得:2316y ≥且3y ≠. ∴y 的最小值为2316. 【点睛】 本题考查了根的判别式的运用,把函数转化为关于x 的方程,根据系数的取值范围,结合根的判别式,分类探讨得出答案即可.28.(1)互补;(2)相等;证明见解析【分析】根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .【详解】(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等.已知:AO C ∠''+∠COB=180︒,O'A=O'C',求证:'OO 平分∠COB .证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),∴O C B OAO ∠=∠''',∵O'A=O'C',∴Rt △Rt AO D '≅△C O E '',∴O D O E '=',∵O D '⊥OC ,O E '⊥OB ,∴'OO 平分∠COB .【点睛】本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.。
苏科版(完整版)八年级数学下册期中试卷及答案

苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.如图,点E ,F ,G ,H 分别为四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,则关于四边形EFGH ,下列说法正确的是( )A .不是平行四边形B .不是中心对称图形C .一定是中心对称图形D .当AC =BD 时,它为矩形2.某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( ) A .13B .12C .1D .03.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .4.江苏移动掌上营业厅,推出“每日签到——抽奖活动”:每个手机号码每日只能签到1次,且只能抽奖1次,抽奖结果有流量红包、话费充值卷、惊喜大礼包、谢谢参与.小明的爸爸已经连续3天签到,且都抽到了流量红包,则“他第4天签到后,抽奖结果是流量红包”是() A .必然事件 B .不可能事件C .随机事件D .必然事件或不可能事件5.已知12x <≤ ,则23(2)x x -+-的值为( ) A .2 x - 5B .—2C .5 - 2 xD .26.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(4,3),点D 是边OC 上的一点,点E 在直线OB 上,连接DE 、CE ,则DE+CE 的最小值为( )A .5B 7+1C .5D .2457.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.8.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.9.下列分式中,属于最简分式的是()A.62aB.2xxC.11xx--D.21xx+10.下列图形不是轴对称图形的是()A.等腰三角形B.平行四边形C.线段D.正方形11.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差12.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0二、填空题13.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为_____.15.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性_____摸出的是白球的可能性(填“大于”、“小于”或“等于”).16.如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是___.17.在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有_____个.18.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是(填一种情况即可).19.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________.20.如图,点E在正方形ABCD的边CD上,以CE为边向正方形ABCD外部作正方形CEFG,O、O′分别是两个正方形的对称中心,连接OO′.若AB=3,CE=1,则OO′=________.21.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.22.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D、B作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为_______.23.若一组数据4,,5,,7,9x y的平均数为6,众数为5,则这组数据的方差为__________.24.若关于x的分式方程233x ax x+--=2a无解,则a的值为_____.三、解答题25.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.26.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.27.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.28.如图,在▱ABCD中,BE=DF.求证:AE=CF.29.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.30.如图,在正方形ABCD内有一点P满足AP AB=,PB PC=.连接AC、PD.(1)求证:APB DPC∆∆≌;(2)求PAC∠的度数.31.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表组别A B C D E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 32.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是16cm ,AC 的长为8cm ,求线段AB 的长度.33.用适当的方法解方程: (1)x 2﹣4x ﹣5=0; (2)y (y ﹣7)=14﹣2y ; (3)2x 2﹣3x ﹣1=0.34.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么? 35.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC ⊥BC ,AC =2,BC =3.点E 是BC 延长线上一点,且CE =3,连结DE . (1)求证:四边形ACED 为矩形. (2)连结OE ,求OE 的长.36.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先连接AC,BD,根据EF=HG=12AC,EH=FG=12BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【详解】连接AC,BD,如图:∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=12AC,EH=FG=12BD,∴四边形EFGH是平行四边形,故选项A错误;∴四边形EFGH一定是中心对称图形,故选项B错误;当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,故选项D错误;∴四边形EFGH可能是轴对称图形,∴四边形EFGH是平行四边形,四边形EFGH一定是中心对称图形.故选:C.本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.2.A解析:A【分析】共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可.【详解】所有机会均等的可能共有3种,而选到月季花的机会有1种,因此选到月季花的概率是13,故选A.【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.3.D解析:D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.C解析:C【解析】分析:直接利用随机事件的定义进而得出答案.详解:∵有流量红包、话费充值卷、惊喜大礼包、谢谢参与四种等可能情况,∴他第4天签到后,抽奖结果是流量红包为随机事件.故选C.点睛:本题主要考查了随机事件,正确把握相关定义是解题的关键.5.C解析:C【分析】结合1 < x ≤ 2 ,根据绝对值和二次根式的进行计算,即可得到答案.因为1 < x ≤ 2 ,所以23(2)x x -+-=32x x -+-= 5 - 2 x.故选择C . 【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.6.D解析:D 【解析】 【分析】首先根据菱形的对角线性质得到DE+CE 的最小值=CF,再利用菱形的面积列出等量关系即可解题. 【详解】解:如下图,过点C 作CF ⊥OA 与F,交OB 于点E,过点E 作ED ⊥OC 与D, ∵四边形OABC 是菱形,由菱形对角线互相垂直平分可知EF=ED, ∴DE+CE 的最小值=CF, ∵A 的坐标为(4,3), ∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积), 即24=CF×5, 解得:CF=245, 即DE+CE 的最小值=245, 故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E 的位置并熟悉菱形面积的求法是解题关键.7.B解析:B 【分析】根据轴对称图形和中心对称图形的概念求解即可. 【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,又是中心对称图形,故此选项正确;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、不是轴对称图形,不是中心对称图形,故此选项错误. 故答案为B . 【点睛】本题考查了轴对称图形和中心对称图形的识别,掌握轴对称图形和中心对称图形的概念是解答本题的关键.8.D解析:D 【分析】根据轴对称图形的定义和中心对称图形的定义对每个选项进行判断即可. 【详解】A 项是轴对称图形,不是中心对称图形;B 项是中心对称图形,不是轴对称图形;C 项是中心对称图形,不是轴对称图形;D 项是中心对称图形,也是轴对称图形; 故选:D . 【点睛】本题考查了轴对称图形的定义和中心对称图形的定义,掌握知识点是解题关键.9.D解析:D 【解析】 【分析】根据最简分式的概念判断即可. 【详解】 解:A. 62a分子分母有公因式2,不是最简分式; B. 2xx的分子分母有公因式x ,不是最简分式; C. 11xx --的分子分母有公因式1-x ,不是最简分式; D.21xx +的分子分母没有公因式,是最简分式. 故选:D【点睛】本题考查的是最简分式,需要注意的公因式包括因数.10.B解析:B 【分析】根据轴对称图形的概念判断即可.【详解】等腰三角形是轴对称图形,故A错误;平行四边形不是轴对称图形,故B正确;线段是轴对称图形,故C错误;正方形是轴对称图形,故D错误;故答案为:B.【点睛】本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.11.C解析:C【解析】【分析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;12.B解析:B【解析】设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2-2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=-4<0,故a=2舍去,所以a的值为0.故选B.二、填空题13.∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.14.4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP 的长.【详解】∵Rt△ABC中解析:4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=22+=5,34BC AC+=22连接CP,如图所示:∵PD⊥AC于点D,PE⊥CB于点E,∴四边形DPEC是矩形,∴DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,∵1122BC AC AB CP⋅=⋅,∴DE=CP=345⨯=2.4,故答案为:2.4.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.15.大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=,摸出的是白球的概率=,所以摸出的是红球的可能性大于摸出的解析:大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=67,摸出的是白球的概率=17,所以摸出的是红球的可能性大于摸出的是白球的可能性.故答案为:大于.【点睛】本题考查的是概率的意义,以及求简单随机事件的概率,掌握以上知识是解题的关键.16..【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解解析:6013.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解即可.【详解】解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB22A BCC+22512+=13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=12BC•AC=12AB•CD,即12×12×5=12×13•CD,解得:CD=60 13,∴EF=60 13.故答案为:60 13.【点睛】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.17.3【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:由题可得,既是轴对称图形,又是中心对称图形的有3个:矩形、菱形、正方形,故答案为:3.【点睛】本题考查解析:3【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:由题可得,既是轴对称图形,又是中心对称图形的有3个:矩形、菱形、正方形,故答案为:3.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.BE=DF(答案不唯一)【分析】根据平行四边形的判定添加条件即可.【详解】解:如图,连接AC交BD于点O,∵四边形ABCD为平行四边形,∴AO=CO,BO=DO,∴当BE=DF时,可得解析:BE=DF(答案不唯一)【分析】根据平行四边形的判定添加条件即可.【详解】解:如图,连接AC交BD于点O,∵四边形ABCD为平行四边形,∴AO=CO,BO=DO,∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形,∴可增加BE=DF,故答案为:BE=DF(答案不唯一).【点睛】本题考查了平行四边形的判定,是开放题,答案不唯一,熟练掌握判定定理是解题的关键.19.2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频解析:2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率10.10.30.40.2=---=【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频率总和为1.20.【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O解析:5【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,如图:∵AB长为3,CE长为1,点O和点O′为正方形中心,∴OH=12×(3+1)=2,O′H=12×(3-1)=12×2=1,∴在直角三角形OHO′中:222+15本题考查了正方形的性质和勾股定理,作出直角三角形是解题关键.21.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.22.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.23.【分析】根据平均数的计算公式,可得,再根据众数是5,所以可得x,y中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.解:∵一组数据的平均数为6,众数为5,∴中至少有一个是 解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6, ∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.24.5或1.5【分析】先直接解分式方程,整理得:(1﹣2a )x =﹣4a ,再分类讨论①当1﹣2a =0时,方程无解,故a =0.5;②当1﹣2a≠0时,x ==3时,分式方程无解,则a =1.5 .【详解】解析:5或1.5【分析】先直接解分式方程,整理得:(1﹣2a )x =﹣4a ,再分类讨论①当1﹣2a =0时,方程无解,故a =0.5;②当1﹣2a≠0时,x =421a a -=3时,分式方程无解,则a =1.5 . 【详解】 解:2233x a a x x+=--, 去分母得:x ﹣2a =2a (x ﹣3),整理得:(1﹣2a )x =﹣4a ,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x=421aa=3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.【点睛】本题主要考查了当分式方程无意义时,求字母的值.值得引起注意的是,当分式方程化为整式方程(1﹣2a)x=﹣4a时,一定要分1-2a=0和1-2a≠0两种情况,来分别求m的值.三、解答题25.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.26.(1)见解析;(2)15;见解析.【分析】(1)连接BD作线段BD的垂直平分线MN交AD于点E,点E即为所求.(2)证明△ABE的周长=AB+AD即可.【详解】解:(1)如图,点E即为所求.(2)解:连接BE∵四边形ABCD是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.27.(1)150人;(2)见解析;(3)192人【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;(3)总人数乘以样本中围棋的人数所占百分比即可.【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人). 【点睛】 本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.28.证明见解析.【解析】试题分析:由平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠ADE=∠CBF ,再由BE=DF ,得出DE=BF ,证明△ADE ≌△CBF ,即可得出结论.试题解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADE=∠CBF ,∵BE=DF ,∴DE=BF ,在△ADE 和△CBF 中,{AD CBADE CBF DE BF=∠=∠=,∴△ADE ≌△CBF (SAS ),∴AE=CF .考点:平行四边形的性质;全等三角形的判定与性质.29.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可; (2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11x+=0.25,解得x =3. 答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.30.(1)见解析;(2)15°【分析】(1)根据PB=PC 得∠PBC=∠PCB ,从而可得∠ABP=∠DCP ,再利用SAS 证明即可;(2)由(1)得△PAD 为等边三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD ,因此可得结果.【详解】解:(1)∵四边形ABCD 为正方形,∴∠ABC=∠DCB=90°,AB=CD ,∵BP=PC ,∴∠PBC=∠PCB ,∴∠ABP=∠DCP ,又∵AB=CD ,BP=CP ,在△APB 和△DPC 中,AB CD ABP DCP BP CP =⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△DPC (SAS );(2)由(1)得AP=DP=AB=AD,∴△PAD为等边三角形,∴∠PAD=60°,∠PAB=30°,在正方形ABCD中,∠BAC=∠DAC=45°,∴∠PAC=∠PAD-∠CAD=60°-45°=15°.【点睛】本题考查了全等三角形的判定定理,正方形的性质,以及等腰三角形的性质,熟练掌握全等三角形的几种判定方法是解答的关键.31.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B的圆心角度数为115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.32.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE 的周长=AB +BC ,故BC =16﹣AB ,然后根据勾股定理即可求得.【详解】(1)证明:∵D 、E 分别是AB 、AC 的中点,∴ED 是Rt △ABC 的中位线,∴ED ∥BC .BC =2DE ,又 EF ∥DC ,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC =EF ,∵DC 是Rt △ABC 斜边AB 上的中线,∴AB =2DC ,∴四边形DCFE 的周长=AB +BC ,∵四边形DCFE 的周长为16cm ,AC 的长8cm ,∴BC =16﹣AB ,∵在Rt △ABC 中,∠ACB =90°,∴AB 2=BC 2+AC 2,即AB 2=(16﹣AB )2+82,解得:AB =10cm ,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.33.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12x x == 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,移项得,y (y ﹣7)-14+2y =0,分解因式得:(y ﹣7)(y +2)=0,则y ﹣7=0或y +2=0,解得:y 1=7,y 2=﹣2.(3)2x 2﹣3x ﹣1=0,∴a =2,b =﹣3,c =﹣1,。
