乙苯脱氢制取苯乙烯
乙苯脱氢制苯乙烯反应工段毕业设计

乙苯脱氢制苯乙烯反应工段毕业设计摘要苯乙烯是最重要的基本有机化工原料之一。
本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。
本设计以年处理量30万吨乙苯为生产目标,采用乙苯二段绝热氧化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。
根据设计任务书的要求对整个工艺流程进行了物料衡算和热量衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型并绘制了带控制点的工艺流程图。
在设计过程中对整个工艺流程进行了简化计算,利用计算机模拟计算结果对整个工艺流程进行了模拟,并确定了整套装置的主要工艺尺寸,车间的平立面布置。
由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。
关键词:乙苯;苯乙烯;脱氢;Aspen Plus;模拟优化AbstractStyrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at home and abroad, styrene reaction conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes.This design is based on the annual handling capacity of 300,000 tons of ethylbenzene production targets, ethylbenzene two-stage adiabatic oxidative dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance and heat balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process include one reaction parts, the use of computer simulation results on the entire process flow simulation , determine the size of the main process of the entire device , workshop level and elevation layout.This design using computer simulation software Aspen Plus simulation文档仅供参考,不当之处,请联系改正。
乙苯脱氢制苯乙烯工艺流程模拟

化工模拟计算课程设计题目:乙苯脱氢制苯乙烯学生姓名:徐向东韩月阳学号: 10082330 11031405专业班级:化学工程与工艺卓越11-2班指导教师:孙兰义2004年5月10日乙苯脱氢制苯乙烯摘要乙苯脱氢制苯乙烯是目前工业生产苯乙烯的主要工艺路线,该路线经过两段脱氢工艺在脱氢催化剂的作用下反应生成苯乙烯,并经过进一步提纯制得合格的产品。
本方案基于已有的数据,采用文献提供的反应动力学及热力学平衡数据利用Aspen Plus对苯乙烯生产工艺全流程进行了模拟,模拟结果能够很好地达到产品的质量要求。
在全流程模拟过程中,通过对利用灵明度分析以及设计规定等模块对整个流程进行了设计优化,以期达到降低苯乙烯单位能耗的目的。
关键词:乙苯脱氢;动态模拟;全流程优化Dehydrogenation of Ethylbenzene to StyreneAbstractDehydrogenation of ethylbenzene to styrene is the main industrial process of styrene production , the manufacturing route is achieved by two styrene dehydrogenation reaction in the process of dehydrogenation catalyst ,after further purified,we can get qualified products.The