工艺流程—裂解炉生产乙烯
乙烯裂解炉工作流程

管式炉裂解guanshilu liejie管式炉裂解pyrolysis in tubular furnace石油烃通过管式裂解炉进行高温裂解反应以制取乙烯的过程。
它是现代大型乙烯生产装置普遍采用的一种烃类裂解方法。
管式炉裂解生产乙烯的工艺已有60多年的历史。
管式裂解炉是其核心设备。
为了满足烃类裂解反应的高温、短停留时间和低烃分压的要求,以及提高加热炉的热强度和热效率,炉子和裂解炉管的结构经历了不断的改进。
新型的管式裂解炉的热强度可达290~375MJ/(m h),热效率已可达92%~93%,停留时间可低于0.1s,管式炉出口温度可到900℃,从而提高了乙烯的产率。
工艺流程可分为裂解和急冷-分馏两部分(图1[管式炉裂解工艺流程]①裂解裂解原料经预热后,与过热蒸汽(或称稀释蒸汽)按一定比例(视原料不同而异)混合,经管式炉对流段加热到500~600℃后进入辐射室,在辐射炉管中加热至780~900℃,发生裂解。
为防止高温裂解产物发生二次反应,由辐射段出来的裂解产物进入急冷锅炉,以迅速降低其温度并由换热产生高压蒸汽,回收热量。
②急冷-分馏裂解产物经急冷锅炉冷却后温度降为350~600℃,需进一步冷却,并分离出各个产品馏分。
来自急冷锅炉的高温裂解产物在急冷器与喷入的急冷油直接接触,使温度降至200~220℃左右,再进入精馏系统,并分别得到裂解焦油、裂解柴油、裂解汽油及裂解气等产物。
裂解气则经压缩机加压后进入气体分离装置。
裂解原料和产品分布最初,美国管式炉裂解原料是用天然气、油田伴生气和炼厂气中回收的轻质烃,其中主要含有乙烷、丙烷、丁烷及碳五馏分。
50年代,西欧和日本的石油化工兴起,由于缺乏石油及天然气资源,因而采用石脑油作裂解原料。
60年代后,又相继开发以轻柴油、重柴油和减压瓦斯油为原料的裂解技术,扩大了裂解原料来源。
对于不同的原料,裂解工艺参数不同、在适宜条件下的裂解产品分布也各异(见表[不同原料管式炉裂解产品分布(质量%)])。
乙烯的生产-裂解

2.环烷烃的断链(开环)反应
环烷烃的热稳定性比相应的烷烃好。
环烷烃热裂解时,可以发生C-C链的断裂(开 环),生成乙烯、丁烯和丁二烯等烃类。 环烷烃脱氢生成芳烃优于开环生成烯烃
侧链烷基断裂比开环容易。带短侧链时,先断 侧链再裂解;带长侧链,先在侧链中间断裂。
3.芳烃的断侧链反应
芳环不断裂 断侧链生成苯、甲苯、二甲苯
2.停留时间的选择
裂解温度:温度越高, 乙烯的峰值收率越高, 相应的最适宜停留时 间越短。
裂解原料:在一定的反应温度下,如裂解原料 较重,则停留时间应短一些,原料较轻则可稍 长一些;
三、裂解原料的性质及评价
族组成 氢含量
芳烃指数
1、族组成-PONA值
PONA值指各族烃的质量百分含量。 适用于表征石脑油、轻柴油等轻质馏分油
烷烃P (paraffin)
烯烃O (olefin)
环烷烃N (naphthene) 芳烃A (aromatics)
同条件下,P 越大,乙烯收率越高; 分子量愈大,(N+A)量愈大,乙烯收率愈小, 液态产物量愈大。 乙烯收率:P>N>A
(一)一次反应
1.烷烃裂解的一次反应
2.环烷烃的断链(开环)反应 3.芳烃的断侧链反应 4.烯烃的断链反应
1.烷烃裂解的一次反应
(1)断链反应
C-C键断裂,反应产物是烷烃和烯烃。 通式为:Cm+nH2(m+n)+2 →CnH2n+ CmH2m+2 (2)脱氢反应 C-H键断裂。 通式为:CnH2n+2 → CnH2n+H2
项目二
乙烯装置工艺流程