(完整版)苏科版八年级数学下册期中试卷及答案doc

(完整版)苏科版八年级数学下册期中试卷及答案doc一、选择题1.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是( ) A .2016年泰兴市八年级学生是总体 B .每一名八年级学生是个体 C .500名八年级学生是总体的一个样本D .样本容量是5002.某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( ) A .13B .12C .1D .03.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC = 4.平行四边形的一条边长为8,则它的两条对角线可以是( ) A .6和12 B .6和10 C .6和8 D .6和6 5.下列成语故事中所描述的事件为必然发生事件的是( )A .水中捞月B .瓮中捉鳖C .拔苗助长D .守株待兔6.如果把分式aa b-中的a 、b 都扩大2倍,那么分式的值一定( ) A .是原来的2倍 B .是原来的4倍 C .是原来的12D .不变7.下列式子为最简二次根式的是( ) A .22a b +B .2aC .12aD .128.下列调查中,适合普查方式的是( ) A .调查某市初中生的睡眠情况 B .调查某班级学生的身高情况 C .调查南京秦淮河的水质情况D .调查某品牌钢笔的使用寿命9.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近( ) A .1000B .1500C .2000D .250010.下列说法正确的是( )A.矩形的对角线相等垂直B.菱形的对角线相等C.正方形的对角线相等D.菱形的四个角都是直角11.要反应一周气温的变化情况,宜采用()A.统计表B.条形统计图C.扇形统计图D.折线统计图12.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA 并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A.9m B.12m C.8m D.10m二、填空题13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为_____.15.若分式x3x3--的值为零,则x=______.16.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.17.如图,在正方形ABCD中,△ABE为等边三角形,连接DE,CE,延长AE交CD于F 点,则∠DEF的度数为_____.18.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)19.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为800万元,则该商场全年的营业额为________万元.20.如图,在菱形ABCD 中,若AC =24 cm ,BD =10 cm ,则菱形ABCD 的高为________cm .21.x 千克橘子糖、y 千克椰子糖、z 千克榴莲糖混合成“什锦糖”.已知这三种糖的单价分别为30元/千克、32元/千克、40元/千克,则这种“什锦糖”的单价为_____元.(用含x 、y 、z 的代数式表示)22.若正方形的对角线长为2,则该正方形的边长为_____.23.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D 、B 作DE ⊥a 于点E 、BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为_______.24.如图,正方形ABCD 的边长为a ,对角线AC 和BD 相交于点O ,正方形A 1B 1C 1O 的边OA1交AB于点E,OC1交BC于点F,正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积为_____(用含a的代数式表示)三、解答题25.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?26.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.27.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.28.如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.29.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCD E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 30.正方形ABCD 中,点O 是对角线DB 的中点,点P 是DB 所在直线上的一个动点,PE ⊥BC 于E ,PF ⊥DC 于F .(1)当点P 与点O 重合时(如图①),猜测AP 与EF 的数量及位置关系,并证明你的结论;(2)当点P 在线段DB 上(不与点D 、O 、B 重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P 在DB 的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.31.如图,在△ABC 中,AB =AC ,点D 是边AB 的点,DE ∥BC 交AC 于点E ,连接BE ,点F 、G 、H 分别为BE 、DE 、BC 的中点. (1)求证:FG =FH ;(2)当∠A 为多少度时,FG ⊥FH ?并说明理由.32.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形33.如图,已知一次函数y =x +2的图象与x 轴、y 轴分别交于点A ,B 两点,且与反比例函数y =mx的图象在第一象限交于点C ,CD ⊥x 轴于点D ,且OA =OD . (1)求点A 的坐标和m 的值;(2)点P 是反比例函数y =mx在第一象限的图象上的动点,若S △CDP =2,求点P 的坐标.34.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.35.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.36.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D 【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量. 【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A 错误;B. 每一名八年级学生的视力情况是个体,故B 错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C 错误;D. 样本容量是500,故D 正确; 故选:D. 【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.2.A解析:A 【分析】共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可. 【详解】所有机会均等的可能共有3种,而选到月季花的机会有1种, 因此选到月季花的概率是13, 故选A . 【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.3.D解析:D 【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】解:A.∵//AB CD , AB CD∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意. 故选:D 【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.4.A解析:A 【分析】由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分,即可求得OB 与OC 的长,然后根据三角形的三边关系,即可求得答案. 【详解】 解:如图:∵四边形ABCD 是平行四边形,∴OA=OC=12AC ,OB=OD=12BD , 若BC=8,根据三角形三边关系可得:|OB-OC|<8<OB+OC .A 、6和12,则OB+OC=3+6=9>8,OB-OC=6-3=3<8,能组成三角形,故本选项符合题意;B 、6和10,则OB+OC=3+5=8,不能组成三角形,故本选项不符合题意;C 、6和8,则OB+OC=3+4=7<8,不能组成三角形,故本选项不符合题意;D 、6和6,则OB+OC=3+3=6<8,不能组成三角形,故本选项不符合题意; 故选:A . 【点睛】此题考查了平行线的性质与三角形三边关系,解题的关键是注意掌握平行四边形的对角线互相平分,注意三角形三边关系知识的应用.5.B解析:B 【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A 、水中捞月是不可能事件,故A 错误; B 、瓮中捉鳖是必然事件,故B 正确; C 、拔苗助长是不可能事件,故C 错误; D 、守株待兔是随机事件,故D 错误; 故选B . 考点:随机事件.6.D解析:D 【分析】把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论. 【详解】解:把2a 、2b 代入分式可得22222()a a aa b a b a b==---,由此可知分式的值没有改变, 故选:D . 【点睛】本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.7.A解析:A 【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察. 【详解】AB |a |,可以化简,故不是最简二次根式;C =D 2=,可以化简,故不是最简二次根式;故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8.B解析:B【分析】根据抽样调查和普查的特点作出判断即可.【详解】A、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;B、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;C、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;D、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;故选:B.【点睛】本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.9.B解析:B【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次,故选:B.【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.10.C解析:C【分析】根据矩形、菱形的性质和正方形的性质判断即可.【详解】解:A、矩形的对角线相等且平分,选项错误,不符合题意;B、菱形的对角线垂直且平分,选项错误,不符合题意;C、正方形的对角线相等,选项正确,符合题意;D、矩形的四个角都是直角,而菱形的四个角不是直角,选项错误,不符合题意;故选:C.【点睛】本题考查矩形、菱形和正方形的性质,正确区分矩形、菱形和正方形的性质是解题的关键.11.D解析:D【分析】反应一周气温的变化情况,即反应一周气温的升高、降低的变化情况,因此采取折线统计图较好.【详解】解:折线统计图能够直观反应出一组数据的增减变化情况,因此要反应一周的气温变化情况,采用折线统计图较好,故选:D.【点晴】本题考查了各种统计图表的特征及应用,掌握统计图表的特征是解题的关键.12.A解析:A【分析】根据三角形的中位线定理解答即可.【详解】解:∵A、B分别是CD、CE的中点,DE=18m,∴AB=12DE=9m,故选:A.【点睛】本题考查了三角形的中位线定理:三角形的中位线平行于第三边并且等于第三边的一半.二、填空题13.5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD解析:5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC=2268+=10(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.5cm,故答案为2.5.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.14.4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中解析:4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=22BC AC+=2234+=5,连接CP,如图所示:∵PD⊥AC于点D,PE⊥CB于点E,∴四边形DPEC是矩形,∴DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,∵1122BC AC AB CP⋅=⋅,∴DE=CP=345⨯=2.4,故答案为:2.4.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.15.-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零解析:-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼解析:1000【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到110,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼100÷20200=1000条.故答案为1000.【点睛】本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.17.105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度解析:105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度数,再根据平角定义即可求得∠DEF的度数.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ABE为等边三角形,∴AE=BE=AB,∠EAB=60°,∴AE=AD,∠EAD=∠BAD﹣∠BAE=30°,∴∠AED=∠ADE=12(180°﹣30°)=75°,∴∠DEF=180°﹣∠AED=180°﹣75°=105°.故答案为105°.【点睛】本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.18.>【分析】根据反比例函数的图象与性质即可解答.解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质. 19.000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-解析:000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-20%=20%,∴该商场全年的营业额为:800÷20%=4000(万元),故答案为:4000.【点睛】本题考查了扇形统计图,由统计图得到二季度所占的百分比是解题关键.20.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB 于E ,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.21.【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:;故答案为:.【点睛】本题考查列代数式,解题的关键是读懂题意.解析:303240 x y zx y z++++根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:303240x y zx y z++++;故答案为:303240x y zx y z++++.【点睛】本题考查列代数式,解题的关键是读懂题意.22.【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.【详解】解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt解析:【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.【详解】解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt△ADC中,∵AD2+CD2=AC2即x2+x2=(2)2解得:x=1,(x=﹣1舍去)所以该正方形的边长为1故答案为:1.【点睛】本题考查正方形的性质,一元二次方程的应用和勾股定理的应用,根据题意列出方程求解是解题的关键.【解析】【详解】因为ABCD 是正方形,所以AB=AD ,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS 易证△AFB≌△DEA,所以AF=DE=4,BF 解析:7【解析】【详解】因为ABCD 是正方形,所以AB=AD ,∠BFA=∠BAD=90°,则有∠ABF=∠DAE ,又因为DE ⊥a 、BF ⊥a ,根据AAS 易证△AFB ≌△DEA ,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.24.a2.