人教版高中数学必修三第二章统计全章教案
高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3

2.3.1 & 2.3.2 变量间的相关关系 两个变量的线性相关习课本P73~78,思考并完成以下问题预(1)相关关系是函数关系吗?(2)什么是正相关、负相关?与散点图有什么关系?(3)回归直线方程是什么?如何求回归系数?(4)如何判断两个变量之间是否具备相关关系?[新知初探]1.两个变量的关系分类函数关系相关关系 特征两变量关系确定两变量关系带有随机性2.散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. 3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.4.最小二乘法设x ,Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx ,当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q =i =1n(y i -a-bx i)2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.5.回归直线方程的系数计算公式回归直线方程回归系数系数a^的计算公式方程或公式y^=a^+b^x b^=∑i=1nxiyi-n x-y-∑i=1nx2i-n x2a^=y-b^x-上方加记号“^ ”的意义区分y的估计值y^与实际值ya,b上方加“^ ”表示由观察值按最小二乘法求得的估计值[小试身手]1.下列命题正确的是( )①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A.①③④B.②③④C.③④⑤D.②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.v,u;对变量1,得散点图图10),…,1,2=i)(iy,ix(有观测数据y,x.对变量2)(由这两个散点图可以判断2.,得散点图图10),…,1,2=i)(iv,iu(有观测数据A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关.80,当施肥量为250+x 5=y ^归方程为的线性回(kg)y 与水稻产量(kg)x .若施肥量3kg 时,预计水稻产量约为________kg..650(kg)=250+5×80=y ^代入回归方程可得其预测值80=x 解析:把 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8y 30 40 60 50 70若已求得它们的回直线的方程为______________________.,5=2+4+5+6+85=x 解析:由题意可知 y50.=30+40+60+50+705=即样本中心为(5,50).,a ^+x 6.5=y ^设回归直线方程为 ,)y ,x (回归直线过样本中心∵ ,7.51=a ^,即a ^+6.5×5=50∴ 17.5+x 6.5=y ^回归直线方程为∴ 17.5+x 6.5=y ^答案:相关关系的判断[典例] (1) ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. (2)某个男孩的年龄与身高的统计数据如下表所示.年龄x (岁)123456身高y (cm)78 87 98 108 115 120①画出散点图;②判断y 与x 是否具有线性相关关系.[解析] (1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;在③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y 与x 具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④求回归方程[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985①画出散点图;②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:秒/转14,所以机器的运转速度应控制在≤14.9x ,解得≤1067-x 5170得≤10y 由③内.求回归直线方程的步骤.)数据一般由题目给出)(n ,…,1,2=i )(i y ,i x (收集样本数据,设为(1) (2)作出散点图,确定x ,y 具有线性相关关系..i y i x ,2i x ,i y ,i x 把数据制成表格(3).iy i ∑i =1nx ,2i ∑i =1n x ,y ,x 计算(4) ⎩⎪⎨⎪⎧b ^=∑i =1nxiyi -n x y ∑i =1n x2i -n x 2,a ^=y -b ^ x .,公式为a ^,b ^代入公式计算(5).a ^+x b ^=y ^写出回归直线方程(6) [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.,52=1+2+3+44=x (2) y ,134=1+3+4+54=∑i=14x 39.=20+12+6+1=i y i ∑i =14x 2i ,30=16+9+4+1= b^,1310=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=a^,0=52×1310-134= .为所求的回归直线方程x 1310=y ^所以 利用线性回归方程对总体进行估计[典例x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:,3.5=2.5+3+4+4.54=y ,4.5=3+4+5+64=x (2) ∑i=14x ,66.5=6×4.5+5×4+4×3+3×2.5=i y i ∑i=14x 2i ,86=26+25+24+23= ∑i =14xiyi -4xy∑i =14x2i -4x 2=b ^所以 ,0.7=66.5-4×4.5×3.586-4×4.52=a ^0.35.=0.7×4.5-3.5=x b ^-y = 0.35.+x 0.7=y ^所以所求的线性回归方程为 ,)吨标准煤70.35(=0.35+0.7×100=y ^时,100=x 当(3) 90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:it iy it 2it i y i1 1 5 1 52 2 6 4 123 3 7 9 214 4 8 16 325 5 10 25 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1n y i =365=7.2.又∑i =1nt2i -n t -2=55-5×32=10,i =1n t i y i -n t-y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( )A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C.2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为2+x 1.5=y ^A. 2+x 1.5=-y ^B. 2-x 1.5=y ^C. 2-x 1.5=-y ^D. 之间负相关,回归直线y ,x ,由散点图可知变量a ^+x b ^=y ^设回归方程为 B 解析:选 2.+x 1.5=-y ^,因此方程可能为>0a ^,<0b ^轴上的截距为正数,所以y 在 个样本点,n 的y 和x 是变量)n y ,n x (,…,)2y ,2x (,)1y ,1x (设3.直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( ))y ,x (过点l .直线A B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误. 4.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的,x 0.006 2+9.5=y ^的回归方程为x 关于吨位y 人,船员人数32~5人数 (1)若两艘船的吨位相差1 000,求船员平均相差的人数;(2)估计吨位最大的船和最小的船的船员人数.,则2x ,1x 设两艘船的吨位分别为(1)解: y^)2x 6 20.00+(9.5-1x 0.006 2+9.5=2y ^-1 =0.006 2×1 000≈6, 即船员平均相差6人.,0.006 2×192≈11+9.5=y ^时,192=x 当(2) 0.006 2×3 246≈30.+9.5=y ^时,3 246=x 当 即估计吨位最大和最小的船的船员数分别为30人和11人.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( ) A .确定性关系 B .相关关系 C .函数关系D .无任何关系 解析:选 B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.,下x 80+50=y ^变化的回归直线方程为)千元(x 依劳动生产率)元(y .农民工月工资2列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元的单x ,但要注意80增加y ,1每增加x 知,x 80+50=y ^由回归直线方程 B 解析:选位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:则y 对x 的线性回归方程为( )A .y =x -1B .y =x +1x 12+88=y .C176=y .D =y ,176=174+176+176+176+1785=x 计算得, C 解析:选符合.C 检验知,)y ,x (,根据回归直线经过样本中心176=175+175+176+177+17754.已知x 与y 之间的几组数据如下表:,若某同学根据上表中的前两组a ^+x b ^=y ^假设根据上表数据所得线性回归直线方程为数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )′a <a ^,′b >y ^′ B.a >a ^,′b >b ^A. ′a <a ^,′b <y ^′ D.a >a ^,′b <b ^C. 解析:选C 由(1,0),(2,2)求b ′,a ′.2.=-2×1-0=′a ,2=2-02-1=′b ,58=24+15+12+3+4+0=i y i ∑i =16x 时,a ^,b ^求 x ,136=y ,3.5= ∑i=16x 2i ,91=36+25+16+9+4+1= ,57=58-6×3.5×13691-6×3.52=b ^∴ a^,13=-52-136=×3.557-136= ′.a >a ^,′b <b ^∴ =y ^的回归方程为(cm)x 对身高(kg)y 岁的人,体重38岁到18.正常情况下,年龄在50.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右. =y ^时,178=x 的人的体重进行预测,当178 cm 解析:用回归方程对身高为0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:________.=a ,则a +x 4=-y 由表中数据,求得线性回归方程为 ,132=4+5+6+7+8+96=x 解析: y,80=92+82+80+80+78+686=)y ,x (由回归方程过样本中心点 .a ^+1324×=-80得 106.