人教版高中数学全套教案导学案2.2.1条件概率与事件的相互独立性
高中数学第2章概率2.2条件概率与事件的独立性2.2.3独立重复试验与二项分布学案新人教B版

2.2.3 独立重复试验与二项分布1。
了解n次独立重复试验的概念.2。
理解二项分布的概念,n次独立重复试验的意义.3.能利用n次独立重复试验和二项分布解决实际问题.1.独立重复试验(1)在相同的条件下,重复地做n次试验,各次试验的结果相互独立,那么就称它们为n次独立重复试验.(2)在n次独立重复试验中,事件A恰好发生k(0≤k≤n)次的概率问题叫做伯努利概型,它的概率为P n(k)=C错误!p k(1-p)n-k(k=0,1,2,…,n).2.二项分布如果随机变量X的分布列为X 01…k …nP C错误!p0q nC错误!p1q n-1…C错误!p k q n-k…C错误!p n q0服从参数为n,p的二项分布,记作X~B(n,p).1.某电子管正品率为错误!,次品率为错误!,现对该批电子管进行测试,设第X次首次测到正品,则P(X=3)等于()A.C错误!(错误!)2×错误!B.C错误!(错误!)2×错误!C.(错误!)2×错误!D.(错误!)2×错误!答案:C2.将一枚硬币连掷5次,如果出现k次正面的概率等于出现(k+1)次正面的概率,那么k的值为()A.0 B.1C.2 D.3解析:选C.根据题意,本题为独立重复试验,由概率公式得C错误!×(错误!)k×(错误!)5-k=C错误!×(错误!)k+1×(错误!)4-k,解得k=2.3.设X~B(2,p),若P(X≥1)=错误!,则p=________.解析:因为X~B(2,p),所以P(X=k)=C错误!p k(1-p)2-k,k=0,1,2.所以P(X≥1)=1-P(X<1)=1-P(X=0)=1-C0,2p0(1-p)2=1-(1-p)2。
所以1-(1-p)2=错误!,结合0≤p≤1,解得p=错误!.答案:错误!独立重复试验的概率甲、乙两人各射击一次,击中目标的概率分别是错误!和错误!,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率.【解】(1)记“甲射击3次至少有1次未击中目标"为事件A1,由题意,射击3次,相当于3次独立重复试验,故P(A1)=1-P(错误!)=1-(错误!)3=错误!.(2)记“甲射击2次,恰有2次击中目标"为事件A2,“乙射击2次,恰有1次击中目标"为事件B2,则P(A2)=C错误!×(错误!)2=错误!,P(B2)=C错误!×(错误!)1×(1-错误!)=错误!,由于甲、乙射击相互独立,故P(A2B2)=错误!×错误!=错误!.1.在本例(2)的条件下,求甲、乙均击中目标1次的概率?解:记“甲击中目标1次”为事件A3,“乙击中目标1次"为事件B3,则P(A3)=C 错误!×错误!×错误!=错误!,P(B3)=错误!,所以甲、乙均击中目标1次的概率为P(A3B3)=错误!×错误!=错误!.2.在本例(2)的条件下,求甲未击中、乙击中2次的概率?解:记“甲未击中目标”为事件A4,“乙击中2次"为事件B4,则P(A4)=C错误!(1-错误!)2=错误!,P(B4)=C错误!(错误!)2=错误!,所以甲未击中、乙击中目标2次的概率为P(A4B4)=错误!×错误!=错误!.独立重复试验概率求解的关注点(1)运用独立重复试验的概率公式求概率时,首先判断问题中涉及的试验是否为n次独立重复试验,判断时注意各次试验之间是相互独立的,并且每次试验的结果只有两种(即要么发生,要么不发生),在任何一次试验中某一事件发生的概率都相等,然后用相关公式求概率。
高中数学 第二章 概率 2.2 条件概率与事件的独立性 2.2.3 独立重复试验与二项分布预习导学案

2.2.3 独立重复试验与二项分布
预习导航
一、独立重复试验
在相同的条件下,重复地做n次试验,各次试验的结果相互独立,那么一般就称它们为n次独立重复试验.
如果在一次试验中事件A发生的概率是p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k(k=0,1,2,…,n).
思考1在独立重复试验中,某事件每次发生的概率是否相同?
提示:在每次试验中,某事件发生的概率是相同的.
思考2独立重复试验满足什么条件?