program is based on existing data including the reaction kinetics and thermodynamic equilibrium data.The whole process of styrene production process were simulated by Aspen Plus,the simulation results indicates that the purity of styrene is qualified.For the purpose of energy conservation,we use the model analysis tools like ‘Sensitity’ and ‘Disegn Spec’ to get the enti re process optimized。
苯乙烯的合成工艺

二、乙苯催化脱氢合成苯乙烯的工艺流程脱氢反应:强吸热反应;反应需要在高温下进行;反应需要在高温条件下向反应系统供给大量的热量。
由于供热方式不同,采用的反应器型式也不同。
工业上采用的反应器型式有两种:一种是多管等温型反应器,是以烟道气为热载体,反应器放在加热炉内,由高温烟道气,将反应所需要的热量通过管壁传递给催化剂床层。
另一种是绝热型反应器,所需要的热源是由过热水蒸气直接带入反应系统。
采用这两种不同型式反应器的工艺流程,主要差别:脱氢部分的水蒸气用量不同;热量的供给和回收利用方式不同。
(一)多管等温反应器脱氢部分的工艺流程反应器构成:是由许多耐高温的镍铬不锈钢钢管组成;或者内衬以铜锰合金的耐热钢管组成;管径为100~185mm;管长为3m;管内装填催化剂;管外用烟道气加热(见图4-9,P182)。
多管等温反应器脱氢部分的工艺流程图见图4-10(P182)所示。
反应条件及流程:1.原料乙苯蒸气和一定量的水蒸气混合;2.预热温度(反应进口):540℃;3.反应温度(反应出口):580~620℃;4.反应产物冷却冷凝:液体分去水后送到粗苯乙烯贮槽;不凝气体含有90%左右的H2,其余为CO2和少量C1及C2 可作为燃料气,也可以用作氢源。
5.水蒸气与乙苯的用量比(摩尔比)为6~9:1; (等温反应器脱氢,水蒸气仅作为稀释剂用)。
6.讨论:(1)等温反应器:要使反应器达到等温,沿反应器的反应管传热速率的改变,必须与反应所需要吸收热量的递减速率的改变同步。
(2)一般情况下,出口温度可能比进口温度高出几十度(传递给催化剂床层的热量,大于反应时需要吸收的热量。
)(3)催化剂床层的最佳温度分布以保持等温为好。
(4)在反应初期, 温度比较低有利:在反应初期,乙苯浓度高,平行副反应竞争激烈。
温度比较低,有利于抑制活化能比较高的裂解和水蒸气转化等副反应的进行。
(5) 接近反应器的出口,温度比较高有利:接近反应器的出口,乙苯浓度降低,反应的推动力减小,提高反应温度,不仅可以增大反应速度常数,也可以提高反应的推动力,从而加快脱氢反应速度,使乙苯能达到比较高的转化率。
乙苯脱氢反应实验报告

乙苯脱氢反应实验报告乙苯脱氢制苯乙烯实验报告乙苯脱氢制苯乙烯实验报告一实验目的(1)了解以乙苯为原料在铁系催化剂上进行固定床制备苯乙烯的过程,学会设计实验流程和操作;(2)掌握乙苯脱氢操作条件对产物收率的影响,学会获取稳定的工艺条件之方法。
(3)掌握催化剂的填装、活化、反应使用方法。
(4)掌握色谱分析方法。
二实验原理2.1主副反应乙苯脱氢生成苯乙烯和氢气是一个可逆的强烈吸热反应,只有在催化剂存在的高温条件下才能提高产品收率,其反应如下:主反应C6H5C2H56H5C2H3 + H2副反应C6H5C2H56 + C2H4C2H4 + H2H6C6H5C2H5 + H2H6+ C2H6C6H5C2H56H5,CH3+ CH4此外,还有部分芳烃脱氢缩合、聚合物以及焦油和碳生成。
2.2 影响因素2.2.1温度的影响乙苯脱氢反应为吸热反应,?H00,从平衡常数与温度的关系式?H0??lnKP?可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡???2?TRT??P转化率。
但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适应的反应温度。