=1324×+80=a ^即 答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y ,估计该台机器最为划算的使用年限为x 1.3-10.47=y ^具备线性相关关系,回归方程为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:;y ,x 求(1) (2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件?3 487)=i y i ∑i =17x ,45 309=2i ∑i =17y ,280=2i ∑i =17x 提示:( ,6=3+4+5+6+7+8+97=x (1)解: y≈79.86.66+69+73+81+89+90+917= ,≈4.753 487-7×6×79.86280-7×62=b ^∵(2) a^,51.36=4.75×6-79.86= .x 4.75+51.36=y ^之间的回归直线方程为x 纯利与每天销售件数∴ ≈31.29.x ,所以651.3+x 4.75=200时,200=y ^当(3) 因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.9.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元)2 4 4 6 6 6 7 7 8 10年饮食 支出y(万元)0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3(2)若某家庭年收入为9万元,预测其年饮食支出.406)=2i ∑i =110x ,117.7=i y i ∑i =110x 参考数据:( 解:依题意可计算得:x,10.98=y x ,36=2x ,1.83=y ,6= ,406=2i ∑i =110x ,117.7=i y i ∑i =110x ∵又,≈0.17∑i=110xiyi -10x y ∑i =110x2i -10x 2=b ^∴ a^0.81.+x 0.17=y ^∴,0.81=x b ^-y = 1.0.8+x 0.17=y ^所求的回归方程为∴ .)万元2.34(=0.81+0.17×9=y ^时,9=x 当(2) 可估计年收入为9万元的家庭每年饮食支出约为2.34万元.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选 C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20 解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190 192.=n ,求得80=n200+1 200+1 0001 000× B 解析:选 4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )200+x 10=y ^200 B.+x 10=-y ^A. 200-x 10=y ^200 D.-x 10=-y ^C. 解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.,则y 和x ,它们的平均数分别是n y ,…,2y ,1y 与n x ,…,2x ,1x .设有两组数据5)(的平均数是1+n y 3-n x 2,…,1+2y 3-2x 1,2+1y 3-1x 2新的一组数据 y 3-x 2.A 1+y 3-x 2.By 9-x 4.C1+y 9-x 4.D ,)n ,…,1,2=i 1(+i y 3-i x 2=i z 设 B 解析:选 =⎝ ⎛⎭⎪⎫1+1+…+1n +)n y +…+2y +1y (3n -)n x +…+2x +1x (2n =)n z +…+2z +1z (1n =z 则 1.+y 3-x 2 6.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12[35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( )211A.13B. 12C.23D. 解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7.13=2266的数据约占31.5,故总体中大于或等于22=3+ 7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90 解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,87.=75)+80+85×4+90×2+95+(100110平均数为 8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3 1.8.=5×0+20×1+10×2+10×3+5×450B 解析:选 9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4用水量y 4.5 4 3 2.5的a ,则a +x 0.7=-y 之间具有线性相关关系,其线性回归方程为x 与月份y 用水量值为( )A .5.25B .5C .2.5D .3.5 解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4 +5+6+3+(515+80,平均数为77,去掉一个最低分95去掉一个最高分 C 解析:选,因此1.2=]286)-(85+285)-(85+286)-(85+283)-(85+285)-[(8515,方差为85=6)选C.,…,2+2x 2,3+1x 3,则2s ,方差是x 的平均数是n x ,…,3x ,2x ,1x .如果数据11)(的平均数和方差分别是2+n x 32s 和x A.2s 9和x 3.B2s 9和2+x 3.C4+2s 12和2+x 3.D nx …,2x ,1x ,由于数据2+x 3的平均数是2+n x 3,…,2+2x 2,3+1x 3 C 解析:选.2s 9的方差为2+n x 3,…,2+2x 2,3+1x 3,所以2s 的方差为 12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( ) A .x =9 B .y =8C .乙的成绩的中位数为26D .乙的成绩的方差小于甲的成绩的方差解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x =9;因为乙的成绩的平均值为24,所以y =24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小. 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.∴,2;又方差为20=y +x ,则10=159)×+11+10+y +x (,得10解析:由平均数为=xy 208,2=2y +2x ,得2=15]×210)-(9+210)-(11+210)-(10+210)-y (+210)-x [( 4.=x2+y2-2xy =x -y 2=|y -x |∴,192 答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.12.=×482148+36解析:抽取的男运动员的人数为 答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)59408 66368 36016 26247 25965 49487 26968 86021 77681 83458 21540 62651 69424 78197 20643 67297 76413 66306 51671 54964 87683 30372 39469 97434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1,∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,10.=z ,20=y 同理,30.=x ,解得0.030×10=x100则3.=×181030+20+10的学生中选取的人数为[140,150]故从 答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) ,应如何110名学生中抽取50为调查某班学生的平均身高,从)分10本小题满分(.17抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样? 抽签法或随机数(人,采用简单随机抽样法5,即抽取110名学生中抽取50解:从法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?22.=1326=17+19+20+21+25+306样本均值为1)(解: 4=1312×名工人中有12,故推断该车间13=26知样本中优秀工人所占比例为(1)由(2)名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人);四川籍的有15+10+5+5+5=40(人).2,即四川籍的应抽取2=x ,解得x40=5100人,依题意得x 设四川籍的驾驶人员应抽取人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样.,100=99)+98+103+98+99+101+(10217=甲x (2) x,100=110)+115+75+85+90+115+(11017=乙 ,1)≈3.43+4+9+4+1+1+(417=2甲s ,228.57=100)+225+625+225+100+225+(10017=2乙s ,故甲车间产品比较稳定.2乙s <2甲s ∴ 21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数 频率[10,15) 10 0.25[15,20) 25n [20,25) mp[25,30] 20.05 合计M1(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 40.=M ,所以0.25=10M知,0.25频率是 因为频数之和为40,所以10+25+m +2=40,解得m =3.0.075.=340=p 故 因为a 是对应分组[15,20)的频率与组距的商,125.0.=2540×5=a 所以 (2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入iy i ∑i =110x ,20=i ∑i =110y ,80=i ∑i =110x 的数据资料,算得)单位:千元(i y 与月储蓄)单位:千元(i x 720.=2i ∑i =110x ,184= ;a ^+xb ^=y ^的线性回归方程x 对月收入y 求家庭的月储蓄(1) (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.,8=8010=i ∑i =1n x 1n =x ,10=n 由题意知(1)解: y ,2=2010=i ∑i =1n y 1n = ,80=210×8-720=2x 10-2i ∑i =110x 又 ∑i=110x ,24=10×8×2-184=y x 10-i y i ,0.3=2480=∑i =110xiyi -10x y∑i =110x2i -10x 2=b ^由此得 a^,0.4=-0.3×8-2=x b ^-y = 0.4.-x 0.3=y ^故所求回归方程为 (2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。
高中数学必修三第二章 统计 本章整合(共35张PPT)课件

定义:散点图中的点分布在一条直线附近
相关关系→线性相关
回归方程
求法:最小二乘法求回归方程系数 应用:已知一个变量值预测另一个变量值
专题一 三种抽样方法的比较
简单随机抽样、系统抽样、分层抽样的比较如下表:
类别 共同点
各自特点
联系
适用范围
简单
总体中个
随
从总体中逐个
体无差异
机抽 样
系统 抽样
分层 抽样
答案:0.02 600
专题三 用样本的数字特征估计总体的数字特征
为了从整体上更好地把握总体的规律,我们还可以通过样本数 据的众数、中位数、平均数和标准差等数字特征对总体的数字特征
作出估计.众数就是样本数据中出现次数最多的那个值;中位数就是 把样本数据按照由小到大(或由大到小)的顺序排列,若数据的个数 是奇数,就是处于中间位置的数;若数据的个数是偶数,就是中间两个 数据的平均数.平均数就是所有样本数据的平均值,用������表示;标准差 是反映样本数据分散程度大小的最常用统计量,其计算公式如下:
提示:分层抽样时,在各层所抽取的样本个数与该层个体数的比 值等于抽样比;系统抽样抽取的号码按从小到大排列后,每一个号码 与前一个号码的差都等于分段间隔.