【分析】由题意得OA =OB ,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA 可证△AOE≌△BOF,由全等三角形的性 解析:14a 2. 【分析】 由题意得OA =OB ,∠OAB =∠OBC =45°又因为∠AOE +∠EOB =90°,∠BOF +∠EOB =90°可得∠AOE =∠BOF ,根据ASA 可证△AOE ≌△BOF ,由全等三角形的性质可得S △AOE =S △BOF ,可得重叠部分的面积为正方形面积的14,即可求解. 【详解】解:在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°,∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°,∴∠AOE =∠BOF . 在△AOE 和△BOF 中OAE OBF OA OBAOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOF (ASA ),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD SS a ===正方形, 故答案为:14a 2. 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE ≌△BOF是本题的关键.三、解答题25.(1)见解析(2)成立【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CDB CDF BE DF∠∠===∴△CBE ≌△CDF (SAS ).∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF ,∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF∵∠GCE =∠GCF , GC =GC∴△ECG ≌△FCG (SAS ).∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.26.(1)详见解析;(2)24【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案.【详解】(1)证明:∵E 是AD 的中点∴AE =DE∵AF ∥BC∴∠AFE =∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12 BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•AC=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.27.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.28.(1)见解析;(2)见解析【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.29.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B的圆心角度数为115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.30.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.31.(1)见解析;(2)当∠A=90°时,FG⊥FH.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定。
苏科版(完整版)八年级数学下册期中试卷及答案

苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .260 2.如果把分式a a b-中的a 、b 都扩大2倍,那么分式的值一定( ) A .是原来的2倍 B .是原来的4倍C .是原来的12D .不变 3.若顺次连接四边形ABCD 各边的中点得到一个矩形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形4.下列调查中,适宜采用普查方式的是( )A .一批电池的使用寿命B .全班同学的身高情况C .一批食品中防腐剂的含量D .全市中小学生最喜爱的数学家 5.在□ ABCD 中,∠A =4∠D ,则∠C 的大小是( ) A .36°B .45°C .120°D .144° 6.一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为( )A .20B .25C .30D .1007.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠8.在四边形中,能判定这个四边形是正方形的条件是()A .对角线相等,对边平行且相等B .一组对边平行,一组对角相等C .对角线互相平分且相等,对角线互相垂直D .一组邻边相等,对角线互相平分9.下列我国著名企业商标图案中,是中心对称图形的是( )A .B .C .D .10.下列判断正确的是( )A .对角线互相垂直的平行四边形是菱形B .两组邻边相等的四边形是平行四边形C .对角线相等的四边形是矩形D .有一个角是直角的平行四边形是正方形二、填空题11.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”)12.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性_____摸出的是白球的可能性(填“大于”、“小于”或“等于”).13.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB =AD ,且AC =BD ;②AB ⊥AD ,且AC ⊥BD ;③AB ⊥AD ,且AB =AD ;④AB =BD ,且AB ⊥BD ;⑤OB =OC ,且OB ⊥OC .其中正确的是_____(填写序号).14.要使代数式5x -有意义,字母x 必须满足的条件是_____.15.在函数y =1x x +中,自变量x 的取值范围是_____. 16.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.17.一个不透明的袋中装有3个红球,2个黑球,每个球除颜色外都相同.从中任意摸出3球,则“摸出的球至少有1个红球”是__事件.(填“必然”、“不可能”或“随机”)18.如图,在菱形ABCD 中,若AC =24 cm ,BD =10 cm ,则菱形ABCD 的高为________cm .19.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.20.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.三、解答题21.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.22.如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.23.如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1. (2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.(3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.24.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m_________,扇形D所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?25.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?26.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了名学生;(2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 ;(4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.27.某商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克.问第一次购进这种商品多少千克?28.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人), 即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人. 故选A.2.D解析:D【分析】把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论.【详解】解:把2a 、2b 代入分式可得22222()a a a a b a b a b==---, 由此可知分式的值没有改变,故选:D .【点睛】本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.3.D解析:D【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得.【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH四边形EFGH 是矩形90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.4.B解析:B【分析】根据抽样调查和普查的特点分析即可.【详解】解:A.调查一批电池的使用寿命适合抽样调查;B.调查全班同学的身高情况适合普查;C.调查一批食品中防腐剂的含量适合抽样调查;D.调查全市中小学生最喜爱的数学家适合抽样调查;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.D解析:D【解析】【分析】由四边形ABCD是平行四边形可知∠A+∠D=180°,结合∠A=4∠D,可求出∠D的值,从而可求出∠C的大小.【详解】∵四边形ABCD是平行四边形,∴∠A+∠D=180°,∵∠A=4∠D,∴4∠D +∠D=180°,∴∠D=36°,∴∠C=180°-36°=144°.故选D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.6.B解析:B【分析】根据频率、频数的关系:频数=频率×数据总和,可得这一小组的频数.【详解】解:∵容量是50的,某一组的频率是0.5,∴样本数据在该组的频数0.55025⨯== .故答案为B .【点睛】本题考查频率、频数、总数的关系,属于基础题,比较简单,注意熟练掌握:频数=频率×数据总和.7.D解析:D【分析】利用旋转的性质得AC=CD ,BC=EC ,∠ACD=∠BCE ,所以选项A 、C 不一定正确 再根据等腰三角形的性质即可得出A EBC ∠=∠,所以选项D 正确;再根据∠EBC =∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可.【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE 2∠︒-, ∴选项A 、C 不一定正确∴∠A =∠EBC∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090,∴选项B 不一定正确;故选D .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.8.C解析:C【分析】根据所给条件逐一进行判断即可得.【详解】A选项中,根据“对边平行且相等和对角线相等”只能判定该四边形是矩形;B选项中,根据“一组对边平行,一组对角相等”只能判定该四边形是平行四边形;C选项中,根据“对角线互相平分且相等,对角线互相垂直”可判定该四边形是正方形;D选项中,根据“一组邻边相等,对角线互相平分”只能判定该四边形是菱形;故选C.9.B解析:B【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B【点睛】此题考查中心对称图形,难度不大10.A解析:A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.二、填空题11.不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.解析:不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.12.大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=,摸出的是白球的概率=,所以摸出的是红球的可能性大于摸出的解析:大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=67,摸出的是白球的概率=17,所以摸出的是红球的可能性大于摸出的是白球的可能性.故答案为:大于.【点睛】本题考查的是概率的意义,以及求简单随机事件的概率,掌握以上知识是解题的关键.13.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,②正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形,③正确;④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;∵四边形ABCD是平行四边形,OB=OC,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键. 14.x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】∵代数式有意义,∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二解析:x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.15.x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必解析:x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.16.3【分析】由,平分,易证得是等腰三角形,即可求得,又由四边形是等腰梯形,易证得,然后由,根据直角三角形的两锐角互余,即可求得,则可求得的值,继而求得的值.【详解】解:∵,,∵平分,解析:3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.17.必然【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是解析:必然【分析】根据事件发生的可能性大小判断相应事件的类型即可.∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是必然事件,故答案为:必然.【点睛】本题考查了必然事件的定义,正确理解必然事件,不可能事件,随机事件的概念是解题关键.18.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.19.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.20.【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求解析:1(1020) 30a b【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数. 三、解答题21.(1)150人;(2)见解析;(3)192人【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;(3)总人数乘以样本中围棋的人数所占百分比即可.【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人). 【点睛】 本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)详见解析;(2)24【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF的面积转换成△ABC的面积,再用S△ABC的面积=12AB•AC,结合条件可求得答案.【详解】(1)证明:∵E是AD的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12 BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•AC=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.23.(1)图见解析;(2)图见解析;(3)x的值为6或7.【分析】(1)分别作出B、C的对应点B1,C1即可解决问题;(2)分别作出A、B、C的对应点A2、B2、C2即可解决问题;(3)观察图形即可解决问题.【详解】(1)作图如下:△AB1C1即为所求;(2)作图如下:△A2B2C2即为所求;(3)P 点如图,x 的值为6或7.【点睛】本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.24.(1)50;32;43.2 (2)见解析 (3)1120人【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2(2)5040%20⨯=(人),补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.26.(1)200;(2)图见解析;(3)144;(4)6 500人【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出;(4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可.【详解】(1)本次调查共随机抽取了:50÷25%=200(名);(2)课外阅读时长“2~4小时”的有:200×20%=40(人),课外阅读时长“4~6小时”的有:200-30-40-50=80(人),故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°;(4)10000×(1-20%-15%)=6500(人).【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键.27.第一次购进这种商品10千克【分析】根据“商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克”列出分式方程求解即可.【详解】解:设第一次购进这种商品x 千克,则第二次购进这种商品(x +5)千克, 由题意,得5007505x x =+, 解得x =10. 经检验:x =10是所列方程的解.答:第一次购进这种商品10千克.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,注意得出分式方程的解之后要验根.28.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠,()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE =2.51 1.5EF DF BE ∴=-=-=.故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△, ∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.。
苏科版(完整版)八年级数学下册期中试卷及答案doc