提示:(1)每次试验是在相同的条件下进行的;
(2)各次试验的结果互不影响,即每次试验是相互独立的;
(3)每次试验都只有两种结果,即事件要么发生,要么不发生.
点拨n次独立重复试验的概率公式中各字母的含义
二、二项分布
如果随机变量X的分布列为
其中
由于表中第二行恰好是二项式展开式(q+p)n=C0n p0q n+C1n p1q n-1+…+C k n p k q n-k+…+C n n p n q0各对应项的值,所以称这样的离散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p).
思考3二点分布与二项分布有何关系?
提示:在二项分布中,n次独立重复试验中各次试验的条件相同,对每次试验来说,只考虑两个可能的结果发生与不发生,或者说每次试验服从相同的二点分布.。
高考数学复习知识点讲解教案第62讲 随机事件的相互独立性与条件概率

概率的积,则事件,为相互独立事件.
2.求两个相互独立事件同时发生的概率的步骤
(1)首先确定两个事件是相互独立的;
(2)确定两个事件可以同时发生;
(3)求出每个事件发生的概率,再求积.
变式题(1)
(多选题)[2023·新课标Ⅱ卷] 在信道内传输0,1信号,信号
的传输相互独立.发送0时,收到1的概率为 0 < < 1 ,收到0的概率为1 − ;
由相互独立事件的概率公式得,所求概率为 1 −
2 ,故B正确.
对于C,采用三次传输方案,发送1,1,1,收到的译码为1,
则收到的信号可能为 1,1,0 , 1,0,1 , 0,1,1 , 1,1,1 ,
故所求概率为3ሺ1 −
2
ሻ
+ 1−
3 ,故C错误.
对于D,若采用三次传输方案,发送0,收到的译码为0,
5
1 2
别为 , ,则该谜题被破解的概率为___.
6
2
3
[解析] 设“甲独立地破解出该谜题”为事件,“乙独立地破解出该谜题”为事件,
“该谜题被破解”为事件,且事件与相互独立,
则 = 1 − = 1 − 1 −
1
2
× 1−
2
3
=
5
.
6
3.[教材改编]
交通部门对某地上、下班时间拥堵状况统计调查,发现该地区上
4.结合古典概型,会利用乘法公式计算概率.
◆ 知识聚焦 ◆
1.事件的相互独立性
(1)定义:对任意两个事件与,如果
=____________成立,则称事件与
事件相互独立.
(2)判断方法:
①根据定义;
2018_2019学年高中数学第2章概率2.2条件概率与事件的独立性2.2.2事件的独立性学案新人教

2.2.2 事件的独立性 课时目标1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.1.两个事件相互独立:如果事件A 是否发生对事件B 发生的概率____________,即____________,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.2.当A 、B 事件独立时,A 与B ,A 与B ,A 与B 也相互独立.一、选择题1.生产某零件要经过两道工序,第一道工序的次品率为0.1,第二道工序的次品率为0.03,则该零件的次品率是( )A .0.13B .0.03C .0.127D .0.8732.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( )A.1320B.15C.14D.253.一袋中装有3个红球和2个白球,另一袋中装有2个红球和1个白球,从每袋中任取一球,则至少取到一个白球的概率是( )A.38B.35C.25D.154. 如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( )A .0.960B .0.864C .0.720D .0.5765.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为( )A.(1-p)n B.1-p n C.p n D.1-(1-p)n二、填空题6.有一道数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,两人试图独立地在半小时内解决它,则两人都未解决的概率为________,问题得到解决的概率为________.7.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是______.8.在一条马路上的甲、乙、丙三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆汽车在这条马路上行驶,那么在这三处都不停车的概率是________.三、解答题9.某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三个问题分别是100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率.。