2.2.2 压力的影响?P?乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式KP?Kn?总?可??ni???知,当?γ0时,降低总压P总可使Kn增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。
实验中加入惰性气体或减压条件下进行,通常均使用水蒸气作稀释剂,它可降低乙苯的分压,以提高平衡转化率。
水蒸气的加入还可向脱氢反应提供部分热量,使反应温度比较稳定,能使反应产物迅速脱离催化剂表面,有利于反应向苯乙烯方向进行;同时还可以有利于烧掉催化剂表面的积碳。
但水蒸汽增大到一定程度后,转化率提高并不显著,因此适宜的用量为:水:乙苯,1.2,2.6:1(质量比)。
2.2.3 空速的影响乙苯脱氢反应中的副反应和连串副反应,随着接触时间的增大而增大,产物苯乙烯的选择性会下降,催化剂的最佳活性与适宜的空速及反应温度有关,本-1实验乙苯的液空速以0.6,1h为宜。
2024年乙苯、苯乙烯安全生产要点(三篇)

2024年乙苯、苯乙烯安全生产要点1工艺简述包括用苯烷基化制取乙苯和用乙苯脱氢法生产苯乙烯。
工艺过程由烷基化、洗涤、乙苯精馏、脱氢、苯乙烯精馏等工序组成。
简要工艺过程是将原料苯干燥使之含水小于10ppm,配入助催化剂无水氯化氢,同乙烯和三氯化铝催化剂络合物进入烷基化/烷基转移反应器,在温度180℃、压力0.91MPa下进行烷基化/烷基转移反应。
反应的物料经闪蒸回收氯化氢,再进入串联的三级洗涤系统,除去三氯化铝和氯化氢。
洗涤后的烷基化液送入精馏系统,烷基液被分离成苯、乙苯、多乙苯和残油。
苯和多乙苯返回烷基化/烷基转移反应器,乙苯产品送贮罐。
将乙苯和初级蒸汽过热后与主蒸汽混合(蒸气:乙苯=1.3:1)进入第一级反应器。
在入口温度628℃、出口压力0.0486MPa和催化剂作用下进行脱氢反应,然后于入口温度631℃、出口压力0.04MPa下在第二级反应器中继续脱氢生成苯乙烯,脱氢混合物经废热锅炉、过热蒸汽降温器、空调器降温、冷凝。
分离器出来的脱氢液进精馏系统,分离苯乙烯、乙苯、苯、甲苯得到苯乙烯产品。
乙苯、苯返回使用。
付产品甲苯送罐区。
本装置生产过程的物料乙苯、苯、苯乙烯、多乙苯、氢气等都具有易燃、易爆、有毒、有害的特性,有些具有强腐蚀性,如氢化氢,催化剂络合物等。
2重点部位2.1烷基化反应系统它是乙苯生产的核心部位。
反应时温度、压力较高,反应条件较苛刻,物料易燃、易爆且有强腐蚀性。
反应器需使用性能良好的防腐隔热衬砖为衬里。
其它设备和阀门、管线均采用特殊防腐材料,但仍存在着跑、冒、滴、漏的危险。
该类装置曾发生反应器被腐蚀而泄漏的事故。
另外,一旦水进入反应器会使催化剂络合物中毒,并造成设备、管线堵塞。
某厂苯乙烯装置因该反应器出料口堵塞而被迫停车。
2.2催化剂络合物配制系统该系统用苯、多乙苯、三氯化铝、无水氯化氢配制催化剂络合物供烷基化/烷基转移反应使用。
物料具强腐蚀性;系统若进水会使催化剂失活并分解产生沉淀堵塞管线,威胁整个烷基化反应。
乙苯脱氢实验

乙苯脱氢实验摘要苯乙烯(SM)是生产塑料和合成橡胶的重要基本有机原料,主要用于生产聚苯乙烯,也可用于制备丁苯橡胶、苯乙烯一顺丁烯-苯乙烯嵌段共聚物、不饱和聚酯等。
乙苯催化脱氢法是目前国内外生产苯乙烯的主要方法,采用的催化剂主要是Fe-K系催化剂,其中Fe2O3。
是活性组分、K2O是活性促进剂,K2O的引入使铁系催化剂的活性有了显著提高,可以在较低的水比下应用,但K2O含量过高存在着钾的流失问题。
.为了解决催化剂在使用过程中存在的问题,作者采用固定床反应器,以自制的高铁低钾氧化铁为催化剂,考察反应温度、进料比和催化剂活性对乙苯转化率、苯乙烯选择性和苯乙烯收率的影响,确定了最佳的工艺条件。
乙苯脱氢制苯乙烯催化剂的主要组分是铁和钾。
在新鲜催化剂中,铁和钾形成铁钾化合物,最稳定的结构为KFe11O17(或K2Fe22O34).添加铈、钼、镁等,改善催化活性,提高反应产率。