解析:按分层抽样时,在一年级抽取 108×21700=4(人),在二年级、 三年级各抽取 81×21700=3(人),则在号码段 1,2,…,108 中抽取 4 个号码, 在号码段 109,110,…,189 中抽取 3 个号码,在号码段 190,191,…,270 中抽取 3 个号码,①②③符合,所以①②③可能是分层抽样,④不符合, 所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是 “等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④ 都不能为系统抽样.
人教版高中必修3第二章统计课程设计 (2)

人教版高中必修3第二章统计课程设计一、前言本文档旨在为教师设计一份针对人教版高中必修3第二章统计的课程设计,以提高学生对该知识点的理解和应用能力。
二、课程目标本课程对学生的目标如下:1.理解统计学的基本概念和方法;2.掌握统计中的基础知识,例如:数据调查、频次分布、中心位置度量、离散程度度量等;3.能够通过统计方法进行数据分析以及运用数据解决实际问题;4.提高学生的信息素养,培养科学严谨的思维方式和处理问题的能力。
三、教学内容3.1 统计学基本概念3.1.1 概率和统计的区别学习内容:介绍概率和统计的区别教学方式:授课讲解、实例分析3.1.2 总体和样本学习内容:介绍总体和样本的概念及应用教学方式:组织讨论、实例分析3.1.3 统计推断学习内容:介绍统计推断的基本概念及方法教学方式:组织讨论、实例分析3.2 统计基础知识3.2.1 数据调查学习内容:介绍数据调查的步骤及方法教学方式:授课讲解、实例分析3.2.2 频次分布学习内容:介绍频次分布的概念及绘制的方法教学方式:授课讲解、实例分析3.2.3 中心位置度量学习内容:介绍中心位置度量中的平均数、中位数、众数等概念及应用教学方式:授课讲解、实例分析3.3 统计应用实例3.3.1 调查数据分析学习内容:通过实例介绍如何调查数据和分析数据教学方式:实例分析、诊断分析3.3.2 统计应用学习内容:通过实际应用,让学生学会如何运用所学应对实际问题教学方式:诊断分析、实例分析四、教学设计课时教学内容教学形式学习目标第一课时概率和统计的区别授课讲解、实例分析了解概率和统计的区别,并掌握实际应用第二课时总体和样本组织讨论、实例分析掌握总体和样本的概念及应用第三课时统计推断组织讨论、实例分析掌握统计推断的基本概念及方法第四课时数据调查授课讲解、实例分析掌握数据调查的步骤及方法第五课时频次分布授课讲解、实例分析掌握频次分布的概念及绘制的方法课时教学内容教学形式学习目标第六课时中心位置度量授课讲解、实例分析掌握中心位置度量中的平均数、中位数、众数等概念及应用第七课时调查数据分析实例分析、诊断分析通过实例调查数据并进行数据分析第八课时统计应用诊断分析、实例分析了解如何运用所学应对实际问题五、教学评价本课程设计中,将统计学的基本概念和方法与实践应用相结合,注重引导学生发现并解决实际问题的能力,使其在学习中掌握一定的信息素养,从而完成对于统计学的初步理解和运用。
人教版高中数学必修三第二章统计课件PPT2.3

数学 必修3
第二章 统计
学案·新知自解 教案·课堂探究 练案·学业达标
解析:
(1)由题意,可得
x
=12.5,
y
=8.25,
4
xiyi=
438,
4
x2i =660,则
∧
b
i=1
i=1
=4386-604-×41×2.152×.582.25≈0.728 6,a∧= y -b∧ x =-0.857 5. 所以回归直线的方程为∧y=0.728 6x-0.857 5. (2)要使 y≤10,则 0.728 6x-0.857 5≤10, 解得 x≤14.90.所以机器的转速应该控制在 15 转/秒以下.
学案·新知自解 教案·课堂探究 练案·学业达标
转速 x(转/秒)(x∈N*)
16 14 12 8
每小时生产有缺点的零件数 y(件) 11 9 8 5
(1)如果 y 与 x 具有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时的产品中有缺点的零件数最多为 10 个,那么
机器的转速应该控制在什么范围内?
答案: D
数学 必修3
第二章 统计
学案·新知自解 教案·课堂探究 练案·学业达标
3.正常情况下,年龄在 18 岁到 38 岁的人,体重 y(kg)对身高 x(cm)的回归 方程为∧y=0.72x-58.2,张红同学(20 岁)身高 178 cm,她的体重应该在______kg 左右.
解析: 当 x=178 时,∧y=0.72×178-58.2=69.96(kg). 答案: 69.96
第二章 统计
学案·新知自解 教案·课堂探究 练案·学业达标
n
xiyi-n x y
i=1
人教版高中数学必修3全册教案

人教版高中数学教案人教版高中数学必修3全册教案高中数学教案人教A版必修全套必修3教案,全套目录第一章算法初步 1com 程序框图与算法的基本逻辑结构 7 com 输入语句输出语句和赋值语句 29 com 条件语句 36com句 4413 算法案例 51第二章统计 7521 随机抽样 76com 简单随机抽样 76com 系统抽样 81com 分层抽样 8522 用样本估计总体 89com 用样本的频率分布估计总体分布 89 com 用样本的数字特征估计总体的数字特征 97 23 变量间的相关关系 107com 变量之间的相关关系 107com 两个变量的线性相关 107 第三章概率 11531 随机事件的概率 115 com 随机事件的概率 115 com 概率的意义 118com 概率的基本性质 121 com 古典概型 124com 整数值随机数random numbers的产生 128com 几何概型 132com 均匀随机数的产生 136第一章算法初步本章教材分析算法是数学及其应用的重要组成部分是计算科学的重要基础算法的应用是学习数学的一个重要方面学生学习算法的应用目的就是利用已有的数学知识分析问题和解决问题通过算法的学习对完善数学的思想激发应用数学的意识培养分析问题解决问题的能力增强进行实践的能力等都有很大的帮助本章主要内容算法与程序框图基本算法语句算法案例和小结教材从学生最熟悉的算法入手通过研究程序框图与算法案例使算法得到充分的应用同时也展现了古老算法和现代计算机技术的密切关系算法案例不仅展示了数学方法的严谨性科学性也为计算机的应用提供了广阔的空间让学生进一步受到数学思想方法的熏陶激发学生的学习热情在算法初步这一章中让学生近距离接近社会生活从生活中学习数学使数学在社会生活中得到应用和提高让学生体会到数学是有用的从而培养学生的学习兴趣数学建模也是高考考查重点本章还是数学思想方法的载体学生在学习中会经常用到算法思想转化思想从而提高自己数学能力因此应从三个方面把握本章1知识间的联系2数学思想方法3认知规律本章教学时间约需12课时具体分配如下仅供参考com 算法的概念约1课时 com 程序框图与算法的基本逻辑结构约4课时 com 输入语句输出语句和赋值语句约1课时 com 条件语句约1课时 com 循环语句约1课时13算法案例约3课时本章复习约1课时 11 算法与程序框图com 