高中数学事件的相互独立性

2.2.2事件的相互独立性一.教学目标:知识与技能:理解两个事件相互独立的概念,会用相互独立事件的概率乘法公式计算一些事件的概率。
过程与方法:进一步发展学生类比、归纳、猜想等合情推理能力;通过对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:相互独立事件的意义和相互独立事件同时发生的概率公式。
教学难点:对事件独立性的判定,以及能正确地将复杂的概率问题分解转化为几类基本的概率模型.二.教学过程:创设情境,提出问题合作交流,感知问题类比联想,探索问题实践应用,解决问题总结反思,深化拓展.1.创设情境,提出问题:问题一:“常言道,三个臭皮匠能抵诸葛亮”。
怎样从数学上来解释呢?将问题具体化:假如对某事件诸葛亮想出计谋的概率为0.88,三个臭皮匠甲、乙、丙想出计谋的概率各为0.6、0.5、0.5.问这三个臭皮匠能胜过诸葛亮吗?问题二:2010年1月26日上午,NBA常规赛进行了一场焦点之战--勒布朗-詹姆斯领衔的克利夫兰骑士在客场挑战由韦德率领的迈阿密热火。
比赛非常激烈,直到终场前3.1秒比分打成90平,热火队犯规,詹姆斯获两次罚篮机会,已知詹姆斯的罚篮命中率为77.6%,问骑士队此时获胜的概率是多少?我们一起学习完今天这节课后,问题就会得到解答。
引入课题:2.2.2事件的相互独立性(板书)2.复习回扣:条件概率:设事件A和事件B,且P(A)>0,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。
记作P(B |A).条件概率计算公式: 3.新课讲解:探究1:三张奖券有一张可以中奖,现由三名同学依次有放回地抽取。
定义A 为事件“第一位同学中奖”,B 为事件“第三位同学中奖”。
问:事件A 发生对于事件B 发生有影响吗?答:事件A 的发生不会影响事件B 发生的概率。
相互独立的定义 : 设A 、B 是两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立。
高中数学第二章概率2.2条件概率与事件的独立性2.2.1条件概率课件新人教B版选修2_3

������(������⋂������)
=
������������������ 的稳定值即为条件概率 P(B|A),又因为事件 ������������ ������������������ ������������ AB 发生的频率 ������ 、事件 A 发生的频率 ������ 的稳定值分别为 ������(������⋂������) P(A∩B),P(A),于是有 P(B|A)= ������(������) .
������������������ ������ ������������ ,考虑到大量重 ���条件概率公式揭示了条件概率P(B|A)与事件概率P(A),P(A∩B) 三者之间的关系,由条件概率公式可以解决下列两类问题:一是已 知P(A),P(A∩B),求P(B|A);二是已知P(A),P(B|A),求P(A∩B).
1
2
【做一做】 已知 P(A∩B)= ,P(A)= ,则 P(B|A)等于( A. 50 C. 10
9 9
B. 2
1 1
3 10
3 5
)
D. 4
������(������⋂������) 解析: P(B|A)= ������(������)
=
答案:B
3 10 3 5
= .
1 2
1.怎样理解条件概率的存在? 剖析3张奖券只有1张能中奖,现分别由3名同学无放回地抽取,最 1 后抽的同学中奖概率P(B)= 3 与第一名同学抽到的是一样的.而在 知道第一名同学没有抽到奖券的条件下,即事件A发生的前提 1 下,P(B|A)= ,显然知道了事件A的发生,影响了事件B的发生的概率. 2 事实上,在已知事件A没有中奖的前提下,奖券情况已经发生了变化, 只有1张能中奖和1张不能中奖,与原来的2张不能中奖和1张中奖不 同了,从而基本事件空间发生变化了,所以概率不同了,这就是条件 概率中的“条件”的意义,事实上就是“前提”的意思,这也就说明了条 件概率的存在.