关键词:乙苯脱氢,催化剂,铁化合物AbstractStyrene (SM) is the production of plastics and synthetic rubber in im portant basic organic raw materials, mainly for the production of polysty rene, can also be used for the preparation of a styrene-butadiene rubber, maleate-styrene block copolymers, unsaturated polyester, etc. Ethylben zene catalytic dehydrogenation method is by far the major domestic and foreign production of styrene, used catalyst methodology mainly Fe-K c atalysts, Fe2O3. Is the active component, K2O is active promoters, K2O i ntroduction to iron-based catalyst's activity has been significantly impro ved, can lower water ratios apply, K2O content too high potassium loss exists.. in order to solve the catalyst in the use process problems, the au thor takes a fixed bed reactor to self-made iron and low potassium oxide as a catalyst, visit reaction temperature, feed ratio and catalyst activityon Ethylbenzene conversion rate, the selectivity of polystyrene and styr ene yield, determine the best process conditions.• Keywords: Ethylbenzene; catalyst;iron compound;一、实验目的1、了解以乙苯为原料,氧化铁系为催化剂,利用固定床反应器装置制备苯乙烯的过程。
乙苯脱氢制苯乙烯工艺流程

乙苯脱氢制苯乙烯工艺流程嘿,你有没有想过那些我们日常生活中随处可见的塑料制品、橡胶制品是怎么来的呢?这里面有一个很重要的原料,那就是苯乙烯。
而乙苯脱氢制苯乙烯可是一个超级有趣又相当重要的工艺流程呢!我有个朋友叫小李,他就在一家化工企业工作,专门和这个乙苯脱氢制苯乙烯的流程打交道。
我呀,就缠着他给我好好讲讲这个流程到底是咋回事儿。
乙苯脱氢制苯乙烯这个过程啊,就像是一场精心编排的魔术表演。
首先得有原料,那乙苯就像是表演的主角,它可是这个流程的根基。
这乙苯可不能是随随便便的,它得是经过严格提纯、质量合格的。
你想啊,如果乙苯本身就不纯,那后面还能变出合格的苯乙烯吗?肯定不行啊!然后呢,就到了反应阶段。
这个反应可不得了,就像是一场激烈的战斗。
乙苯要在高温和催化剂的作用下进行脱氢反应。
这高温啊,就像是给乙苯加了一把火,让它有足够的能量去甩掉一些东西。
催化剂呢,那就是这场战斗中的指挥官,指挥着乙苯按照正确的方向去反应。
我就问小李:“这高温得有多高啊?是不是像火炉一样热?”小李笑着说:“那温度可不低呢,几百摄氏度呢,真的就像个大火炉。
”在这个反应过程中,乙苯分子里的氢原子就像调皮的小孩子,在高温和催化剂的驱使下,纷纷从分子里跑了出来。
那这个时候就产生了苯乙烯,还有氢气呢。
你说神奇不神奇?这就像是把一个大包裹拆开,然后拿出一部分东西,变成了一个新的包裹和一些小零件。
可是啊,这还没结束呢。
反应完了之后,就像一场混乱的战场需要清理一样,反应后的产物是混合在一起的。
这里面有我们想要的苯乙烯,还有没反应完的乙苯,以及产生的氢气等其他东西。
这可不能就这么乱着呀,得把苯乙烯给分离出来才行。
这分离过程就像是从一堆混合的糖果里挑出你最喜欢的那种糖果一样。
小李跟我说,他们有一套很复杂的分离系统。
首先通过冷却,把一些高沸点的物质给凝结下来,就像把热气腾腾的食物放进冰箱里,一会儿就凝固了一样。
然后再利用不同物质在吸收剂中的溶解度不同,把苯乙烯和其他杂质分离开来。
实验室条件下乙苯脱氢制苯乙烯反应条件研究