乙烯装置工艺流程
一、原料准备与输送
乙烯装置的原料主要为石脑油,通过原料油泵输送到装置内。
在原料进入裂解炉之前,需经过一系列的预处理,如脱水、脱硫、脱盐等,以去除杂质,保证原料质量。
二、蒸汽裂解
蒸汽裂解是乙烯装置的核心工艺,通过高温和催化剂的作用,使原料油发生裂解反应,生成乙烯、丙烯等烃类气体。
裂解炉是蒸汽裂解的关键设备,其温度和压力控制对裂解效果具有重要影响。
三、裂解气压缩
裂解气中含有大量烃类气体和惰性气体,需经过压缩和冷凝分离,使烃类气体液化并分离出来。
压缩机组是裂解气压缩的关键设备,其稳定运行对整个装置的平稳运行具有重要意义。
四、裂解气净化
裂解气中还含有一定量的硫化物、氮化物、氯化物等杂质,这些杂质会影响后续产品的质量和加工性能。
因此,需要对裂解气进行净化处理,去除其中的杂质。
常用的净化方法有酸碱洗涤、溶剂吸收等。
五、乙炔发生与净化
在乙烯装置中,部分裂解气会被用于生产乙炔。
乙炔的生产采用电石法,即将电石和水反应生成乙炔和氢氧化钙。
生成的乙炔需要进行净化处理,去除其中的杂质,如硫化氢、磷化氢等。
六、裂解汽油加氢
裂解汽油是乙烯装置的重要副产品之一,其主要成分是芳烃和烯烃。
为了提高裂解汽油的质量和利用价值,需要对裂解汽油进行加氢处理,将其中的不饱和烃转化为饱和烃。
加氢反应是在高温高压下进行的,需要使用催化剂来加速反应过程。
乙烯生产流程

乙烯生产流程
乙烯是一种重要的化工原料,广泛应用于塑料、橡胶、合成纤
维等领域。
乙烯的生产流程主要包括裂解、脱氢和裂解气体的净化
等环节。
下面将详细介绍乙烯的生产流程。
首先,乙烯的生产通常采用乙烷或乙醇为原料,经过裂解反应
得到乙烯。
裂解反应是在高温下进行的,通常使用催化剂来提高反
应效率。
裂解过程中,乙烷或乙醇分子内部的化学键被打破,生成
乙烯和其他副产物。
裂解反应的温度、压力和催化剂的选择对乙烯
产率和质量有重要影响。
其次,乙烯的生产还包括脱氢反应。
脱氢反应是指将乙烷或乙
醇中的氢原子去除,生成乙烯的过程。
脱氢反应通常在高温下进行,通常需要催化剂的参与。
脱氢反应的条件和催化剂的选择对乙烯的
产率和纯度有重要影响。
最后,裂解气体的净化是乙烯生产过程中的重要环节。
裂解反
应和脱氢反应产生的气体中含有大量的杂质,如碳氢化合物和硫化
合物。
这些杂质会影响乙烯的质量和下游产品的生产。
因此,裂解
气体需要经过一系列的净化步骤,如吸附、冷凝、洗涤等,去除其
中的杂质,提高乙烯的纯度。
综上所述,乙烯的生产流程包括裂解、脱氢和裂解气体的净化。
这些环节相互配合,共同完成乙烯的生产。
通过优化生产工艺和选
择合适的催化剂,可以提高乙烯的产率和质量,满足不同领域的需求。
乙烯作为重要的化工原料,其生产流程的改进和优化对于化工
行业的发展具有重要意义。
乙烯生产工艺流程及设备认知 裂解气的压缩