高中数学第二章随机变量及其分布2.2第2课时事件的相互独立性学案新人教版
2.2 第二课时 事件的相互独立性一、课前准备 1.课时目标(1) 理解事件相互独立的定义;(2) 能利用事件相互独立的乘法公式求n 事件都发生的概率. 2.基础预探1.设A 、B 为两个事件,如果P (AB )=_______,则称事件A 与事件B 相互独立.2.如果事件A 与B 相互独立,那么______,_______,_________也都相互独立.3.一般地,如果事件12,,,n A A A 相互独立,那么这n个事件都发生的概率,等于每个事件发生的概率的积,即12()n P A A A =____________________.二、学习引领1.事件相互独立的的深入理解当A ,B 相互独立时,易知(|)P A B =P (A ),而()()(|)()P AB P B P A B P A ==,所以()()()P AB P A P B =;易知(|)P B A =P (A ),故()()(|)()P AB P A P B A P B ==,所以()()()P AB P A P B =.因此可知,当A ,B 相互独立时()()()P AB P A P B =.2. 事件互斥与事件相互独立的区别事件的“互斥”与“相互独立”是两个不同的概念:两事件“互斥”是指两事件不可能同时发生;两事件“相互独立”是指一个事件的发生与否对另一个事件发生的与否没有影响.这两个可以结合应用如:1-()()P A P B 表示两个相互独立事件A 、B 至少有一个不发生的概率.3.判断两个事件是否是相互独立事件首先,一般地,两个事件相互独立是指两个试验的结果之间的关系或者一个大试验的两个不相关的子试验之间的关系;其次,事件的相互独立性可以看作是一个综合事件分几个步骤完成,可类比分步计数原理的解题过程理解. 三、典例导析题型一:相互独立事件的判断例1 李云有一串8把外形相同的钥匙,其中只有一把能打开家门.一次李云醉酒回家,他每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则 “第一次打不开门”记为事件A ,“第二次能打开门”记为事件B ,请问事件A 与B 是否相互独立?思路导析:本题分析事件A 的发生与否对事件B 是否有影响,即可得到判断.解:由于此人喝醉,不能记得用过那把钥匙,故每次取得每把钥匙的可能性相同;并且试用后不加标记的放回去.易知,前一事件是否发生,对后一事件发生的概率没有影响,所以二者是相互独立事件.规律方法:判断两个事件是否独立,可利用两个事件相互独立的定义分别求出()P AB 、()P B 、()P A 代入公式()()()P AB P A P B =判定;也可分析事件A 的发生与否对事件B 的发生是否有影响.变式训练:甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生’’与“从乙组中选出1名女生”;这两个事件是否是相互独立事件?题型二 求相互独立事件同时发生的概率例2 中央电视台“星光大道”节目共有四关,每期都有实力相当的5名选手参加,每关淘汰一名选手,最后决出周冠军.经选拔,某选手将参加下一期的“星光大道”. (1)求该选手进入第四关才被淘汰的概率; (2)求该选手至多进入第三关的概率.思路导析:事件“进入第四关才被淘汰”的含义为“前三关未被淘汰,第四关被淘汰”;事件“选手至多进入第三关”的含义为“第一关被淘汰”或“第二关被淘汰”或“第三关被淘汰”;然后结合互斥事件的加法公式与相互独立事件的乘法公式解决. 解:(1)记“该选手能通过第i 关”的事件为=i A i (l,2,3,4),则54)(1=A P ,43)(2=A P ,32)(3=A P ,=)(4A P 21,所以该选手进入第四关才被淘汰的概率为 44123123()()()()()P A A A A P A P A P A P A =⨯⨯⨯=3243545121=.(2)该选手至多进入第三关的概率1233112[()(]P P A A A A A A =⋃⋃++=)()()(211A P A P A P )()()(321A P A P A P 53314354415451=⨯⨯+⨯+=. 方法规律:求相互独立事件的概率,首先判断所给事件是否能分解为互相独立连续的几个子事件,然后选用公式求解.这类问题也常与互斥事件、古典概型等联系存一起,注意恰当的选择方法.变式训练:两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A12 B 512 C 14 D 16题型三:概率加法乘法的综合问题例3 某植物园要栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率;(2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 思路导析:事件“至少有一种果树成苗..”的对立事件为“两个果树都不成苗”;事件“恰好有一种果树能培育成苗..且移栽成活..”包含“甲果树成苗且移栽成活”或“乙果树成苗且移栽成活”两个互斥的事件,然后利用互斥事件加法公式以及相互独立事件的概率乘法公式解决.解:分别记“甲、乙两种果树成苗”为事件1A 、2A ;分别记“甲、乙两种果树苗移栽成活”为事件1B 、2B ,则1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =.(1)“甲、乙两种果树至少有一种成苗”的对立事件是“甲、乙两种果树都不成苗”,而1A 与2A 是相互独立事件,故其概率为121212()1()1()()10.40.50.8P A A P A A P A P A =-=-=-⨯=;(2)分别记“两种果树培育成苗且移栽成活”为事件A B ,, 则1111()()()()0.60.70.42P A P A B P A P B ===⨯=,2222()()()()0.50.90.45P B P A B P A P B ===⨯=.