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念但没有一个精确化的定义教科书只对它作了如下描述在数学中算法通常是指按照一定规则解决某一类问题的明确有限的步骤为了让学生更好理解这一概念教科书先从分析一个具体的二元一次方程组的求解过程出发归纳出了二元一次方程组的求解步骤这些步骤就构成了解二元一次方程组的算法教学中应从学生非常熟悉的例子引出算法再通过例题加以巩固三维目标1正确理解算法的概念掌握算法的基本特点2通过例题教学使学生体会设计算法的基本思路3通过有趣的实例使学生了解算法这一概念的同时激发学生学习数学的兴趣重点难点教学重点算法的含义及应用教学难点写出解决一类问题的算法课时安排1课时教学过程导入新课思路1情境导入一个人带着三只狼和三只羚羊过河只有一条船同船可容纳一个人和两只动物没有人在的时候如果狼的数量不少于羚羊的数量狼就会吃羚羊该人如何将动物转移过河请同学们写出解决问题的步骤解决这一问题将要用到我们今天学习的内容算法思路2情境导入大家都看过赵本山与宋丹丹演的小品吧宋丹丹说了一个笑话把大象装进冰箱总共分几步答案分三步第一步把冰箱门打开第二步把大象装进去第三步把冰箱门关上上述步骤构成了把大象装进冰箱的算法今天我们开始学习算法的概念思路3直接导入算法不仅是数学及其应用的重要组成部分也是计算机科学的重要基础在现代社会里计算机已成为人们日常生活和工作中不可缺少的工具听音乐看电影玩游戏打字画卡通画处理数据计算机是怎样工作的呢要想弄清楚这个问题算法的学习是一个开始推进新课新知探究提出问题1解二元一次方程组有几种方法 2结合教材实例总结用加减消元法解二元一次方程组的步骤3结合教材实例总结用代入消元法解二元一次方程组的步骤4请写出解一般二元一次方程组的步骤 5根据上述实例谈谈你对算法的理解 6请同学们总结算法的特征7请思考我们学习算法的意义讨论结果1代入消元法和加减消元法2回顾二元一次方程组的求解过程我们可以归纳出以下步骤第一步??×2得5x 1?第二步解?得x第三步?-?×2得5y 3?第四步解?得y第五步得到方程组的解为3 用代入消元法解二元一次方程组我们可以归纳出以下步骤第一步由?得x 2y,1?第二步把?代入?得2 2y,1 y 1? 第三步解?得y ?第四步把?代入?得x 2×,1第五步得到方程组的解为4 对于一般的二元一次方程组其中a1b2,a2b1?0可以写出类似的求解步骤第一步?×b2-?×b1得a1b2,a2b1x b2c1,b1c2?第二步解?得x第三步?×a1-?×a2得a1b2,a2b1y a1c2,a2c1?第四步解?得y第五步得到方程组的解为5 算法的定义广义的算法是指完成某项工作的方法和步骤那么我们可以说洗衣机的使用说明书是操作洗衣机的算法菜谱是做菜的算法等等在数学中算法通常是指按照一定规则解决某一类问题的明确有限的步骤现在算法通常可以编成计算机程序让计算机执行并解决问题6 算法的特征?确定性算法的每一步都应当做到准确无误不重不漏不重是指不是可有可无的甚至无用的步骤不漏是指缺少哪一步都无法完成任务?逻辑性算法从开始的第一步直到最后一步之间做到环环相扣分工明确前一步是后一步的前提后一步是前一步的继续?有穷性算法要有明确的开始和结束当到达终止步骤时所要解决的问题必须有明确的结果也就是说必须在有限步内完成任务不能无限制地持续进行7 在解决某些问题时需要设计出一系列可操作或可计算的步骤来解决问题这些步骤称为解决这些问题的算法也就是说算法实际上就是解决问题的一种程序性方法算法一般是机械的有时需进行大量重复的计算它的优点是一种通法只要按部就班地去做总能得到结果因此算法是计算科学的重要基础应用示例思路1例1 1设计一个算法判断7是否为质数2设计一个算法判断35是否为质数算法分析1根据质数的定义可以这样判断依次用26除7如果它们中有一个能整除7则7不是质数否则7是质数算法如下1第一步用2除7得到余数1因为余数不为0所以2不能整除7 第二步用3除7得到余数1因为余数不为0所以3不能整除7第三步用4除7得到余数3因为余数不为0所以4不能整除7第四步用5除7得到余数2因为余数不为0所以5不能整除7第五步用6除7得到余数1因为余数不为0所以6不能整除7因此7是质数2类似地可写出判断35是否为质数的算法第一步用2除35得到余数1因为余数不为0所以2不能整除35第二步用3除35得到余数2因为余数不为0所以3不能整除35第三步用4除35得到余数3因为余数不为0所以4不能整除35第四步用5除35得到余数0因为余数为0所以5能整除35因此35不是质数点评上述算法有很大的局限性用上述算法判断35是否为质数还可以如果判断1997是否为质数就麻烦了因此我们需要寻找普适性的算法步骤变式训练请写出判断n n 2 是否为质数的算法分析对于任意的整数n n 2 若用i表示2 n-1 中的任意整数则判断n是否为质数的算法包含下面的重复操作用i除n得到余数r判断余数r是否为0若是则不是质数否则将i的值增加1再执行同样的操作这个操作一直要进行到i的值等于 n-1 为止算法如下第一步给定大于2的整数n第二步令i 2第三步用i除n得到余数r第四步判断r 0是否成立若是则n不是质数结束算法否则将i的值增加1仍用i表示第五步判断i,n-1是否成立若是则n是质数结束算法否则返回第三步例2 写出用二分法求方程x2-2 0 x 0 的近似解的算法分析令f x x2-2则方程x2-2 0 x 0 的解就是函数 f x 的零点二分法的基本思想是把函数 f x 的零点所在的区间〔ab〕满足f a ?f b 0一分为二得到〔am〕和〔mb〕根据f a ?f m 0是否成立取出零点所在的区间〔am〕或〔mb〕仍记为〔ab〕对所得的区间〔ab〕重复上述步骤直到包含零点的区间〔ab〕足够小则〔ab〕内的数可以作为方程的近似解解第一步令 f x x2-2给定精确度 d第二步确定区间〔ab〕满足f a ?f b 0第三步取区间中点m第四步若f a ?f m 0则含零点的区间为〔am〕否则含零点的区间为〔mb〕将新得到的含零点的区间仍记为〔ab〕第五步判断〔ab〕的长度是否小于d或f m是否等于0若是则m是方程的近似解否则返回第三步当d 0005时按照以上算法可以得到下表a b a-b 1 2 1 1 15 05 125 15 0251375 15 0125 1375 1437 5 0062 5 1406 251437 5 0031 25 1406 25 1421 875 0015 625 1414062 5 1421 875 0007 812 5 1414 062 5 1417 968 75 0003906 25 于是开区间1414 062 51417 968 75中的实数都是当精确度为0005时的原方程的近似解实际上上述步骤也是求的近似值的一个算法点评算法一般是机械的有时需要进行大量的重复计算只要按部就班地去做总能算出结果通常把算法过程称为数学机械化数学机械化的最大优点是它可以借助计算机来完成实际上处理任何问题都需要算法如中国象棋有中国象棋的棋谱走法胜负的评判准则而国际象棋有国际象棋的棋谱走法胜负的评判准则再比如申请出国有一系列的先后手续购买物品也有相关的手续思路 2 例1 一个人带着三只狼和三只羚羊过河只有一条船同船可容纳一个人和两只动物没有人在的时候如果狼的数量不少于羚羊的数量就会吃羚羊该人如何将动物转移过河请设计算法。
人教A版高中数学必修三第二章 统计2.2.2

[化解疑难] (1)对众数、中位数、平均数的理解 ①众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要 的量. ②众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当 一组数据中部分数据多次重复出现时,其众数往往更能反映问题. ③中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中 位数可能在所给的数据中,也可能不在所给的数据中. ④实际问题中求得的平均数、众数和中位数应带上单位.