苏科版(完整版)八年级数学下册期中试卷及答案doc一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .442.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC .其中一定能判断这个四边形是平行四边形的条件共有 A .1组B .2组C .3组D .4组3.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AB =4,BC =3,则四边形CODE 的周长是( )A .5B .8C .10D .124.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①∠ABE =∠DCE ;②∠AHB =∠EHD ;③S △BHE =S △CHD ;④AG ⊥BE .其中正确的是( )A .①③B .①②③④C .①②③D .①③④5.如果把分式aa b-中的a 、b 都扩大2倍,那么分式的值一定( ) A .是原来的2倍 B .是原来的4倍C .是原来的12D .不变6.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )A.15°B.22.5°C.30°D.45°7.如图,已知正方形ABCD,对角线的交点M(2,2).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M的坐标变为()A.(﹣2012,2)B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)8.如果a=32,b=3﹣2,那么a与b的关系是()A.a+b=0 B.a=b C.a=1bD.a>b9.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近()A.1000 B.1500 C.2000 D.250010.下列事件为必然事件的是()A.射击一次,中靶B.12人中至少有2人的生日在同一个月C.画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上11.某种商品原价200元,连续两次降价a%后,售价为148元.下列所列方程正确的是()A.200(1+ a%)2=148 B.200(1- a%)2=148C.200(1- 2a%)=148 D.200(1-a2%)=14812.“明天下雨的概率是80%”,下列说法正确的是()A.明天一定下雨B.明天一定不下雨C.明天下雨的可能性比较大D.明天80%的地方下雨二、填空题13.若菱形的两条对角线分别为2和3,则此菱形的面积是.14.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.15.不透明的袋子里装有3只相同的小球,给它们分别标上序号1、2、3后搅匀.事件“从中任意摸出1只小球,序号为4”是_____事件(填“必然”、“不可能”或“随机”).16.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.17.一个不透明的袋中装有3个红球,2个黑球,每个球除颜色外都相同.从中任意摸出3球,则“摸出的球至少有1个红球”是__事件.(填“必然”、“不可能”或“随机”)18.如图,在菱形ABCD中,若AC=24 cm,BD=10 cm,则菱形ABCD的高为________cm.19.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.20.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是 .21.如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC 于E、F,则阴影部分的面积是_____.22.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D、B作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为_______.23.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.24.如图,正方形ABCD的边长为a,对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F,正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积为_____(用含a的代数式表示)三、解答题25.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.26.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB 边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.27.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.28.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.(1)点B的坐标为,直线ON对应的函数表达式为;(2)当EF=3时,求H点的坐标;(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.29.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.30.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.31.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m_________,扇形D所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?32.在矩形纸片ABCD中,AB=6,BC=8.(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,求BF 的长;(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.33.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?34.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.35.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.36.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,224-=,即可得BD=8,AB AO又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=124 2DE BD⋅=.故答案为B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.2.C解析:C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.3.C解析:C【分析】由矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,易证得四边形CODE是菱形,又由AB=4,BC=3,可求得AC的长,继而求得OC的长,则可求得答案.【详解】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC =BD ,OB =OD ,OC =OA ,∠ABC =90° ∴OC =OD , ∴四边形CODE 是菱形 ∵AB =4,BC =35AC ∴=∴OC =52∴四边形CODE 的周长=4×52=10 故选:C . 【点睛】本题考查菱形的判定,运用勾股定理解三角形,掌握特殊平行四边形的判定与性质是解题的关键.4.B解析:B 【分析】根据正方形的性质证得BAE CDE ∆≅∆,推出ABE DCE ∠=∠,可知①正确;证明ABH CBH ∆≅∆,再根据对顶角相等即可得到AHB EHD ∠=∠,可知②正确;根据//AD BC ,求出BDE CDE S S ∆∆=,推出BDE DEH CDE DEH S S S S ∆∆∆∆-=-,即BHE CHD S S ∆∆=,故③正确;利用正方形性质证ADH CDH ∆≅∆,求得HAD HCD ∠=∠,推出ABE HAD ∠=∠;求出90ABE BAG ∠+∠=︒,求得90AGE ∠=︒故④正确.【详解】 解:四边形ABCD 是正方形,E 是AD 边上的中点,AE DE ∴=,AB CD =,90BAD CDA ∠=∠=︒,()BAE CDE SAS ∴∆≅∆, ABE DCE ∴∠=∠,故①正确;∵四边形ABCD 是正方形, ∴AB=BC , ∠ABD=∠CBD , ∵BH=BH , ∴ABH CBH ∆≅∆,AHB CHB ∴∠=∠,BHC DHE ∠=∠,AHB EHD ∴∠=∠,故②正确;//AD BC ,BDE CDE S S ∆∆∴=,BDE DEH CDE DEH S S S S ∆∆∆∆∴-=-,即BHE CHD S S ∆∆=, 故③正确;四边形ABCD 是正方形,AD DC ∴=,45ADB CDB ∠=∠=︒,DH DH =,()ADH CDH SAS ∴∆≅∆, HAD HCD ∴∠=∠, ABE DCE ∠=∠ABE HAD ∴∠=∠,90BAD BAH DAH ∠=∠+∠=︒,90ABE BAH ∴∠+∠=︒, 1809090AGB ∴∠=︒-︒=︒,AG BE ∴⊥, 故④正确;故选:B . 【点睛】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题关键要充分利用正方形的性质:①四边相等; ②四个内角相等,都是90度; ③对角线相等,相互垂直,且每条对角线平分一组对角.5.D解析:D 【分析】把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论. 【详解】解:把2a 、2b 代入分式可得22222()a a aa b a b a b==---,由此可知分式的值没有改变, 故选:D . 【点睛】本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.6.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.7.A解析:A【分析】根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得结果.【详解】解:∵对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.【点睛】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M 的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.8.A解析:A【分析】先利用分母有理化得到a2),从而得到a与b的关系.【详解】2),∵a而b2,∴a=﹣b,即a+b=0.故选:A.【点睛】﹣2是解答本题的关键.9.B解析:B【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次,故选:B.【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.10.C解析:C【分析】必然事件就是一定会发生的事件,依据定义即可判断.【详解】解:A.射击一次,中靶是随机事件;B.12人中至少有2人的生日在同一个月是随机事件;C.画一个三角形,其内角和是180°是必然事件;D.掷一枚质地均匀的硬币,正面朝上是随机事件;故选:C.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.B解析:B【分析】根据题意可得出两次降价后的售价为200(1- a%)2,列方程即可.【详解】解:根据题意可得出两次降价后的售价为200(1- a%)2,∴200(1- a%)2=148故选:B.【点睛】本题主要考查增长率问题,找准题目中的等量关系是解此题的关键.12.C解析:C【解析】【分析】根据概率的意义找到正确选项即可.【详解】解:明天下雨的概率是80%,说明明天下雨的可能性比较大.所以只有C合题意.故选:C.【点睛】本题考查了概率的意义,解决本题的关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.二、填空题13.3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=×2×3=3,故答案为3.考点:菱形的性质.解析:3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=12×2×3=3,故答案为3.考点:菱形的性质.14.∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.15.不可能【分析】根据三只小球中没有序号为4的小球进行判断即可求解.【详解】解:∵三只小球中没有序号为4的小球,∴事件“从中任意摸出1只小球,序号为4”是不可能事件,故答案为:不可能.【点解析:不可能【分析】根据三只小球中没有序号为4的小球进行判断即可求解.【详解】解:∵三只小球中没有序号为4的小球,∴事件“从中任意摸出1只小球,序号为4”是不可能事件,故答案为:不可能.【点睛】本题考查了事件发生的可能性.一定不可能发生的事件是不可能事件;一定会发生的事件是必然事件;有可能发生,也有可能不发生的事件是随机事件.16.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.17.必然【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是解析:必然【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是必然事件,故答案为:必然.【点睛】本题考查了必然事件的定义,正确理解必然事件,不可能事件,随机事件的概念是解题关键.18.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.19.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.20.6【分析】由菱形的性质可得AB=BC,再由∠ABC=60°得△ABC为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC为等边三角形,解析:6【分析】由菱形的性质可得AB=BC,再由∠ABC=60°得△ABC为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC为等边三角形,则AC=AB=6,故答案为:6.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.21.1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=解析:1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=△BOC面积=12×2×1=1.故答案为:1.【点睛】本题考查正方形的性质以及全等三角形的判定,根据全等三角形的性质将阴影部分的面积转化为△BOC面积是解题的关键.22.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.23.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x 3+x 4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.24.a2.【分析】由题意得OA =OB ,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA 可证△AOE≌△BOF,由全等三角形的性 解析:14a 2. 【分析】 由题意得OA =OB ,∠OAB =∠OBC =45°又因为∠AOE +∠EOB =90°,∠BOF +∠EOB =90°可得∠AOE =∠BOF ,根据ASA 可证△AOE ≌△BOF ,由全等三角形的性质可得S △AOE =S △BOF ,可得重叠部分的面积为正方形面积的14,即可求解. 【详解】解:在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°,∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°,∴∠AOE =∠BOF . 在△AOE 和△BOF 中OAE OBF OA OBAOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOF (ASA ),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD SS a ===正方形, 故答案为:14a 2. 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE ≌△BOF 是本题的关键. 三、解答题25.(1)150人;(2)见解析;(3)192人【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;(3)总人数乘以样本中围棋的人数所占百分比即可.【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人). 【点睛】 本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析. 【分析】(1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解;(2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC 时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩,∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.27.(1)见解析;(2)152【分析】(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO .在△DOF 和△BOE 中 DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ).∴DF =BE .又∵DF ∥BE ,∴四边形BEDF 是平行四边形.(2)解:∵DE =DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.∴DE =BE ,EF ⊥BD ,OE =OF .设AE =x ,则DE =BE =8-x ,在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2,∴x 2+62=(8-x)2.解得x =74.∴DE=8-74=254.在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2,∴BD=10.∴OD=12BD=5.在Rt△DOE中,根据勾股定理,有DE2-OD2=OE2,∴OE=154.∴EF=2OE=152.【点睛】考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.28.(1)(3,2),12y x=;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x; (2)∵EF =3,EF :FG =3:5.∴FG =5, 设矩形EFGH 的宽为3a ,则长为5a ,∵点E 在直线OM 上,设点E 的坐标为(e ,e ),∴F (e ,e ﹣3),G (e +5,e ﹣3),∵点G 在直线ON 上,∴e ﹣3=12(e +5), 解得e =11,∴H (16,11).(3)s 1:s 2的值是一个常数,理由如下:如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ),∵点G 在直线y =12x 上, ∴a ﹣3m =12(a +5m ), ∴a =11m ,∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =12×11m ×11m +12(8m +11m )•5m •12﹣12×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2,∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.29.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,11x+=0.25,解得x=3.答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.30.(1)k=1;(2)证明见解析.【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键. 31.(1)50;32;43.2(2)见解析(3)1120人【分析】(1)由A的数据即可得出调查的人数,得出16100%32% 50m=⨯=(2)求出C的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】。