“恰好有一种果树培育成苗且移栽成活”包括两种情况:“甲种果树培育成苗且移栽成活、乙种果树没培育成苗且没移栽成活”,即AB ;或“甲种果树没有培育成苗且没移栽成活、乙种果树培育成苗且移栽成活”,即AB ,而AB 与AB 是互斥事件,A 与B 、A 与B 是相互独立事件, 故其概率为[()()]()()()()()()P AB AB P AB P AB P A P B P A P B ⋃=+=+0.420.550.580.450.492=⨯+⨯=方法规律:对于相互独立事件、互斥事件的综合问题的求解可分三步进行:一是列出题中涉及的各个事件,并用适当的符号表示;二是理清各事件之间的关系,列出关系式;三是根据事件之间的关系准确的运用概率公式进行计算.当遇到“至多”、“至少”问题时常考虑其对立事件,从问题的反面求解.变式训练:甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求: (Ⅰ)甲试跳两次,第2次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率.四、随堂练习1.不透明的坛中有黑、白两种颜色的球,从中进行有放回地摸球,用1A 表示第一次摸得白球,2A 表示第二次摸得白球,则1A 与2A 是( )A 相互独立事件B 不相互独立事件C 互斥事件 D.对立事件2.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为51,身体关节构造合格的概率为41.从中任挑一儿童,这两项至少有一项合格的概率是( )(假定体型与身体关节构造合格与否相互之间没有影响) A.2013B.51 C.41 D.523.两人同时向一目标射击,甲命中率为15,乙命中率为14,则两人都没有命中目标的概率为 ( )A.720 B.35 C.121D.1104.在一次考试中,某班语文、数学、英语平均分在120分以上概率分别为0.4,0.2,0.4,则该班的三科平均分都在120分以上的概率为 .5.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是________.6.今年国庆节期间,王林去花博会参观的概率为14,李明去花博会参观的概率为15,假定两人的行动相互之间没有影响,求在国庆节期间王林、李明两人至少有一人去花博会参观的概率.五、课后作业1. 一个学生通过一种英语能力测试的概率是12,他连续测试两次,那么其中恰有一次通过的概率是( )A 14B 13C 12 D.342.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A 、B 中至少有一件发生的概率是( )A.512 B. 12 C. 712 D. 343.甲、乙、丙三名同学利用某网校联网学习数学,每天上课后独立完成六道自我检测题,甲答及格的概率为0.8,乙答及格的概率为0.6,丙答及格的概率为0.7,三人各答一次,则三人中只有一人及格的概率 .4.如图,用A 、B 、C 、D 表示四类不同的元件连接成系统M.当元件A 、B 至少有一个正常工作且元件C 、D 至少有一个正常工作时,系统M 正常工作已知元件A 、B 、C 、D 正常工作的概率依次为0.5、0.6、0.7、0.8,元件连接成的系统M 正常工作的概率)(M P = .5.为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费用如下表: 预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大6.在三人兵乓球对抗赛中,甲、乙、丙三名选手进行单循环赛(即每两人比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为13,甲胜丙的概率为14,乙胜丙的概率为13.(1)求甲获得小组第一且丙获得小组第二的概率;(2)求三人得分相同的概率; (3)求甲不是小组第一的概率.参考答案2.2 第二课时 事件的相互独立性2.基础预探1.()()P A P B2.A 与B A 与B A 与B3.12()()()n P A P A P A三、典例导析 例1 变式训练 解:“从甲组选出1名男生”这一事件是否发生,对“从乙组选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.例2 变式训练解:用事件A 、B 分别表示“两个实习生每人加工一个零件”为合格品,事件C 表示“两个零件中恰有一个为一等品”,则()()C AB AB =⋃,由题意知A 、B 为相互独立事件 则21135()()()343412P C P AB P AB =+=⨯+⨯=,故选B.例3 变式训练解:记“甲第i 次试跳成功”为事件i A ,“乙第i 次试跳成功”为事件i B ,依题意得()0.7i P A =,()0.6i P B =,且i A ,i B (12i =,)相互独立.(I)“甲第2次试跳才成功”为事件12A A ⋂,且两次试跳相互独立,所以1212()()()0.30.70.21P A A P A P A ==⨯=.答:甲第2次试跳才成功的概率为0.21.(II)“甲、乙两人在第一次试跳中至少有一人成功”为事件C .方法一:111111()()()C A B A B A B =⋃⋃因为,且11A B ,11A B ,11AB 彼此互斥, 111111()()()()PC P A B P A B P A B =++所以111111()()()()()()P A P B P A P B P A P B =++0.70.40.30.60.70.6=⨯+⨯+⨯0.88=方法二:11()1()()10.30.40.88P C P A P B =-=-⨯=. 答:甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.四、随堂练习 1.答案:A解析:1A 与2A 是相互独立事件,由于这是有放回地摸球,1A 与2A 无影响. 2.答案:D解析:可用排除法,由相互独立事件的概率乘法公式可知:P=52)411()511(1=-⨯--.3.答案:B解析:记“甲命中目标”为事件A ,“乙命中目标”为事件B ,则“甲没有命中目标”为事件A ,“乙没有命中目标”为事件B ,由于A 、B 相互独立,则A 、B 也相互独立, 则433()()()545P AB P A P B ==⨯=. 