实验室条件下乙苯脱氢制苯乙烯反应条件研究张淑霞;文萍【摘要】Styrene is an important organic chemical raw material. With gradual increase of demand, the production scale of styrene increases gradually, the production method is continually improved. But ethylbenzene dehydrogenation method is still a main production method. In this paper, under the laboratory condition, the influence of different process parameters on the experimental results was studied, and finally the best reaction conditions were obtained.%苯乙烯是重要的有机化工原料。
随着需求量的逐渐增加,苯乙烯的生产规模在逐渐的增大,生产方法也在不断的改进。
乙苯脱氢法仍是其中的主要生产方法。
在实验室的条件下,采用等温式乙苯催化脱氢小型装置,考察反应温度以及水和乙苯的进料比对实验结果的影响,并根据实验结果找出实验室条件下最佳的反应温度范围以及合适的进料比范围。
【期刊名称】《当代化工》【年(卷),期】2015(000)006【总页数】3页(P1288-1290)【关键词】乙苯;苯乙烯;催化剂;反应温度;进料比【作者】张淑霞;文萍【作者单位】中国石油大学华东化学工程学院,山东青岛 266580;中国石油大学华东化学工程学院,山东青岛 266580【正文语种】中文【中图分类】TQ241.1苯乙烯是高分子合成材料的一种重要单体,是重要的基本有机原料,是三大高分子合成材料的重要单体,其用途十分广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、实验目的
1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。
2、学会稳定工艺操作条件的方法。
二、实验原理
1、本实验的主副反应
主反应:乙苯? 苯乙烯+ 氢气mol 副反应:乙苯? 苯+ 乙烯mol 乙苯+氢气? 苯+乙烷mol
乙苯+ 氢气? 甲苯+ 乙烯mol
在水蒸汽存在的条件下,还可能发生下列反应:
乙苯+ 2水? 甲苯+ 二氧化碳+ 3氢气此外,还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。
这些连串反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。
2、影响反应的因素
(1)温度的影响乙苯脱氢为吸热反应,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。
但是温度过高副反应增加,使苯乙烯的选择性下降,能耗增加,设备材质要求增加,故应控制适宜的反应温度。
本实验的反应温度为540~600oC。
(2)压力的影响乙苯脱氢为体积增大的反应,降低总压可使平衡常数增大,从而增加反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。
本实验加水蒸汽的目的是降低乙苯的分压,以提高平衡转化率。
较适宜的水蒸汽用量为:水/乙苯二1 (体积比)
(3)空速的影响
乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以为止。
3、本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。
三、实验装置及流程
实验装置及流程如图1 所示。
图1 乙苯脱氢制苯乙烯工艺实验流程图
1-乙苯流量计;2、4-加料泵;3-水计量管;5-混合器;6-汽化器;7-反应器;8-电热夹套;9、11-冷凝器;10-分离器;12-热电偶
四、反应条件控制
汽化温度300oC,脱氢反应温度540〜600OC,水:乙苯二:1 (体积比),相当于
乙苯加料min,蒸馏水min (50ml催化剂)。
五、实验步骤
1、注入原料乙苯和水,接通电源,使汽化器、反应器分别逐步升温至预定温度,同时打开循环冷却水。