答案: (1)C
[归纳升华] 众数、中位数、平均数与频率分布表、频率分布直方图的关系
(1)众数:众数一般用频率分布表中频率最高的一小组的组中值来表示.即 在样本数据的频率分布直方图中,最高矩形的中点的横坐标.
(2)中位数:在频率分布表中,中位数是累计频率(样本数据小于某一数值的 频率叫作该数值点的累计频率)为 0.5 时所对应的样本数据的值,而在样本中有 50%的个体小于或等于中位数,也有 50%的个体大于或等于中位数.因此,在 频率分布直方图中,中位数左边和右边的直方图的面积应该相等.
2.方差的计算公式 (1)s2=n1[(x1- x )2+(x2- x )2+…+(xn- x )2]. (2)s2=n1(x21+x22+…+x2n-n x 2). (3)s2=n1(x21+x22+…+x2n)- x 2.
2.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了 5 次,成绩如下表(单位:环),如果甲、乙两人中只有 1 人入选,则入选的最佳人 选应是________.
[归纳升华] 1.计算标准差的方法 (1)算出样本数据的平均数. (2)算出每个样本数据与样本平均数的差 xi- x (i=1,2,…,n). (3)算出(xi- x )2(i=1,2,…,n). (4)算出(xi- x )2(i=1,2,…,n)这 n 个数的平均数,即为样本方差 s2. (5)算出方差的算术平方根,即为样本标准差 s.
人教A版高中数学必修三第二章 统计2.2.1
解析: 产品净重小于 100 克的频率为(0.050+0.100)×2=0.300,已知样本 中产品净重小于 100 克的个数是 36,设样本容量为 n,则3n6=0.300,所以 n= 120,净重大于或等于 98 克并且小于 104 克的产品的个数是 120×0.75=90.
(3)样本数据不足 0 的频率为: 0.035+0.055+0.075+0.2=0.365.
频率分布直方图的应用 多维探究型
(1)某班 50 名学生在一次百米跑测试中,成绩全部介于 13 s 与 19 s 之
间,将测试结果按如下方式分成六组:第一组,成绩大于等于 13 s 且小于 14 s;
第二组,成绩大于等于 14 s 且小于 15 s;…;第六组,成绩大于等于 18 s 且小
[162.5,165.5) 8
0.2
[165.5,168.5) 11 0.275
[168.5,171.5) 6 0.15
[171.5,174.5) 2 0.05
[174.5,177.5) 1 0.025
[177.5,180.5) 1 0.025
合计
40
1
(2)频率分布直方图和频率分布折线图如图所示.
[归纳升华] 绘制频率分布直方图应注意的问题
(1) 在 绘 制出 频 率分 布表 后 ,画 频率 分 布直 方 图的 关 键就 是 确定 小 矩形的 高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高
频率 方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“组距”所占 的比例来定高.如我们预先设定以“ ”为 1 单位长度,代表“0.1”,则若一个
又因为第二小组的频率= 样本容量 ,所以样本容量=第二小组的频率
人教B版高中数学必修三第二章统计2.1.2.docx
高中数学学习材料马鸣风萧萧*整理制作2.1.2 系统抽样 课时目标 1.理解系统抽样的概念、特点.2.掌握系统抽样的方法和操作步骤,会用系统抽样法进行抽样.1.系统抽样的概念将总体分成________的若干部分,然后按照预先制定的规则,从每一部分抽取________个体,得到所需要的样本,这种抽样的方法叫做系统抽样.在抽样过程中,由于抽样的间隔________,因此系统抽样也称作________抽样.2.适用的条件总体中个体差异不大并且总体的容量________.3.系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,可以按下列步骤进行系统抽样.(1)先将总体的N 个个体________.有时可直接利用个体自身所带的号码,如学号,准考证号,门牌号等;(2)确定分段间隔k 对编号进行分段,当N n(n 是样本容量)是整数时,取k =__________; (3)在第一段用_________________________________________________________确定一个个体编号s(s ≤k);(4)按照一定的规则抽取样本.通常是将s 加上间隔k 得到第2个个体编号________,再加k 得到第3个个体编号________,依次进行下去,直到得到容量为n 的样本.一、选择题1.下列抽样问题中最适合用系统抽样法抽样的是( )A .从全班48名学生中随机抽取8人参加一项活动B .一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C .从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D .从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )A .2B .3C .4D .53.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A .抽签法B .随机数表法C.系统抽样D.有放回抽样4.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,325.一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是() A.抽签法B.有放回抽样C.随机数法D.系统抽样6.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体()A.3 B.4 C.5 D.6题号 1 2 3 4 5 6答案二、填空题7.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.8.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.9.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.三、解答题10.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).11.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.能力提升12.某种体育彩票五等奖的中奖率为10%,已售出1 000 000份,编号为000000~999999,则用简单随机抽样需要随机抽取____________个号码,若要在某晚报上公布获奖号码,约要________版(每版可排100行,每行可排175个数字或空格,每个编号后需留1个空格).而用系统抽样,应该在0~________内随机抽取一个数字,个位数是这个数字的号码中奖.13.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题: 本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.1.系统抽样的特点(1)适用于总体中个体数较大且个体差异不明显的情况;(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样.每个个体被抽到的可能性相等.2.系统抽样与简单随机抽样之间的关系(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本和具体的编号相联系;而简单随机抽样所得样本的代表性与个体的编号无关;(3)系统抽样的实质是简单随机抽样.(4)系统抽样比简单随机抽样的应用更广泛.3.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体.但要注意的是剔除过程必须是随机的.也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.2.1.2 系统抽样知识梳理1.均衡 一个 相等 等距 2.很大 3.(1)编号 (2)N n(3)简单随机抽样 (4)s +k s +2k作业设计1.C [A 中总体容量较小,样本容量也较小,可采用抽签法;B 中总体中的个体有明显的差异,也不适宜采用系统抽样;D 中总体容量较大,样本容量较小也不适用系统抽样.]2.A [由1 252=50×25+2知,应随机剔除2个个体.]3.C [从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.]4.B [由题意知分段间隔为10.只有选项B 中相邻编号的差为10,选B.]5.D6.B [由于只有524÷4没有余数,故选B.]7.16解析 用系统抽样的方法是等距离的.42-29=13,故3+13=16.8.3 20解析 因为1 003=50×20+3,所以应剔除的个体数为3,间隔为20.9.7840~7999 0054,0214,0374,0534,0694解析 因8000÷50=160,所以最后一段的编号为编号的最后160个编号.从7840到7999共160个编号,从7840到7894共55个数,所以从0000到第55个编号应为0054,然后逐个加上160得,0214,0374,0534,0694.10.解 该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤:可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l ,则每个班的l,10+l,20+l,30+l,40+l (如果l =6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.11.解 总体中个体个数达8 000,样本容量也达到100,用简单随机抽样中的抽签法与随机数法都不易进行操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:(1)将总体中的个体编号为1,2,3,…,8 000;(2)把整个总体分成100段,每段长度为k =8 000100=80; (3)在第一段1~80中用简单随机抽样确定起始编号l ,例如抽到l =25;(4)将编号为l ,l +k ,l +2k ,l +3k ,…,l +99k (即25,105,185,…,7 945)的个体抽出,得到样本容量为100的样本.12.100 000 40 913.解 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10, 其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为02.。
人教版高中数学必修三课件:第2章 统计 (8份打包)5
变式训练2 某调查机构为了了解某地区的家庭 收入水平与消费支出的相关情况,抽查了多个家
庭,根据调查资料得到以下数据:每户平均年收 入为88000元,每户平均年消费支出为50000元, 支出对于收入的回归系数为0.6. (1)求支出对于收入的回归方程; (2)平均年收入每增加100元,则平均年消费支出 约增加多少元?