4.答案:0.032解析:三个事件相互独立,由相互独立事件的乘法公式可知P= 0.40.20.4=0.032⨯⨯. 5.答案:19解:颜色相同包括三红、三黄、三绿,概率为P=913313131=⨯⨯⨯.6.解:记事件A=“王林去花博会参观”,B=“李明去花博会参观”,则A 表示“王林不去花博会参观”,B 表示“李明不去花博会参观”,且A 、B 是相互独立事件,“王林、李明至少有一人去花博会参观”的对立事件是AB , 因为113()()()(1)(1)455P AB P A P B ==--=,所以,321()155P AB -=-=, 所以,王林、李明两人至少有一人去花博会参观的概率是25. 五、课后作业 1. 答案:C解析:设A 为第一次测试通过,B 为第二次测试通过,则所求概率为11111()()()()()()22222P AB P AB P A P B P A P B +=+=⨯+⨯=. 2.答案:C 解析:61)(,21)(==B P A P ,1571()12612P P AB =-=-⨯=. 3.解析:由相互独立事件的概率乘法公式可知P=0.80.40.3+0.20.60.3+0.20.40.7=0.096+0.036+0.056=0.188⨯⨯⨯⨯⨯⨯.4.答案:0.752解析:由相互独立事件的概率乘法公式可知:=)(M P [1()]P AB -[1()]P CD -=0.752. 5.解:方案1:单独采用一种预防措施的费用均不超过120万元由表可知,采用甲措施,可使此突发事件不发生的概率最大,其概率为0.9.方案2:联合采用两种预防措施,费用不超过120万元,由表可知联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1-(1-0.9)(1-0.7)=0.97.方法3:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为1-(1-0.8)(1-0.7)(1-0.6)=1-0.024=0.976.综合上述三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.6.解:(Ⅰ)设“甲获小组第一且丙获小组第二”为事件A, 则1121()34318P A =⨯⨯= (Ⅱ)设三场比赛结束后,三人得分相同为事件B,即每人胜一场输两场,有以下两种情形:甲胜乙,乙胜丙,丙胜甲,概率为1113133412P =⨯⨯=; 甲胜丙,丙胜乙,乙胜甲,概率为212214339P =⨯⨯=;三人得分相同的概率为12117()12936P B P P =+=+=. (3)设“甲不是小组第一”为事件C, 方法一:1111()13412P C =-⨯=; 方法二:该小组第一是乙或丙的概率为P=123213334318⨯+⨯=,13711()183612P C =+=.。
高中数学 2.2.2事件的相互独立性教案 新人教版选修2-3
§2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教学过程:一、复习引入: 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就说事件12,,,n A A A L 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么12()n P A A A +++L =12()()()n P A P A P A +++L探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A L 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积, 即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅L L .3.对于事件A 与B 及它们的和事件与积事件有下面的关系: ()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.J C J BJ A (法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.72P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作概率都是0.7,计算在这段时间内线路正常工作的概率 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是 1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦)变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅J C J B J A ()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅0.847=方法二:分析要使这段时间内线路正常工作只要排除C J 开且A J 与BJ 至少有1个开的情况 []21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率; (2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54(∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得113lg 2n ≥≈- ∵+∈N n ,∴n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习: 1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3 60页 习题 2. 2A 组4. B 组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。
新人教B版高中数学(选修2-3)2.2.2《事件的相互独立性》word教案