苏科版(完整版)八年级数学下册期中试卷及答案

苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2602.下列调查中,最适合采用普查的是( )A .长江中现有鱼的种类B .八年级(1)班36名学生的身高C .某品牌灯泡的使用寿命D .某品牌饮料的质量3.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是( )A .2016年泰兴市八年级学生是总体B .每一名八年级学生是个体C .500名八年级学生是总体的一个样本D .样本容量是500 4.下列调查中,适宜采用普查方式的是( )A .对全国中学生使用手机情况的调查B .对五一节期间来花果山游览的游客的满意度调查C .环保部门对长江水域水质情况的调查D .对本校某班学生阅读课外书籍情况的调查5.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =6.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )A.15°B.22.5°C.30°D.45°7.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.为了解某校八年级320名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是()A.320名学生的全体是总体B.80名学生是总体的一个样本C.每名学生的体重是个体D.80名学生是样本容量9.下列调查中,适宜采用普查方式的是()A.一批电池的使用寿命B.全班同学的身高情况C.一批食品中防腐剂的含量D.全市中小学生最喜爱的数学家10.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.某种商品原价200元,连续两次降价a%后,售价为148元.下列所列方程正确的是()A.200(1+ a%)2=148 B.200(1- a%)2=148C.200(1- 2a%)=148 D.200(1-a2%)=14812.下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.二、填空题13.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m2.14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.15.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.16.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是_____.17.如图,在Rt △ABC 中,∠ACB =90°,AC =5,BC =12,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连接EF ,则线段EF 的最小值是___.18.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值=___.19.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.20.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,则y 1,y 2的大小关系是y 1_____y 2.21.若分式方程211x m x x-=--有增根,则m =________. 22.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图.23.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D 、B 作DE ⊥a 于点E 、BF⊥a于点F,若DE=4,BF=3,则EF的长为_______.24.如图,E、F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=1,则四边形BEDF的周长是_____.三、解答题25.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.26.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.27.先化简:22241a aa a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a的值代入求值.28.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.29.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.30.如图,在▱ABCD中,BE=DF.求证:AE=CF.31.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P 在DB 的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.32.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),ABC ∆的顶点均在格点上,请在所给的平面直角坐标系中解答下列问题:(1)作出ABC ∆绕点A 逆时针旋转90°后的111A B C ∆;(2)作出111A B C ∆关于原点O 成中心对称的222A B C ∆.33.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.(1)求证:BG =DE ;(2)若E 为AD 中点,FH =2,求菱形ABCD 的周长.34.如图,在平面直角坐标系中,△ABC 和△A 'B 'C '的顶点都在格点上.(1)将△ABC 绕点B 顺时针旋转90°后得到△A 1BC 1;(2)若△A 'B 'C '是由△ABC 绕某一点旋转某一角度得到,则旋转中心的坐标是 .35.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC ⊥BC ,AC =2,BC =3.点E 是BC 延长线上一点,且CE =3,连结DE .(1)求证:四边形ACED 为矩形.(2)连结OE ,求OE 的长.36.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .(1)求证:BD DF =;(2)求证:四边形BDFG 为菱形;(3)若13AG =,6CF =,求四边形BDFG 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A【解析】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人.故选A.2.B解析:B【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.调查长江中现有鱼的种类,调查的难度大,范围广,适合抽样调查;B.调查八年级(1)班36名学生的身高,难度不大,适合普查;C.调查某品牌灯泡的使用寿命,调查带有破坏性,适合抽样调查;D.调查某品牌饮料的质量,调查带有破坏性,适合抽样调查;故选:B.【点睛】本题考查的是普查与抽样调查的含义与运用,掌握以上知识是解题的关键.3.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.4.D解析:D调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A .对全国中学生使用手机情况的调查适合抽样调查;B .对五一节期间来花果山游览的游客的满意度调查适合抽样调查;C .环保部门对长江水域水质情况的调查适合抽样调查;D .对本校某班学生阅读课外书籍情况的调查适合普查;故选:D .【点睛】本题考查判别普查的方式,关键在于熟记抽样调查和普查的定义.5.D解析:D【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可.【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;C.∵//AB CD∴180C D ∠+∠=︒∵A C ∠=∠∴180A D +=︒∠∠∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD为等腰梯形,故本选项符合题意.故选:D【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.6.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.7.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义对每个选项进行判断即可.【详解】A项是轴对称图形,不是中心对称图形;B项是中心对称图形,不是轴对称图形;C项是中心对称图形,不是轴对称图形;D项是中心对称图形,也是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的定义和中心对称图形的定义,掌握知识点是解题关键.8.C解析:C【分析】根据总体、样本、样本容量及个体的定义对选项逐一判断即可得答案.【详解】A、320名学生的体重情况是总体,故该选项错误;B、80名学生的体重情况是样本,故该选项错误;C、每个学生的体重情况是个体,故该选项正确;D、样本容量是80,故该选项错误;故选:C.【点睛】本题考查总体、个体、样本、样本容量的定义,熟练掌握相关定义是解题关键.9.B解析:B【分析】根据抽样调查和普查的特点分析即可.【详解】解:A.调查一批电池的使用寿命适合抽样调查;B.调查全班同学的身高情况适合普查;C.调查一批食品中防腐剂的含量适合抽样调查;D.调查全市中小学生最喜爱的数学家适合抽样调查;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.C解析:C【解析】解:A.是轴对称图形,不是中心对称图形,故本选项错误;B.既不是轴对称图形,又不是中心对称图形,故本选项错误;C.既是轴对称图形又是中心对称图形,故本选项正确;D.不是轴对称图形,是中心对称图形,故本选项错误.故选C.点睛:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.B解析:B【分析】根据题意可得出两次降价后的售价为200(1- a%)2,列方程即可.【详解】解:根据题意可得出两次降价后的售价为200(1- a%)2,∴200(1- a%)2=148故选:B.【点睛】本题主要考查增长率问题,找准题目中的等量关系是解此题的关键.12.B解析:B【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B【点睛】此题考查中心对称图形,难度不大二、填空题13.1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:114.20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.16.【解析】【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】∵四边形ABCD 是菱形,∴CO=A 解析:245【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO =12AC =3cm ,BO =12BD =4cm ,AO ⊥BO ,∴BC 5cm ,∴S 菱形ABCD =2BD AC ⋅==12×6×8=24cm 2, ∵S 菱形ABCD =BC ×AE ,∴BC ×AE =24,∴AE =24245BC =cm . 故答案为:245cm . 【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分. 17..【分析】连接CD ,利用勾股定理列式求出AB ,判断出四边形CFDE 是矩形,根据矩形的对角线相等可得EF=CD ,再根据垂线段最短可得CD⊥AB 时,线段EF 的值最小,然后根据三角形的面积公式列出求解 解析:6013. 【分析】 连接CD ,利用勾股定理列式求出AB ,判断出四边形CFDE 是矩形,根据矩形的对角线相等可得EF=CD ,再根据垂线段最短可得CD ⊥AB 时,线段EF 的值最小,然后根据三角形的面积公式列出求解即可.【详解】解:如图,连接CD .∵∠ACB=90°,AC=5,BC=12,∴AB22A BCC+22512+=13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=12BC•AC=12AB•CD,即12×12×5=12×13•CD,解得:CD=60 13,∴EF=60 13.故答案为:60 13.【点睛】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.18.【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解解析:【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为5【点睛】本题考查轴对称-最短路线问题;菱形的性质.19.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.20.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.21.-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【解析:-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.22.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.23.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD 是正方形,所以AB=AD ,∠BFA=∠BAD=90°,则有∠ABF=∠DAE ,又因为DE ⊥a 、BF ⊥a ,根据AAS 易证△AFB ≌△DEA ,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.24.20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD⊥EF,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如解析:20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD ⊥EF ,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC ,∵AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF ,∴四边形BEDF 为菱形,∴DE =DF =BE =BF ,∵AC =BD =8,OE =OF =8232-=, 由勾股定理得:DE =2222435OD OE +=+=,∴四边形BEDF 的周长=4DE =4×5=20,故答案为:20.【点睛】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.三、解答题25.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.26.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.27.1a2--,当1a=-时,原式1=3【分析】本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠,即当0a =、1、2、2-时原分式无意义,故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.28.(1)见解析;(2)15;见解析.【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求.(2)证明△ABE 的周长=AB +AD 即可.【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.29.(1)图见解析;(2)图见解析;(3)x 的值为6或7.【分析】(1)分别作出B 、C 的对应点B 1,C 1即可解决问题;(2)分别作出A 、B 、C 的对应点A 2、B 2、C 2即可解决问题;(3)观察图形即可解决问题.【详解】(1)作图如下:△AB 1C 1即为所求;(2)作图如下:△A 2B 2C 2即为所求;(3)P 点如图,x 的值为6或7.【点睛】本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.30.证明见解析.【解析】试题分析:由平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠ADE=∠CBF ,再由BE=DF ,得出DE=BF ,证明△ADE ≌△CBF ,即可得出结论.试题解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADE=∠CBF ,∵BE=DF ,∴DE=BF ,在△ADE 和△CBF 中,{AD CBADE CBF DE BF=∠=∠=,∴△ADE ≌△CBF (SAS ),∴AE=CF .考点:平行四边形的性质;全等三角形的判定与性质.31.(1)AP=EF ,AP ⊥EF ,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS 证明△AMO ≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP ≌△FPE (SAS ),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP ⊥EF ,故AP=EF ,且AP ⊥EF .(3)题(1)(2)的结论仍然成立;如右图,延长AB 交PF 于H ,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.32.(1)见解析 (2)见解析【分析】(1)本题考查图形的旋转变换以及作图,根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°后的点1A 、1B 、1C 的位置,然后顺次连接即可.(2)本题考查中心对称图形的作图,找出点1A 、1B 、1C 关于原点O 成中心对称的点2A 、2B 、2C 的位置,然后顺次连接即可.【详解】【点睛】解答此类型题目首先要清楚旋转图形和中心对称图形的性质,按照图形定义进行作图,作。
苏科版(完整版)八年级数学下册期中试卷及答案
苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.302.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5003.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是()A.5 B.8 C.10 D.124.如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②∠AHB=∠EHD;③S△BHE=S△CHD;④AG⊥BE.其中正确的是()A.①③B.①②③④C.①②③D.①③④5.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.如图,已知正方形ABCD,对角线的交点M(2,2).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M的坐标变为()A .(﹣2012,2)B .(﹣2012,﹣2)C .(﹣2013,﹣2)D .(﹣2013,2)7.如图,▱ABCD 的周长为22m ,对角线AC 、BD 交于点O ,过点O 与AC 垂直的直线交边AD 于点E ,则△CDE 的周长为( )A .8cmB .9cmC .10cmD .11cm 8.如图,函数k y x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .9.如图,在四边形ABCD 中,AD BC =,BC ,E 、F 、G 分别是AB 、CD 、AC 的中点,若10DAC ∠=︒,66ACB ∠=︒,则FEO ∠等于( )A .76°B .56°C .38°D .28°10.如图,菱形ABCD 的对角线交于点O ,AC=8cm ,BD=6cm ,则菱形的高为( )A.485cm B.245cm C.125cm D.105cm二、填空题11.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。