^
4.回归直线方程y =bx+a,其中
b 是回归方程的斜率,a 是截距.
5.最小二乘法
n
通过求 Q= yi-bxi-a2的最小值而得出回归
i=1
直线的方法,即求回归直线,使得样本数据的点 到 它的距离 的平方和 最小,这 一方法 叫做 _最___小__二__乘__法____.
问题探究
1.如果样本的数据形成的点均匀分布于一个圆 内,数据之间还能线性相关吗? 提示:不能,这样的点不具有线性相关关系. 2.画散点图时,坐标系中的横、纵坐标的长度 单位必须相同吗? 提示:可以不同,应考虑数据分布的特征.
【思维总结】 求线性回归直线方程的步骤如
下:
(1)列表表示 xi,yi,xiyi;
n
Байду номын сангаас
n
(2)计算 x , y , x2i ,xiyi;
i= 1
i= 1
(3)代入公式计算 b,a 的值; (4)写出 线性回归直线方程.
互动探究1 如果把本题中的y的值:2.5及 4.5分别改为2和5,如何求回归直线方程.
解:散点坐标分别为(3,2),(4,3),(5,4),(6,5). 可验证这四点共线,斜率 k=34- -23=1, ∴直线方程为 y-2=x-3,即 y=x-1.
考点三 利用回归方程估计总体
利用回归直线,我们可以进行预测.若回归直线 方程为 y^=bx+a,则 x=x0 处的估计值为:y^= bx0 + a.
人教版高中数学必修3全套教案
高中数学教案(人教A版必修全套)【必修3教案|全套】目录第一章算法初步 ........................................................................................................ ........................................... 1 1.1.2 程序框图与算法的基本逻辑结构.......................................................................................................7 1.2.1 输入语句、输出语句和赋值语句.....................................................................................................29 1.2.2 条件语句 ........................................................................................................ ..................................... 36 1.2.3循环语句 ........................................................................................................ ........................................ 44 1.3 算法案例 ........................................................................................................ ........................................ 51 第二章统计 ........................................................................................................ ................................................. 75 2.1 随机抽样 ........................................................................................................ ........................................ 76 2.1.1 简单随机抽样 ..................................................................................................................................... 76 2.1.2 系统抽样 ........................................................................................................ ..................................... 81 2.1.3 分层抽样 ........................................................................................................ ..................................... 85 2.2 用样本估计总体 ........................................................................................................ ............................ 89 2.2.1 用样本的频率分布估计总体分布.....................................................................................................89 2.2.2 用样本的数字特征估计总体的数字特征.......................................................................................... 97 2.3 变量间的相关关系 ........................................................................................................ ...................... 107 2.3.1 变量之间的相关关系 ........................................................................................................ ............... 107 2.3.2 两个变量的线性相关 ........................................................................................................ ............... 107 第三章概率 ........................................................................................................ ................................................115 3.1 随机事件的概率 ........................................................................................................ ...........................115 3.1.1 随机事件的概率 ................................................................................................................................115 3.1.2 概率的意义 ........................................................................................................ ................................118 3.1.3 概率的基本性质 ........................................................................................................ ....................... 121 3.2.1 古典概型 ........................................................................................................ ................................... 124 3.2.2 (整数值)随机数(random numbers)的产生............................................................................. 128 3.3.1 几何概型 ........................................................................................................ ................................... 132 3.3.2 均匀随机数的产生 ........................................................................................................ . (136)第一章算法初步本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助. 本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情. 在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点. 本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律. 本章教学时间约需12课时,具体分配如下(仅供参考):1.1.1 算法的概念约1课时 1.1.2 程序框图与算法的基本逻辑结构约4课时 1.2.1 输入语句、输出语句和赋值语句约1课时 1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时 1.1 算法与程序框图 1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点. 2.通过例题教学,使学生体会设计算法的基本思路. 3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用. 教学难点:写出解决一类问题的算法. 课时安排 1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,第1页共140页如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课新知探究提出问题(1)解二元一次方程组有几种方法?x 2y 1,(1) (2)结合教材实例总结用加减消元法解二元一次方程组的步骤. 2x y 1,(2) x 2y 1,(1)(3)结合教材实例总结用代入消元法解二元一次方程组的步骤.2x y 1,(2) (4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组x 2y 1,(1)的求解过程,我们第一步,可以归纳出以下步骤: 2x y 1,(2)①+②×2,得5x=1.③ 1第二步,解③,得x=. 5第三步,②-①×2,得5y=3.④ 3 . 第四步,解④,得y= 51 x , 5第五步,得到方程组的解为3 y . 5 (3)用代入消元法解二元一次方程组x 2y 1,(1) 我们可以归纳出以下步骤:2x y 1,(2)第一步,由①得x=2y-1.