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌ ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近
某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()PA. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为
0()1PA,必然事件和不可能事件看作随机事件的两个极端情形
5基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都
相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n个,而且所有结果都是等可能的,如果事件A包含m个结果,那么事件A的概率()mPAn 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A和事件B是可以进行加法运算的
10 互斥事件:不可能同时发生的两个事件.()()()PABPAPB
高中数学《事件的相互独立性》
2.2.2事件的相互独立性一.教学目标:知识与技能:理解两个事件相互独立的概念,会用相互独立事件的概率乘法公式计算一些事件的概率。
过程与方法:进一步发展学生类比、归纳、猜想等合情推理能力;通过对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:相互独立事件的意义和相互独立事件同时发生的概率公式。
教学难点:对事件独立性的判定,以及能正确地将复杂的概率问题分解转化为几类基本的概率模型.二.教学过程:创设情境,提出问题合作交流,感知问题类比联想,探索问题实践应用,解决问题总结反思,深化拓展.1.创设情境,提出问题:问题一:“常言道,三个臭皮匠能抵诸葛亮”。
怎样从数学上来解释呢?将问题具体化:假如对某事件诸葛亮想出计谋的概率为0.88,三个臭皮匠甲、乙、丙想出计谋的概率各为0.6、0.5、0.5.问这三个臭皮匠能胜过诸葛亮吗?问题二:2010年1月26日上午,NBA常规赛进行了一场焦点之战--勒布朗-詹姆斯领衔的克利夫兰骑士在客场挑战由韦德率领的迈阿密热火。
比赛非常激烈,直到终场前3.1秒比分打成90平,热火队犯规,詹姆斯获两次罚篮机会,已知詹姆斯的罚篮命中率为77.6%,问骑士队此时获胜的概率是多少?我们一起学习完今天这节课后,问题就会得到解答。
引入课题:2.2.2事件的相互独立性(板书)2.复习回扣:条件概率:设事件A和事件B,且P(A)>0,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。
记作P(B |A).3.新课讲解:探究1:三张奖券有一张可以中奖,现由三名同学依次有放回地抽取。
定义A为事件“第一位同学中奖”,B为事件“第三位同学中奖”。
问:事件A发生对于事件B发生有影响吗?答:事件A的发生不会影响事件B发生的概率。
ABP=)P(B))(|PAAB又PP=(A(B)|)(PAABP=P∴))(()(B相互独立的定义 :设A 、B 是两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 2.1条件概率与事件的相互独立性 教学目标:1、通过对具体情景的分析,了解条件概率的定义。理解两个事件相互独立的概念。 2,掌握一些简单的条件概率的计算。能进行一些与事件独立有关的概率的计算。 3,通过对实例的分析,会进行简单的应用
教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 教学过程:概念:1,对于两个事件A与B,如果P(A)>0,称P(B︱A)=P(AB)/P(A),为在事件A发生的条件下,事件B发生的条件概率. 2,如果两个事件A与B满足等式 P(AB)=P(A)P(B),称事件A与B是相互独立的,简称A与B独立。 例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求 (1) 任意按最后一位数字,不超过2次就对的概率; (2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率.
解:设第i次按对密码为事件iA(i=1,2) ,则112()AAAA表示不超过2次就按对密码. (1)因为事件1A与事件12AA互斥,由概率的加法公式得
1121911()()()101095PAPAPAA
.
(2)用B 表示最后一位按偶数的事件,则
112(|)(|)(|)PABPABPAAB 14125545
.
例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是多少? 解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。 这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3. 例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算: (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB发生,因此所求概率为 P( AB )=P(A)P(B)=0.6×0.6=0.36 (2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。 因此所求概率为
48.06.0)6.01()6.01(6.0)()()()()()(BPAPBPAPBAPBAP。 (3)分析:“两人各投一次,至少有一人投中”包括三种情况:甲投中,乙未投中(事件AB发生);甲未投中,乙投中(事件AB发生);甲、乙两人都击中目标(事件AB发生) 解法一:“两人各投一次,至少有一人投中”的概率为 P=P(AB) +P(AB) +P(AB) =0.6×0.6 + 0.6×(1-0.6) +(1-0.6) ×0.6 =0.36 +0.48 =0.84 方法二:分析:“两人都未投中目标(事件AB发生)”的概率为 P(A·B)=P(A) · P(B)=(1-0.6) ×(1-0.6)=0.16 P=1-P(AB)=1-0.16=0.84 例4.在一段线路中并联着三个独立自动控制的开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是7.0,计算在这段时间内线路正常工作的概率. 解:分别记这段时间内开关JA,JB,JC能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是 ∴这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是 自我检测