苏科版(完整版)八年级数学下册期中试卷及答案
苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.下列调查中,最适合采用普查的是( ) A .长江中现有鱼的种类B .八年级(1)班36名学生的身高C .某品牌灯泡的使用寿命D .某品牌饮料的质量2.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①∠ABE =∠DCE ;②∠AHB =∠EHD ;③S △BHE =S △CHD ;④AG ⊥BE .其中正确的是( )A .①③B .①②③④C .①②③D .①③④3.如图,在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC 和BD 相交于点O ,OE ⊥BD 交AD 于E ,则ΔABE 的周长为( )A .4cmB .6cmC .8cmD .10cm4.若顺次连接四边形ABCD 各边的中点得到一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形5.在菱形ABCD 中,12AC =,16BD =,则该菱形的面积是( ) A .10B .40C .96D .1926.下列调查中,适合普查方式的是( ) A .调查某市初中生的睡眠情况 B .调查某班级学生的身高情况 C .调查南京秦淮河的水质情况D .调查某品牌钢笔的使用寿命7.下面调查方式中,合适的是( )A .试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B .了解一批袋装食品是否含有防腐剂,选择普查方式C .为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D .调查某新型防火材料的防火性能,采用普查的方式8.如图所示,在矩形ABCD 中,E 为AD 上一点,EF CE ⊥交AB 于点F ,若2DE =,矩形ABCD 的周长为16,且CE EF =,求AE 的长( )A.2B.3C.4D.69.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG,下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=12AD.其中正确的有( )A.①②B.①②④C.①③④D.①②③④10.要反应一周气温的变化情况,宜采用()A.统计表B.条形统计图C.扇形统计图D.折线统计图二、填空题11.若菱形的两条对角线分别为2和3,则此菱形的面积是.12.如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是___.13.若关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,则k的取值范围是_____.14.如图,在 ABCD中,若∠A=2∠B,则∠D=________°.15.如图,在菱形ABCD中,若AC=24 cm,BD=10 cm,则菱形ABCD的高为________cm.16.若分式方程211x m x x-=--有增根,则m =________. 17.如果用A 表示事件“三角形的内角和为180°”,那么P (A )=_____.18.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.19.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.20.如图,在平面直角坐标系中,四边形OBCD 是菱形,OB =OD =2,∠BOD =60°,将菱形OBCD 绕点O 旋转任意角度,得到菱形OB 1C 1D 1,则点C 1的纵坐标的最小值为_____.三、解答题21.自2009年以来,“中国•兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如表: 批次 1 2 3 4 5 6 油菜籽粒数 100400800100020005000发芽油菜籽粒数 a 318 652 793 1604 4005 发芽频率0.8500.7950.8150.793b0.801(1)分别求a和b的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1);(3)农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.22.一粒木质中国象棋子“帅”,它的正面雕刻一个“帅”字,它的反面是平滑的.将它从定高度下掷,落地反弹后可能是“帅”字面朝上,也可能是“帅”字面朝下.由于棋子的两面不均匀,为了估计“帅”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表:试验次数20406080100120140160“帅”字面朝上频数a18384752667888相应频率0.70.450.630.590.520.550.56b=;=;(2)画出“帅”字面朝上的频率分布折线图;(3)如图实验数据,实验继续进行下去,根据上表的这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?23.如图,在▱ABCD中,E为BC边上一点,且AB=AE(1)求证:△ABC≌△EAD;(2)若∠B=65°,∠EAC=25°,求∠AED的度数.24.如图,在平面直角坐标系中,点O为坐标原点,AB// OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.(1)在t=3时,M点坐标,N点坐标;(2)当t为何值时,四边形OAMN是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.25.计算: (1)2354535⨯; (2)()22360,0x y xy x y ≥≥;(3)()48274153-+÷.26.如图,反比例函数ky x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数ky x=的图像上另一点(,2)C n -.(1)求反比例函数ky x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0kax b x +-≥的解集为_________(4)若()11,D x y 在ky x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.27.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .28.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验:第一步:如图1在一张纸上画了一个平角∠AOB;第二步:如图2在平角∠AOB内画一条射线,沿着射线将平角∠AOB裁开;第三步:如图3将∠AO'C'放在∠COB内部,使两边分别与OB、OC相交,且O'A=O'C';第四步:连接OO',测量∠COB度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB.你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB的关系是;(2)线段O'A与O'C'的关系是.请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知:求证:证明:【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】解:A .调查长江中现有鱼的种类,调查的难度大,范围广,适合抽样调查; B .调查八年级(1)班36名学生的身高,难度不大,适合普查; C .调查某品牌灯泡的使用寿命,调查带有破坏性,适合抽样调查; D .调查某品牌饮料的质量,调查带有破坏性,适合抽样调查; 故选:B . 【点睛】本题考查的是普查与抽样调查的含义与运用,掌握以上知识是解题的关键.2.B解析:B 【分析】根据正方形的性质证得BAE CDE ∆≅∆,推出ABE DCE ∠=∠,可知①正确;证明ABH CBH ∆≅∆,再根据对顶角相等即可得到AHB EHD ∠=∠,可知②正确;根据//AD BC ,求出BDE CDE S S ∆∆=,推出BDE DEH CDE DEH S S S S ∆∆∆∆-=-,即BHE CHD S S ∆∆=,故③正确;利用正方形性质证ADH CDH ∆≅∆,求得HAD HCD ∠=∠,推出ABE HAD ∠=∠;求出90ABE BAG ∠+∠=︒,求得90AGE ∠=︒故④正确.【详解】 解:四边形ABCD 是正方形,E 是AD 边上的中点,AE DE ∴=,AB CD =,90BAD CDA ∠=∠=︒,()BAE CDE SAS ∴∆≅∆, ABE DCE ∴∠=∠,故①正确;∵四边形ABCD 是正方形, ∴AB=BC , ∠ABD=∠CBD , ∵BH=BH , ∴ABH CBH ∆≅∆,AHB CHB ∴∠=∠,BHC DHE ∠=∠,AHB EHD ∴∠=∠,故②正确;//AD BC ,BDE CDE S S ∆∆∴=,BDE DEH CDE DEH S S S S ∆∆∆∆∴-=-,即BHE CHD S S ∆∆=, 故③正确;四边形ABCD是正方形,∴=,45AD DC∠=∠=︒,DH DHADB CDB=,()∴∆≅∆,ADH CDH SAS∴∠=∠,HAD HCD∠=∠ABE DCE∴∠=∠,ABE HAD∠=∠+∠=︒,90BAD BAH DAH∴∠+∠=︒,90ABE BAH∴∠=︒-︒=︒,AGB1809090∴⊥,AG BE故④正确;故选:B.【点睛】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题关键要充分利用正方形的性质:①四边相等;②四个内角相等,都是90度;③对角线相等,相互垂直,且每条对角线平分一组对角.3.D解析:D【解析】分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.详解:∵四边形ABCD是平行四边形,∴AC、BD互相平分,∴O是BD的中点.又∵OE⊥BD,∴OE为线段BD的中垂线,∴BE=DE.又∵△ABE的周长=AB+AE+BE,∴△ABE的周长=AB+AE+DE=AB+AD.又∵□ABCD的周长为20cm,∴AB+AD=10cm∴△ABE的周长=10cm.故选D.点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分. 请在此填写本题解析!4.D解析:D 【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得. 【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH 四边形EFGH 是矩形 90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥ BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形 故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.5.C解析:C 【分析】根据菱形的面积等于对角线乘积的一半即可解决问题. 【详解】解:∵四边形ABCD 是菱形,12AC =,12BD =, ∴菱形ABCD 的面积1112169622AC BD =⋅⋅=⨯⨯=. 故选:C . 【点睛】本题考查菱形的性质,解题的关键是记住菱形的面积等于对角线乘积的一半,属于中考常考题型.6.B解析:B【分析】根据抽样调查和普查的特点作出判断即可.【详解】A、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;B、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;C、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;D、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;故选:B.【点睛】本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.7.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;B、了解一批袋装食品是否含有防腐剂,适合抽样调查;C、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;D、调査某新型防火材料的防火性能,适合抽样调查.故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.B解析:B【分析】易证△AEF≌△ECD,可得AE=CD,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE的长度.【详解】∵四边形ABCD为矩形,∴∠A=∠D=90°,∵EF⊥CE,∴∠CEF=90°,∴∠CED+∠AEF=90°,∵∠CED+∠DCE=90°,∴∠DCE=∠AEF ,在△AEF 和△DCE 中,A D AEF DCE EF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DCE(AAS),∴AE=DC ,由题意可知:2(AE+DE+CD)=16,DE=2,∴2AE=6,∴AE=3;故选:B .【点睛】本题考查了矩形的性质,全等三角形的性质和判定以及直角三角形的性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.9.D解析:D【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=90°,∵点E 、F 、H 分别是AB 、BC 、CD 的中点,∴△BCE ≌△CDF ,∴∠ECB=∠CDF ,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE ⊥DF ,故①正确;在Rt △CGD 中,H 是CD 边的中点,∴HG=12CD=12AD ,故④正确; 连接AH ,同理可得:AH ⊥DF ,∵HG=HD=12CD , ∴DK=GK ,∴AH 垂直平分DG ,∴AG=AD ,故②正确;∴∠DAG=2∠DAH ,同理:△ADH ≌△DCF ,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选D.【点睛】运用了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.10.D解析:D【分析】反应一周气温的变化情况,即反应一周气温的升高、降低的变化情况,因此采取折线统计图较好.【详解】解:折线统计图能够直观反应出一组数据的增减变化情况,因此要反应一周的气温变化情况,采用折线统计图较好,故选:D.【点晴】本题考查了各种统计图表的特征及应用,掌握统计图表的特征是解题的关键.二、填空题11.3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=×2×3=3,故答案为3.考点:菱形的性质.解析:3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=12×2×3=3,故答案为3.考点:菱形的性质.12..连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解解析:6013.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解即可.【详解】解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB22A BCC+22512+=13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=12BC•AC=12AB•CD,即12×12×5=12×13•CD,解得:CD=60 13,∴EF=60 13.故答案为:60 13.【点睛】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.13.k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<解析:k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<0,解得k<﹣1.故答案为:k<﹣1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.15.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.16.-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【解析:-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.17.1【分析】先判断出事件A是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A)=1,故答案为:1.【点睛】解析:1【分析】先判断出事件A是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A)=1,故答案为:1.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.18.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.19.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.20.【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=BC=1,CE =,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,解析:23-【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=12BC=1,CE=3,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,∵CE⊥OE,∴BE=12BC=1,CE3∴2223OC OE CE=+=∴当点C1在y轴上时,点C1的纵坐标有最小值为3-,故答案为:23-【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键.三、解答题21.(1)85a,0.802b =;(2)0.8;(3)4800【分析】 (1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值.(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率. (3)用油菜籽总数乘以发芽概率即可求得发芽粒数.【详解】(1)1000.85085a =⨯=,16040.8022000b ==; (2)∵观察表格发现发芽频率逐渐稳定到0.8附近,∴该品种油菜籽发芽概率的估计值为0.8;(3)60000.8=4800⨯,故估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800.【点睛】本题考查统计与概率,解题关键在于信息筛选能力,对频率计算公式的理解,其次注意计算仔细即可.22.(1)14,0.55;(2)图见解析;(3)0.55.