③ 第2页共140页第二步,把③代入②,得2(2y-1)+y=1.④ 3第三步,解④得y=.⑤ 531 . 第四步,把⑤代入③,得x=2×-1=551 x , 5第五步,得到方程组的对于一般解为 3 y . 5 ax by c,(1) 111(4)可以写出的二元一次方程组 ax by c,(2) 222≠0,类似的求解步骤:其中ab-ab1221 第一步,①×b-②×b,得21 (ab-ab)x=bc-bc.③ 12212112bc bc2112 第二步,解③,得x=.ab ab1221 第三步,②×a-①×a,得(ab-ab)y=ac-ac.④ 1212211221ac ac1221 第四步,解④,得y=. ab ab1221bc bc 2112x , ab ab 1221 第五步,得到方程组的解为算法的定义:y . ab ab 1221(5)ac ac 1221广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等. 在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题. (6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行. (7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1 例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 第3页共140页算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7. 第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数. (2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35. 第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35. 第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数. 点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤. 变式训练请写出判断n(n>2)是否为质数的算法. 分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作. 这个操作一直要进行到i的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2. 第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示. 第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 2例2 写出用“二分法”求方程x-2=0 (x>0)的近似解的算法. 22分析:令f(x)=x-2,则方程x-2=0 (x>0)的解就是函数f(x)的零点. “二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)·f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解. 2解:第一步,令f(x)=x-2,给定精确度d. 第二步,确定区间[a,b],满足f(a)·f(b)<0. a b第三步,取区间中点m=. 2第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b]. 第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步. 当d=0.005时,按照以上算法,可以得到下表. a b |a-b| 1 2 1 1 1.5 0.5 1.25 1.5 0.25 1.375 1.5 0.125 1.375 1.437 5 0.062 5 1.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 625 1.414 062 5 1.421 8750.007 812 5 第4页共140页1.414 062 5 1.417 968 75 0.003 906 25 于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,2上述步骤也是求的近似值的一个算法. 点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……思路2 例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法. 分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回. 第二步:人带一只狼过河,自己返回. 第三步:人带两只羚羊过河,并带两只狼返回. 第四步:人带一只羊过河,自己返回. 第五步:人带两只狼过河. 点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率. 例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶. 第二步,烧水. 第三步,洗刷茶具. 第四步,沏茶. 算法二:第一步,洗刷水壶. 第二步,烧水,烧水的过程当中洗刷茶具. 第三步,沏茶. 点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法. 分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP. 第二步,在射线上任取一个不同于端点A的点C,得到线段AC. 第5页共140页第三步,在射线上沿AC的方向截取线段CE=AC. 第四步,在射线上沿AC的方向截取线段EF=AC. 第五步,在射线上沿AC的方向截取线段FG=AC. 第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC. 第七步,连结DB. 第八步,过C作BD的平行线,交线段AB 于M,这样点M就是线段AB的一个5等分点. 点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练. 知能训练2 设计算法判断一元二次方程ax+bx+c=0是否有实数根. 解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c. 2第二步,计算Δ=b-4ac的值. 第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法. 点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点. 拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为(分钟)t,通话费用y(元),如何设计一个程序,计算通话的费用. 解:算法分析:数学模型实际上为:y关于t的分段函数. 关系式如下:0.22,(0 t 3), 0.22 0.1(t 3),(t 3,t Z),y=其中[t-3]表 0.22 0.1(*T 3+ 1),(T 3,t Z).示取不大于t-3的整数部分. 算法步骤如下:第一步,输入通话时间t. 第二步,如果t≤3,那么y=0.22;否则判断t∈Z 是否成立,若成立执行y=0.2+0.1×(t-3);否则执行y=0.2+0.1×([t-3]+1). 第三步,输出通话费用c. 课堂小结(1)正确理解算法这一概念. (2)结合例题掌握算法的特点,能够写出常见问题的算法. 作业课本本节练习1、2. 设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例. 第6页共140页1.1.2 程序框图与算法的基本逻辑结构整体设计教学分析用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.程序框图用图形的方式表达算法,使算法的结构更清楚、步骤更直观也更精确.为了更好地学好程序框图,我们需要掌握程序框的功能和作用,需要熟练掌握三种基本逻辑结构. 三维目标1.熟悉各种程序框及流程线的功能和作用. 2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性. 重点难点数学重点:程序框图的画法. 数学难点:程序框图的画法. 课时安排 4课时教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图. 思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图. 推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能. (3)说出输入、输出框的图形符号与功能. (4)说出处理框(执行框)的图形符号与功能. (5)说出判断框的图形符号与功能. (6)说出流程线的图形符号与功能. (7)说出连接点的图形符号与功能. (8)总结几个基本的程序框、流程线和它们表示的功能. (9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形. 在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序. (2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结第7页共140页束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8)总结如下表. 图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断某一条件是否成立,成立时在出口处标明判断框“是”或“Y”;不成立时标明“否”或“N” 连接程序框流程线连接点连接程序框图的两部分 (9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构. 三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法. 解:程序框图如下: 第8页共140页点评:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法. 变式训练观察下面的程序解:框图,指出该算法解决的问题. 1111 这是一个累加求和问题,共99项相加,该算法是求的值. 1 22 33 499 100例2 已知一个三角形三条边的边长分别为a,b,c,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c,则三角形的面积为a b c p(p a)(p b)(p c)S=,其中p=).这个公式被称为海伦—秦九韶公式)2算法分析:这是一个简单的问题,只需先算出p的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法. 算法步骤如下:第一步,输入三角形三条边的边长a,b,c. a b c第二步,计算p=. 2p(p a)(p b)(p c)第三步,计算S=. 第四步,输出S. 程序框图如下:第9页共140页点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构. 变式训练下图所示的是一个算法的流程图,已知a=3,输出的b=7,求a的值. 12a a12解:根据题意=7, 2∵a=3,∴a=11.即a的值为11. 122例3 写出通过尺轨作图确定线段AB的一个5等分点的程序框图.解:利用我们学过的顺序结构得程序框图如下:点评:这个算法步骤具有一般性,对于任意自然数n,都可以按照这个算法的思想,设计出确定线段的n等分点的步骤,解决问题,通过本题学习可以巩固顺序结构的应用. 知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3 %左右,这将对我国经济的稳定有利无第10页共140页害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3% .在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格. 