2、当汽化温度(对应控制面板的预热控制)达到300°C,反应温度达到400°C 时,加入已设定好流量的蒸馏水,当反应温度达到500° C时,加入已设定好流量的乙苯,继续升温至540°Co稳定15min,取出粗产品(不用分析)。
在此期间,用秒表标定蒸馏水和乙醇的确切流量,记录数据。
3、继续稳定15mi n,取出粗产品,放入小烧杯内,然后用分液漏斗分离水层和烃
层(上层为烃层),分别称重,记录数据。
4、取少量烃类样品,用气相色谱分析其组成,记录数据。
5、结束反应,停止加乙苯,反应温度在500°C以上时,继续通水蒸气进行催化剂的清焦再生,约20min后停止通蒸馏水,且降温。
同时停止通冷却水。
整理清理实验仪器,结束实验。
六、实验记录及计算
1 、数据记录
汽化器温度:o C
反应器温度:580o C
反应温度:o C
乙苯流量:
水流量:
乙苯加入量(15min):
粗产品质量(15mi n/烃层液):
w 乙苯
A*£
粗产品色谱分析结果:
色谱条件:DNP 色谱柱(浙大智达)、D3*2m ;载气为氢气;载气流量
40ml/min (柱头压;进样量1让;柱温90°;检测器(使用检测器 山)温度140° 桥流120mA ;
气化室(使用气化室I )温度140°C
理论色谱出峰顺序及停留时间:苯(),甲苯(),乙苯(),苯乙烯()。
色谱质量相对校正因子f i :苯(),甲苯(),乙苯(),苯乙烯()。
组分i 的质量浓度w i =A*f i /刀(Af i ),其中A i 为组分i 的色谱峰面积,f i 为组分i 的色 谱质量相对校正因子。
2、数据处理
乙苯的密度为cm 3,即乙苯加入质量为*= 色谱分析结果乙苯质量浓度
578011*1.123
1276.7*1 2747* 0.969 578011*1.123 180528* 0.970
乙苯转化率= 消耗的乙苯量
原料加入量
100%
原料加入量-乙苯剩余量
原料加入量
6786:6^7831 血%
6.786
29.3%
A 苯乙烯* f苯乙烯W苯乙烯
A* £
180528* 0.970
1276.7*1 2747* 0.969 578011*1.123 180528*0.970
21.14%
苯乙烯质量浓度计算苯乙烯选择性
苯乙烯选择性= 苯乙烯的产量
100%
6.12*0.2114
65.2%消耗的乙苯量 6.786-6.12*0.7837
苯乙烯的收率=乙苯转化率苯乙烯选择性100% 0.293*0.6502 100% 19.05%
七、思考题
1、乙苯脱氢生成苯乙烯反应是吸热还是放热反应如何判断如果是吸热反应,则
反应温度为多少本实验采用的什么方法工业上又是如何来实现的
答:乙苯脱氢生成苯乙烯反应是吸热反应。
反应温度升高,平衡向生成乙苯的方向移动。
反应温度为540 C到600 C。
本实验采用的方法是接通电源使汽化器、反应器分别逐步升温至预定温度。
汽化器温度达到300T,反应器温度达400C左右,开始加入已校正好流量的蒸馏水。
当反应度达到500C左右时,加入已校正好流量的乙苯,继续升温,到540r
使之稳定,加热温度用热电偶控制。
工业上乙苯脱氢时常加入适量02,在合适的条件下,02与生成的H2化合成
啟0,相当于移走生成物H2,促进平衡向生成苯乙烯的方向移动。
2、本反应是体积增大还是体积减小加压有利还是减压有利工业上如何实现减压操作本实验采用什么方法为什么加入水蒸汽可以降低烃分压
答:乙苯脱氢生成苯乙烯为体积增加的反应。
从平衡常数与压力的关系可知降低总压P总可使Kn增大,从而增加反应的
平衡转化率,故降低压力有利于平衡向脱氢方向移动。
工业上通过加水蒸气和乙苯的混合气降低乙苯的分压,来实现减压操作。
本实验采用加水蒸气的方法来降低乙苯分压以提高平衡转化。
因为水蒸气热容量大,产物易分离,产物不起反应,水蒸气还可以保护裂解炉管,同时水蒸气还有清焦作用。
3、本实验有哪几种液体产物生成哪几种气体产物生成如何分析
答:液体产物:苯乙烯、乙苯、苯、甲苯、水
气体产物:甲烷、乙烷、乙烯、氢气、二氧化碳、水蒸气
4、进行反应物料衡算,需要哪些数据如何采集
答:进行反应物料衡算需要乙苯的和水的加入量,精产品水层量和烃层量,并对粗产品中苯、甲苯、乙苯和苯乙烯含量进行分析,从而计算乙苯的转化率、苯乙烯的先择性和收率。
采集通过冷凝器将产物冷凝成液体,通过气液分离器分理出液体,自取样口取出,并进行称量。