【分析】(1)根据图中给出的数据和频数、频率与总数之间的关系分别求出a 、b 的值; (2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.【详解】(1)a =20×0.7=14;b =88160=0.55; 故答案为:14,0.55;(2)根据图表给出的数据画折线统计图如下:(3)随着试验次数的增加“帅”字面朝上的频率逐渐稳定在0.55左右,利用这个频率来估计概率,得P (“帅”字朝上)=0.55.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.23.(1)见解析;(2)∠AED =75°.【分析】(1)先证明∠B =∠EAD ,然后利用SAS 可进行全等的证明;(2)先根据等腰三角形的性质可得∠BAE =50°,求出∠BAC 的度数,即可得∠AED 的度数.【详解】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,AB AE ABC EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B =∠AEB ,∴∠BAE =50°,∴∠BAC =∠BAE+∠EAC =50°+25°=75°,∵△ABC ≌△EAD ,∴∠AED =∠BAC =75°.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质,注意掌握平行四边形的对边平行且相等的性质.24.(1)(3,8);(15,0);(2)t =7;(3)能,t =5.【分析】(1)根据点B 、C 的坐标求出AB 、OA 、OC,然后根据路程=速度×时间求出AM 、CN,再求出ON,然后写出点M 、N 的坐标即可;(2)根据有一个角是直角的平行四边形是矩形,当AM =ON 时,四边形OAMN 是矩形,然后列出方程求解即可;(3)先求出四边形MNCB 是平行四边形的t 值,并求出CN 的长度,然后过点B 作BC ⊥OC 于D,得到四边形OABD 是矩形,根据矩形的对边相等可得OD =AB,BD =OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.【详解】解:(1)∵B(15,8),C(21,0),∴AB=15,OA=8,OC=21,当t=3时,AM=1×3=3,CN=2×3=6,∴ON=OC-CN=21﹣6=15,∴点M(3,8),N(15,0);故答案为:(3,8);(15,0);(2)当四边形OAMN是矩形时,AM=ON,∴t=21-2t,解得t=7秒,故t=7秒时,四边形OAMN是矩形;(3)存在t=5秒时,四边形MNCB能否为菱形.理由如下:四边形MNCB是平行四边形时,BM=CN,∴15-t=2t,解得:t=5秒,此时CN=5×2=10,过点B作BD⊥OC于D,则四边形OABD是矩形,∴OD=AB=15,BD=OA=8,CD=OC-OD=21-15=6,在Rt△BCD中,BC=22=10,BD CD∴BC=CN,∴平行四边形MNCB是菱形,故,存在t=5秒时,四边形MNCB为菱形.【点睛】本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键.25.(1)6;(2)32xy;(3)5【分析】(1)利用二次根式的乘法法则运算;(2)利用二次根式的乘法法则运算;(3)利用二次根式的除法法则运算.【详解】(1=23×35=6; (2()260,0yxy x y ≥≥=3(3)=4﹣=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.26.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数 (2)利用割补法即可求出面积 (3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =,∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x -=,又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b =-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0. 故答案为:43x ≥或x <0. 【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.27.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE 为平行四边形,∴BF =AE ,即t =6﹣2t ,解得:t =2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.28.(1)互补;(2)相等;证明见解析【分析】根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .【详解】(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等.已知:AO C ∠''+∠COB=180︒,O'A=O'C',求证:'OO 平分∠COB .证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),∴O C B OAO ∠=∠''',∵O'A=O'C',∴Rt △Rt AO D '≅△C O E '',∴O D O E '=',∵O D '⊥OC ,O E '⊥OB ,∴'OO 平分∠COB .【点睛】本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.。
(完整版)苏科版八年级数学下册期中试卷及答案
(完整版)苏科版八年级数学下册期中试卷及答案一、选择题1.下面的图形中,是中心对称图形的是( ) A .B .C .D .2.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD =B .//AD BCC .A C ∠∠=D .AD BC =3.一个事件的概率不可能是( ) A .32B .1C .23D .04.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE ,延长AF 交CD 于点G ,已知CG =2,DG =1,则BC 的长是( )A .32B .26C .25D .235.下列方程中,关于x 的一元二次方程是( )A .x 2﹣x (x +3)=0B .ax 2+bx +c =0C .x 2﹣2x ﹣3=0D .x 2﹣2y ﹣1=06.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(4,3),点D 是边OC 上的一点,点E 在直线OB 上,连接DE 、CE ,则DE+CE 的最小值为( )A.5B.7+1C.25D.24 57.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.每个学生的身高是个体B.本次调查采用的是普查C.样本容量是500名学生D.10000名学生是总体8.若分式42xx-+的值为0,则x的值为()A.0 B.-2 C.4 D.4或-29.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近()A.1000 B.1500 C.2000 D.250010.下列图形不是轴对称图形的是()A.等腰三角形B.平行四边形C.线段D.正方形11.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是2.2 S=甲, 1.8S=乙, 3.3S=丙,S a=丁,a是整数,且使得关于x的方程2(2)410a x x-+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a的取值可以是()A.3B.2C.1D.1-12.“明天下雨的概率是80%”,下列说法正确的是()A.明天一定下雨B.明天一定不下雨C.明天下雨的可能性比较大D.明天80%的地方下雨二、填空题13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为_____.15.已知()22221140ab a b a b +=≠+,则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为_____.16.已知a ,b 是一元二次方程x 2﹣2x ﹣2020=0的两个根,则a 2+2b ﹣3的值等于_____. 17.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________. 18.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)19.如图,在菱形ABCD 中,8AB =,60B ∠=︒,点G 是边CD 的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF ED +的最小值是_________.20.如图,在菱形ABCD 中,若AC =24 cm ,BD =10 cm ,则菱形ABCD 的高为________cm .21.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_____.22.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =1,则四边形BEDF 的周长是_____.23.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.24.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC 的长为 .三、解答题25.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标. 26.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE(1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?27.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?28.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB 边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.29.如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平形四边形的第四个顶点D的坐标.30.如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.31.用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x 2﹣3x ﹣1=0.32.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形 33.如图,已知△ABC .(1)画△ABC 关于点C 对称的△A′B′C ;(2)连接AB′、A′B ,四边形ABA'B'是 形.(填平行四边形、矩形、菱形或正方形) 34.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD 中,若∠A =∠C =90°,则四边形ABCD 是“准矩形”;如图②,在四边形ABCD 中,若AB =AD ,BC =DC ,则四边形ABCD 是“准菱形”.(1)如图,在边长为1的正方形网格中,A 、B 、C 在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD 和“准菱形”ABCD′.(要求:D 、D′在格点上);(2)下列说法正确的有 ;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.35.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.36.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据中心对称图形与轴对称图形的概念依次分析即可.【详解】解:A、B、C只是轴对称图形,D既是轴对称图形又是中心对称图形,故选D.【点睛】本题考查的是中心对称图形与轴对称图形,解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.D解析:D 【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意; C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意. 故选:D 【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.3.A解析:A 【分析】根据概率的意义知,一件事件的发生概率最大是1,所以只有A 项是错误的,即找到正确选项. 【详解】∵必然事件的概率是1,不可能事件的概率为0, ∴B、C 、D 选项的概率都有可能, ∵32>1, ∴A 不成立. 故选:A . 【点睛】本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.4.B解析:B 【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt △EGF ≌Rt △EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案. 【详解】 解:连接EG ,∵E 是BC 的中点, ∴BE =EC ,∵△ABE 沿AE 折叠后得到△AFE , ∴BE =EF , ∴EF =EC , ∵在矩形ABCD 中, ∴∠C =90°, ∴∠EFG =∠B =90°, ∵在Rt △EGF 和Rt △EGC 中,EF ECEG EG =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EGC (HL ), ∴FG =CG =2,∵在矩形ABCD中,AB=CD=CG+DG=2+1=3,∴AF=AB=3,∴AG=AF+FG=3+2=5,∴BC=AD=.故选:B.【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.5.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.6.D解析:D【解析】【分析】首先根据菱形的对角线性质得到DE+CE的最小值=CF,再利用菱形的面积列出等量关系即可解题.【详解】解:如下图,过点C作CF⊥OA与F,交OB于点E,过点E作ED⊥OC与D,∵四边形OABC是菱形,由菱形对角线互相垂直平分可知EF=ED,∴DE+CE的最小值=CF,∵A的坐标为(4,3),∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积),即24=CF×5, 解得:CF= 245, 即DE+CE 的最小值=245, 故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E 的位置并熟悉菱形面积的求法是解题关键.7.A解析:A【分析】由总体、个体、样本、样本容量的概念,结合题意进行分析,即可得到答案.【详解】解:A 、每个学生的身高是个体,故A 正确;B 、本次调查是抽样调查,故B 错误;C 、样本容量是500,故C 错误;D 、八年级10000名学生的身高是总体,故D 错误;故选:A .【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.C解析:C【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值. 【详解】 解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩, 由40x -=,得:4x =,由20x +≠,得:2x ≠-.综上,得4x =,即x 的值为4.故选:C .【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题.9.B解析:B【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近, 所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次, 故选:B .【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.10.B解析:B【分析】根据轴对称图形的概念判断即可.【详解】等腰三角形是轴对称图形,故A 错误;平行四边形不是轴对称图形,故B 正确;线段是轴对称图形,故C 错误;正方形是轴对称图形,故D 错误;故答案为:B.【点睛】本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.11.C解析:C【分析】根据方程的根的情况得出a 的取值范围,结合乙同学的成绩最稳定且a 为整数即可得a 得取值.【详解】∵关于于x 的方程2(2)410a x x -+-=有两个不相等的实数根, ∴()=16+42>0,a ∆-且20.a -≠ 解得:>-2a 且 2.a ≠∵丁同学的成绩最稳定,∴<1.8a 且0a >.则a=1.故答案选:C.【点睛】本题主要考查了方差的意义理解,结合一元二次方程的根的判别式进行求解.12.C解析:C【解析】【分析】根据概率的意义找到正确选项即可.【详解】解:明天下雨的概率是80%,说明明天下雨的可能性比较大.所以只有C 合题意. 故选:C .【点睛】本题考查了概率的意义,解决本题的关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.二、填空题13.5【分析】根据勾股定理求出AC ,根据矩形性质得出∠ABC=90°,BD=AC ,BO=OD ,求出BD 、OD ,根据三角形中位线求出即可.【详解】∵四边形ABCD 是矩形,∴∠ABC=90°,BD解析:5【分析】根据勾股定理求出AC ,根据矩形性质得出∠ABC=90°,BD=AC ,BO=OD ,求出BD 、OD ,根据三角形中位线求出即可.【详解】∵四边形ABCD 是矩形,∴∠ABC=90°,BD=AC ,BO=OD ,∵AB=6cm ,BC=8cm ,∴由勾股定理得:(cm ),∴DO=5cm ,∵点E 、F 分别是AO 、AD 的中点,∴EF=12OD=2.5cm,故答案为2.5.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.14.4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中解析:4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=22BC AC+=2234+=5,连接CP,如图所示:∵PD⊥AC于点D,PE⊥CB于点E,∴四边形DPEC是矩形,∴DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,∵1122BC AC AB CP⋅=⋅,∴DE=CP=345⨯=2.4,故答案为:2.4.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE 的最小值转化为其相等线段CP 的最小值. 15.0或-2【分析】根据(ab≠0),可以得到a 和b 的关系,从而可以求得所求式子的值.【详解】解:∵(ab≠0),∴,∴(a2+b2)2=4a2b2,∴(a2﹣b2)2=0,∴a2=b2解析:0或-2【分析】 根据2222114a b a b +=+(ab ≠0),可以得到a 和b 的关系,从而可以求得所求式子的值.【详解】 解:∵2222114a b a b+=+(ab ≠0), ∴2222224b a a b a b +=+, ∴(a 2+b 2)2=4a 2b 2,∴(a 2﹣b 2)2=0,∴a 2=b 2,∴a =±b ,经检验:a b =±符合题意,当a =b 时,2019202020192020110,b a a b ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭当a =﹣b 时,()()2019202020192020112,b a a b ⎛⎫⎛⎫-=---=- ⎪ ⎪⎝⎭⎝⎭ 故答案为:0或﹣2.【点睛】 本题考查的是代数式的值,同时考查了因式分解的应用,类解分式方程的方法,掌握以上知识是解题是关键.16.