解:用P表示钢琴的价格,不难看出如下算法步骤:2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609;2007年P=10 609×(1+3%)=10 927.27;2008年P=10 927.27×(1+3%)=11 255.09;因此,价格的变化情况表为: 2004 2005 2006 2007 2008 年份 10 000 10 300 10 609 10 927.27 11 255.09 钢琴的价格程序框图如下:点评:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤“细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升1111 如下给出的是计算的值的一个流程图,其中判断框内应填入的条件是24620 ______________. 答案:i>10. 课堂小结(1)掌握程序框的画法和功能. (2)了解什么是程序框图,知道学习程序框图的意义. 第11页共140页(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法. 作业习题1.1A 1. 设计感想首先,本节的引入新颖独特,旅游图的故事阐明了学习程序框图的意义.通过丰富有趣的事例让学生了解了什么是程序框图,进而激发学生学习程序框图的兴趣.本节设计题目难度适中,逐步把学生带入知识的殿堂,是一节好的课例. 第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构. 思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构. 推进新课新知探究提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构. (4)指出条件结构的两种形式的区别. 讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 2.1.1简单随机抽样 教学要求:正确理解随机抽样的必要性和重要性,掌握简单随机抽样的两种方法(抽签法和随机数法)的一般步骤,能从生活实际中提出一定价值的统计问题. 教学重点:掌握抽签法和随机数表法的一般步骤. 教学难点:正确理解样本的随机性,合理选择抽签法与随机数法. 教学过程: 一、复习准备: 1、讨论:如何对一批袋装牛奶质量进行检查? (普查的弱点;抽样省时、省力→抽样必要性) 2、讨论:什么是总体与样本?怎样获取样本呢?什么样的样本是一个好的样本? 如何通过一勺汤的味道来判断一锅汤的味道?(关键在于将总体“搅拌均匀”) 阅读著名的统计调查失败的案例,思考美国总统选举的民意测验与实际选举结果为何相反? 二、讲授新课: 1、教学简单随机抽样的概念: ① 思考:如要在我们班选出五个人去参加劳动, 应当怎样选呢? 怎样选才是最公平的呢? ② 简单随机数法的概念: 一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相等, 就把这种抽样方法叫做简随机抽样. 有抽签法与随机数法两种方法. 强调三点: 不放回的抽取;样本个数n小于等于总数N;抽到的机会相等. ③练习:下列抽样的方式是否属于简单随机抽样?为什么? A.从无限多个个体中抽取50个个体作为样本. B.箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子. 2、教学抽签法和随机数法 ① 抽签法也叫抓阄法:一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本. ② 游戏: 给班上的每位同学编上号码,然后让同学用小纸条把号码写下来放在粉笔盒里,我把小纸条搅拌均匀,随机的抽出五个号码,被抽到的同学会有奖品. 在这个游戏结束以后,由同学来总结抽签法的步骤: 给个体编号 → 在不透明的容器里搅拌均匀 → 要不放回随机的抽取. ③讨论:抽签法的优点和缺点?(优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性. 缺点:当总体个数较多时很难搅拌均匀,使样本代表性差的可能性很大. ) ④ 随机数法:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法. ⑤ 出示例:从800袋牛奶种抽取出60袋看一看质量是否达标. 给每一袋牛奶编号. → 在随机数表中任选一个数(表略),在这个向右读(也可向左),连取三位,包含它本身,比如785,因为对应的编号785<800,说明这个号码在总体内所以将它取出. 然后继续向右读916 ,因为916>800,所以舍去. 然后到末行的时候可以向上也可以向下读,直到取够60个为止. (▲带领同学反复练习,使同学学会如何使用随机数表. ) ⑥讨论:随机数法的优点和缺点? (优点:当个体数量较多时,个体有均等的机会被抽中. 缺点:个体数量很多时,对个体编号的工作量太大;“搅拌均匀”也比较困难. ) 3、小结:简单随机抽样两种方法操作步骤及优、缺点. (优点:对个体数量较少时,抽取样本简便易行. 缺点:当个体数量较多时,对个体编号的工作量太大,使操作不快捷. ) 三、巩固练习:1、P47-1,2,3,4 2、作业:从100件产品中抽10件,试写两种操作步骤. 读报. (将100件编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.) 第二课时 2.1.2系统抽样 教学要求:正确理解系统抽样的概念;掌握系统抽样的步骤;正确理解系统抽样与简单随机抽样的关系;掌握系统抽样的优点和缺点. 教学重点:掌握系统抽样的步骤. 教学难点:系统抽样时,当分段间隔k不是整数的时候怎么办. 教学过程: 一、复习准备: 1. 提问:简单随机抽样应注意几点?有哪几种方法?每种方法的优点和缺点是什么? 2. 分别用两种方法设计从本班学生53人中抽取5人进行调查的抽样方案. 3. 引入:当个体的数量较多的时候,为了使个体的被抽中的机会均等,要用随机数法. 可是数量太多,编号的工作量又太大,也很难搅拌均匀. 面对这种情况,我们今天来学一种新的抽样方法——系统抽样. 二、讲授新课: 1、教学系统抽样的概念及步骤: ① 系统抽样概念:当总体中的个体数较多时,将总体的每个个体进行编号,并根据样本数对编号进行分段,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需样本的抽样方法. ② 进行系统抽样的步骤: (1)先将总体的N个个体编号. 有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等; (2)确定分段间隔k,对编号进行分段.当N/n(n是样本容量)是整数时,取k=N/n; (3)在第一段用简单随机抽样确定第一个个体编号l(l≤k); (4)按照一定的规则抽取样本. 通常是将l加上间隔k得到第2个个体编号(l+k),再加得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.
③ 注意:分段间隔k的确定. 当总体个数N恰好是样本容量n的整数倍时,取Nkn;若Nn不是整数时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n整除. 每个个体被剔除的机会相等,从而使整个抽样过程中每个个体被抽取的机会仍然相等. 2、教学例题: ① 出示例:我校为了了解高一年级学生对教师教学的意见,打算从高一年级的500名学生中抽取50名进行调查. 用系统抽样的方法,你怎样进行操作呢? 解:第一步,编号,给500名同学编号.(注意和随机数法不同,500人、编号不一定是三位数. 如1,2,3. . . ) ; 第二步,分段,确定分段间隔k=500/50=10.(把500人分成了10段); 第三步,确定起始号,在第一段1~10里随机的选一个数(抽签法)比如6;第四步,抽取样本,每隔10个号码抽取一个,要选的50个数的编号是6、16、26、36、46. . . . . . . . . 496(如果第三步选的是10,则他们的编号是10、20、30. . . . 500) ② 思考:当第二步的k不是整数的时候怎么办呢? 例题变式502人. (先随机剔除几个个体) ③ 练习:在2003名同学间选出100人进行有关视力的问卷调查,你怎样选取样本呢? 分析:我们知道2003/100不是整数,这时我们就要随机的选出3名同学(用什么方法?) 然后再重新进行编号,步骤就和能整除的时候一样了. 3、小结:由同学来总结系统抽样有那些优点和缺点. (优点:可以利用个体自身的编号,对数量较多的个体操作比较便捷. 缺点:当对总体情况不是很了解的情况下,样本的代表性较差. ) 注意:在使用抽样方法时,总体的数量较多,但必须要对总体有个大概了解的前提下. 三、巩固练习: 1、练习:P49-1,2,3;读报(第30期第1版文);阅读:广告数据的可靠性. 2、作业:P54-6. 第三课时 2.1.3分层抽样 教学要求:使学生掌握分层抽样的方法,并能结合以前学过的知识对三种抽样方法进行比较,活学活用,并能把三种抽样方法融会贯通处理一些复杂的问题,使样本有更好的代表性. 教学重点:运用分层抽样的方法抽取样本. 教学难点:恰当选用三种抽样方法解决实际问题. 教学过程: 一、复习准备: 1、提问:一般在什么条件下使用系统抽样?系统抽样都有那些步骤?当分段间隔不是整数的时候怎么办? 2、试设计从高一学生804人中抽取40人进行调查的抽样方案. 变式:学校高一学生800人,高二640人,高三560人,从全校抽取100人,如何抽样? 3、引入:当对总体情况不是很了解的情况下用系统抽样,样本的代表性可能会很差,比如抽取的可能都是男生,或都是女生. 而且有时一些问题农村和城市,老人和孩子等都有很大的差异,当总体存在很大的差异时,我们怎么办呢,今天我们来学习第三种抽样方法分层抽样. 二、讲授新课: 1、教学分层抽样概念及步骤: ① 定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样. ② 步骤:根据已掌握的信息,将总体分成互不相交的层;根据总体中的个体数N和样本容量
n计算抽样比k=nN;确定第i层应该抽取的个体数目ni≈Ni×k(Ni为第i层所包含的个体数),使得诸ni之和为n;在各个层中,按第三步中确定的数目在各层中随机抽取个体,合在一起得到容量为n的样本. ③ 出示例:一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本. 分析:因为有男,女两个互不交叉的层,所以选用分层抽样. 因为总体的个数是56+42=98,样本容量为28,一定的比例对该题而言样本容量除以总体的个数为28/98=2/7,那么在男队员中应选取的人数为56*2/7=16人,女队员中应选取的人数为42*2/7=12人. 解:田径队共有人数56+42=98人,样本容量为28人,则总数与样本容量的比是28:98=2:7, 男队员中应选取的人数为56*2/7=16人,女队员中应选取的人数为42*2/7=12人. ④ 练习:某地区想调查中小学学生的近视情况,已知高中生有2400人,初中生有10900人,小学生有11000人,如果要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本? 分析:因为被调查的总体有很明显的差异,所以要使用分层抽样,找到样本容量与总体个数的比例,再和每个层的个体数相乘,得到的样本数量之和就是应抽取的人数. 解:因为要抽取1%,所以样本容量与总体个数的比例为1:100,则高中应抽取人数为2400*1/100=24,初中应抽取人数为10900*1/100=109,小学应抽取人数为11000*1/100=110 思考:如何在2400中抽取24人呢? 2、比较三种抽样方法: ① 简单随机抽样是最简单、最基本的抽样方法,其他两种抽样方法都建立在此基础上. 在系统抽样的各段抽样、分层抽样的各层抽样,都需简单随机抽样来实现. ② 分析与比较三种抽样方法的要点、共同点、不同点、联系、适应范围.(见报第30期第1版) 三、巩固练习: 1、练习:教材P52第1、2、3题. 2、作业:教材P54 第5题;读报(《数学周报》第30期).
第一课时 2.2.1 用样本的频率分布估计总体分布(一) 教学要求:通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布. 教学重点:会列频率分布表,画频率分布直方图. 教学难点:能通过样本的频率分布估计总体的分布.