1. 设A、B为两个事件,且0AP,若31ABP,32AP,则ABP( )
A.21 B.92 C. 91 D.94 2.某人忘记了电话码的最后一个数字,如果已知最后一个数字是不小于5的数,则他按对的概率是( )
A.51 B.52 C.53 D.54
3.甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为 ( ) A.43 B.32 C.107 D.54 4,某产品的制作需三道工序,设这三道工序出现次品的概率分别是P1,P2,P3。假设三道工序互不影响,则制作出来的产品是正品的概率是 。 5.在5道题中,有3道选择题和2道解答题,如果不放回地依次抽取2道题: (1)则第一次抽到选择题的概率为 . (2)第一次和第二次都抽到选择题的概率为 . (3)则在第一次抽到选择题的条件下,第二次抽到选择题的概率为 6.甲、乙两人分别对一目标射击1次,甲射中的概率为8.0,乙射中的概率为9.0,求 (1)2人都射中的概率; (2)2人中恰有1人射中的概率; (3)2人至少有1人射中的概率; 答案:1,A。2,A。3,A。4,(1-P1) (1-P2) (1-P3)。5,(1)0.6(2)0.3(3)0.5. 6,(1)0.72.(2)0.26.(3)0.98 小结: 1、条件概率的定义:设A,B为两个事件,则在事件A发生的条件下, 事件B发生的概率就叫做的条件概率 2、条件概率的计算公式; ()()()nABPBAnA()()PABPA3,相互独立事件的定义: 设A,B两个事件,如果事件A是否发生对事件B发生的概率没有影响(即 P(AB)=P(A)P(B) ), 则称事件A与事件B相互独立. 作业;P60,1,2. 2. 2.1条件概率与事件的相互独立性 预习目标:1、了解条件概率的概念,能利用概率公式解决有关问题; 2、理解事件的相互独立性,掌握相互独立事件同时发生的概率. 学习重点:条件概率的计算公式及相互独立事件同时发生的概率的求法. 学习过程: 一.课前预习:内化知识 夯实基础 (一) 基本知识回顾 1. 的两个事件叫做相互独立事件.
2、两个相互独立事件同时发生的概率,等于每个事件发生的 ,即BAP . 一般的,如果事件1A、nAA、2相互独立,那么这n个事件同时发生的概率等于每个
事件发生的概率的 ,即nAAAP21 . 3、一般的,设A,B为两个事件,且0AP,称 为在事件A发生的条件下,事件B发生的条件概率.
4、条件概率的性质: (1) (2) 5、计算事件A发生的条件下B的条件概率,有2种方法:
(1)利用定义:APABPABP (2)利用古典概型公式:AnABnABP 二.过关练习 1、在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为 ( )
A.49 B.52 C.101 D.103 2、从一副不含大小王的52张扑克牌中不放回地抽取2张,每次抽1张,已知第一次抽到A,第二次也抽到A的概率为 .
3、掷骰子2次,每个结果以yx,记之,其中1x,2x分别表示第一颗,第二颗骰子的点
数,设10,2121xxxxA,2121,xxxxB,则ABP . 4、事件A、B、C相互独立,如果61BAP,81CBP,81CBAP,则BAP .
三.课堂互动:积极参与 领悟技巧 例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求 (3) 任意按最后一位数字,不超过2次就对的概率; (4) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是多少? 例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算: (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 例4.在一段线路中并联着三个独立自动控制的开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是7.0,计算在这段时间内线路正常工作的概率. 四.强化训练:自我检测 能力升级
1. 设A、B为两个事件,且0AP,若31ABP,32AP,则ABP( )
A.21 B.92 C. 91 D.94 2.某人忘记了电话码的最后一个数字,如果已知最后一个数字是不小于5的数,则他按对的概率是( )
A.51 B.52 C.53 D.54
3.甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为 ( ) A.43 B.32 C.107 D.54 4,某产品的制作需三道工序,设这三道工序出现次品的概率分别是P1,P2,P3。假设三道工序互不影响,则制作出来的产品是正品的概率是 。 5.在5道题中,有3道选择题和2道解答题,如果不放回地依次抽取2道题: (1)则第一次抽到选择题的概率为 . (2)第一次和第二次都抽到选择题的概率为 . (3)则在第一次抽到选择题的条件下,第二次抽到选择题的概率为 . 6.甲、乙两人分别对一目标射击1次,甲射中的概率为8.0,乙射中的概率为9.0,求 (1)2人都射中的概率; (2)2人中恰有1人射中的概率; (3)2人至少有1人射中的概率; 答案:答案:1,A。2,A。3,A。4,(1-P1) (1-P2) (1-P3)。5,(1)0.6(2)0.3(3)0.5. 6,(1)0.72.(2)0.26.(3)0.98 小结: 1、 条件概率的定义 2、 条件概率的计算公式; 3、 相互独立事件的定义: 作业;P60,1,2.