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.17.2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频解析:2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率10.10.30.40.2=---=【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频率总和为1.18.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质.19.【分析】由题意,点D 与点C 关于AG 对称,连接EC ,FC ,再利用垂线段最短求值即可【详解】解:连接,,如图在菱形中,,∴是边长为8的等边三角形∵是的中点∴∴是的垂直平分线∴∵,解析:【分析】由题意,点D 与点C 关于AG 对称,连接EC ,FC ,再利用垂线段最短求值即可【详解】解:连接EC ,FC ,如图在菱形ABCD 中,60B ∠=︒,8AB =∴ACD ∆是边长为8的等边三角形∵G 是CD 的中点∴AG CD ⊥∴AG 是CD 的垂直平分线∴EC ED =∵EF EC FC +≥,CF AD ⊥时,CF 最小∴EF ED +的最小值是等边ACD ∆的高:38432=故答案为:3【点睛】本题考查菱形的性质、垂线段最短、等边三角形的判定、勾股定理等知识,解决问题的关键是利用垂线段最短解决最小值问题,属于中考常考题型. 20.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB 于E ,如图所示:∵四边形ABCD 是菱形,对角线AC=24,BD=1 解析:12013【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE ⊥AB 于E ,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.21.1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=解析:1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=△BOC 面积=12×2×1=1. 故答案为:1.【点睛】 本题考查正方形的性质以及全等三角形的判定,根据全等三角形的性质将阴影部分的面积转化为△BOC 面积是解题的关键.22.20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD⊥EF,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如解析:20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD ⊥EF ,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC ,∵AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF ,∴四边形BEDF 为菱形,∴DE =DF =BE =BF ,∵AC =BD =8,OE =OF =8232-=, 由勾股定理得:DE =2222435OD OE +=+=,∴四边形BEDF 的周长=4DE =4×5=20,故答案为:20.【点睛】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.23.【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a ,x11,x12,…,x30的平均数为b ,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求 解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数. 24.【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF 为菱形,∴∠FCO=∠ECO解析:【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF 为菱形,∴∠FCO=∠ECO ,由折叠的性质可知,∠ECO=∠BCE ,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE ,AB=AE+EB=3,∴EB=1,EC=2, ∴223BC EC EB =-=【点睛】解题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC 的长. 三、解答题25.解:(1)如图所示:点A 1的坐标(2,﹣4).(2)如图所示,点A 2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A 、B 、C 三点关于x 轴的对称点,再顺次连接,然后根据图形写出A 点坐标.(2)将△A 1B 1C 1中的各点A 1、B 1、C 1绕原点O 旋转180°后,得到相应的对应点A 2、B 2、C 2,连接各对应点即得△A 2B 2C 2.26.(1)见解析(2)成立【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CDB CDF BE DF∠∠===∴△CBE ≌△CDF (SAS ).∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF ,∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF∵∠GCE =∠GCF , GC =GC∴△ECG ≌△FCG (SAS ).∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.27.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.28.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析. 【分析】(1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解;(2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC 时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM ,△OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.29.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A 、B 、C 的对应点A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1;(2)分类讨论:分别以AB 、AC 、BC 为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D 点的坐标.【详解】解:(1)如图,点A 、B 、C 的坐标分别为(1,0),(4,1),(2,2)---,根据关于原点对称的点的坐标特征,则点A 、B 、C 关于原点对称的点分别为(1,0),(4,1),(2,2)--,描点连线,△A 1B 1C 1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:---,则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---.故答案为:(1,1),(5,3),(3,1)【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.30.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明见解析.【分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【详解】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:如图,∵CE 平分∠BCA ,∴∠1=∠2,又∵MN ∥BC ,∴∠1=∠3,∴∠3=∠2,∴EO=CO ,同理,FO=CO ,∴EO=FO ,又∵OA=OC ,∴四边形AECF 是平行四边形,∵CF 是∠BCA 的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF 是矩形.【点睛】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF 是平行四边形,并证明∠ECF 是90°.31.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12317317x x +-== 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,。
(完整版)苏科版八年级数学下册期中试卷及答案doc
(完整版)苏科版八年级数学下册期中试卷及答案doc一、选择题1.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2602.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BCC .A C ∠∠=D .AD BC =3.如果把分式aa b-中的a 、b 都扩大2倍,那么分式的值一定( ) A .是原来的2倍 B .是原来的4倍C .是原来的12D .不变4.已知12x <≤ ,则23(2)x x -+-的值为( ) A .2 x - 5B .—2C .5 - 2 xD .25.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD ,则四边形ABCD面积的最大值是( )A .15B .16C .19D .206.下列式子为最简二次根式的是( ) A 22a b +B 2a C 12a D 127.用配方法解一元二次方程2620x x --=,以下正确的是( ) A .2(3)2x -= B .2(3)11x -= C .2(3)11x += D .2(3)2x +=8.两个反比例函数3y x =,6y x=在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x=图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .40399.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .10.下列我国著名企业商标图案中,是中心对称图形的是( )A .B .C .D .二、填空题11.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”) 12.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b >1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.13.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版八年级下册数学期中试卷(含答案) 一、选择题 1.下面的图形中,是中心对称图形的是( )
A. B. C. D.
2.下列调查中,最不适合普查的是( ) A.了解一批灯泡的使用寿命情况
B.了解某班学生视力情况
C.了解某校初二学生体重情况
D.了解我国人口男女比例情况
3.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )
A.280 B.240 C.300 D.260 4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是( )
A.5 B.8 C.10 D.12 5.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A’,若∠C=120°,∠A=26°,则∠A′DB的度数是( )
A.120° B.112° C.110° D.100°
6.一个事件的概率不可能是( )
A.32 B.1 C.23 D.0 7.如果把分式aab中的a、b都扩大2倍,那么分式的值一定( ) A.是原来的2倍 B.是原来的4倍
C.是原来的12 D.不变
8.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两
个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ平行于AB的次数是( )
A.2 B.3 C.4 D.5 9.如图,已知正方形ABCD,对角线的交点M(2,2).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )
A.(﹣2012,2) B.(﹣2012,﹣2) C.(﹣2013,﹣2) D.(﹣2013,2)
10.下列条件中,不能..判定平行四边形ABCD为矩形的是( ) A.∠A=∠C B.∠A=∠B C.AC=BD D.AB⊥BC 11.下列调查中,适宜采用普查方式的是( ) A.一批电池的使用寿命 B.全班同学的身高情况
C.一批食品中防腐剂的含量 D.全市中小学生最喜爱的数学家
12.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( ) A.2000 B.200 C.20 D.2 二、填空题
13.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小
球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”) 14.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是___. 15.如图,小正方形方格的边长都是1,点A、B、C、D、O都是小正方形的顶点.若COD是由AOB绕点O按顺时针方向旋转一次得到的,则至少需要旋转______°. 16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
17.如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是___.
18.在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有_____个. 19.已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ=_____°时,GC=GB.
20.如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度_____.
21.如图是某市连续5天的天气情况,最大的日温差是________℃. 22.x千克橘子糖、y千克椰子糖、z千克榴莲糖混合成“什锦糖”.已知这三种糖的单价
分别为30元/千克、32元/千克、40元/千克,则这种“什锦糖”的单价为_____元.(用含x、y、z的代数式表示) 23.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.
24.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若6 cmAB,8 cmBC则AEF的周长______cm.
三、解答题 25.已知:如图,在ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF. 求证:四边形BFDE是平行四边形.
26.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1. (2)作出△ABC关于坐标原点O成中心对称的△A2B2C2. (3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值. 27.如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
28.计算: (1)2354535; (2)22360,0xyxyxy; (3)48274153. 29.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,﹣1)、B(﹣1,0)、C(0,﹣3)
(1)点A关于坐标原点O对称的点的坐标为 . (2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,A1A的长为 .
30.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图. 根据所给数据,解答下列问题: (1)本次问卷共随机调查了_________名学生,扇形统计图中m_________,扇形D所对应的圆心角为_________°; (2)请根据数据信息补全条形统计图; (3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人? 31.如图,已知△ABC.
(1)画△ABC关于点C对称的△A′B′C; (2)连接AB′、A′B,四边形ABA'B'是 形.(填平行四边形、矩形、菱形或正方形)
32.解方程:x21x1x
.
33.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取
了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x<2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:
(1)这次随机抽取了 名学生进行调查;扇形统计图中,扇形B的圆心角的度数为 . (2)补全频数分布直方图; (3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名? 34.如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE的形状,并说明理由. 35.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC延长线上一点,且CE=3,连结DE.
(1)求证:四边形ACED为矩形. (2)连结OE,求OE的长.
36.解方程(1)22(1)1xx
(2)22310xx(配方法)
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【分析】 根据中心对称图形与轴对称图形的概念依次分析即可. 【详解】 解:A、B、C只是轴对称图形,D既是轴对称图形又是中心对称图形, 故选D. 【点睛】 本题考查的是中心对称图形与轴对称图形,解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形. 2.A 解析:A 【分析】 根据全面调查与抽样调查的特点对四个选项进行判断. 【详解】 A、了解一批灯泡的使用寿命情况,适合采用抽样调查,所以A选项符合题意;
B、了解某班学生视力情况,适合采用普查,所以B选项不合题意;
C、了解某校初二学生体重情况,适合采用普查,所以C选项不合题意;
D、了解我国人口男女比例情况,适合采用普查,所以D选项不合题意.
故选:A. 【点睛】 本题考查了全面调查与抽样调查:如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查. 3.A 解析:A 【解析】 由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),
∴1000×28100=280(人), 即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人. 故选A. 4.C 解析:C 【分析】 由矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,易证得四边形CODE是菱形,又由AB=4,BC=3,可求得AC的长,继而求得OC的长,则可求得答案. 【详解】 解:∵CE∥BD,DE∥AC, ∴四边形CODE是平行四边形, ∵四边形ABCD是矩形, ∴AC=BD,OB=OD,OC=OA,∠ABC=90° ∴OC=OD, ∴四边形CODE是菱形 ∵AB=4,BC=3
225ACABBC
∴OC=52
∴四边形CODE的周长=4×52=10 故选:C.