01
裂解气压缩目的
裂解气压缩目的
裂解气压缩目的
提高深冷分离的操作温度,从而节省低温能
01
量和省去低温材料; 促使裂解气中的水和重质烃冷凝,可以除去
02
相当量的水分和重质烃,从而减少了干燥脱 水和精馏分离的负担。
裂解气压缩目的
适当提高分离压力,可以使分离温度提高。 但是分离温度有最高值,温度不超过某一数值---临界温度。 在临界温度下,使气体液化所必需的最小压力叫临界压力。
裂解气的压缩
在生产工艺过程中,各裂解炉产生的裂解气经急冷和洗 涤净化后,其温度为40℃左右,压力略高于大气压,而 深冷分离工艺要求裂解气压为一般在3.34~3.75MPa。 采用裂解气压缩机把低压裂解气加压,使其达到深冷分 离所需压力。那么,压缩过程是怎样实现的呢?
目
CONTENTS
录
01 裂解气压缩目的 02 裂解气压缩原理 03 裂解气的多段压缩
裂解气的多段压缩流程
1.多段压缩
多段压缩优点:
01 降低出口温度
02 段间净化分离
2.典型的五段压缩工艺流程
裂解气压缩部分流程图
小
结
1. 裂解气压缩 的目的
2. 裂解气压缩 的原理
3. 裂解气多段 压缩的流程
裂解气的压缩主要是通过裂解气的多段压缩 和冷却相结合的方法来实现的,段与段之间 设置中间冷却器。
裂解气的多段压缩流程
1.多段压缩
多段压缩中,被压缩机吸入的气体先进行一段压缩,压 缩后压力、温度均升高,经冷却,降低气体温度并分离出凝 液,再进二段压缩,压缩后气体经冷却分离再进一步压缩, 以此类推。每一次压缩称为一段,经过几次压缩才能达到终 压,就称为几段压缩。
02
乙烯装置工艺流程

乙烯装置工艺流程乙烯是一种重要的化工原料,广泛应用于塑料、橡胶、合成纤维等行业。
乙烯装置是指生产乙烯的工业生产装置,其工艺流程包括原料制备、裂解、分离、净化和产品回收等环节。
下面将详细介绍乙烯装置的工艺流程。
原料制备乙烯的生产原料主要是石油和天然气。
在乙烯装置中,石油和天然气经过蒸馏、裂解等工艺处理后,得到乙烯的原料乙烷和丙烷。
这些原料经过精制后,成为裂解反应的原料。
裂解裂解是乙烯装置中最关键的环节,也是乙烯生产的核心工艺。
裂解是指将乙烷和丙烷等碳氢化合物在高温下分解成乙烯和丙烯的化学反应。
裂解反应通常在裂解炉中进行,通过加热原料并控制反应条件,促使原料分子发生断裂,生成乙烯和丙烯。
分离裂解反应生成的乙烯和丙烯需要进行分离,以获得高纯度的乙烯产品。
分离过程主要包括粗分离和精馏两个阶段。
在粗分离阶段,通过冷凝和蒸馏等方法将混合气体中的乙烯和丙烯分离出来。
在精馏阶段,进一步提高乙烯的纯度,得到合格的乙烯产品。
净化乙烯产品在分离后需要进行净化处理,以去除杂质和提高产品的品质。
净化过程主要包括脱硫、脱氢氯化和脱水等步骤。
脱硫是指去除乙烯中的硫化氢和硫醇等硫化物,脱氢氯化是指去除乙烯中的氯化氢,脱水是指去除乙烯中的水分。
这些净化步骤可以通过化学吸收、吸附和膜分离等方法实现。
产品回收乙烯装置生产的乙烯产品需要进行回收和储存,以便后续加工和运输。
产品回收主要包括冷凝、压缩和储存等步骤。
在冷凝过程中,将乙烯气体冷却成液体,然后通过压缩将液体乙烯压缩成高压液体或气体,最终储存在储罐中。
综上所述,乙烯装置的工艺流程包括原料制备、裂解、分离、净化和产品回收等环节。
这些环节相互配合,共同完成乙烯的生产过程,为乙烯产品的生产提供了可靠的工艺保障。
乙烯装置的工艺流程不仅涉及化学原理和工艺技术,还涉及设备设计和自动控制等多个领域,是一项综合性的工程技术。
乙烯生产—管式炉裂解流程

• 目的:
• 提高分离操作温度,节约低温能量和材料。
• 除去部分水份和重质烃,减少后面干燥和低温的负担。
• 要求:
• P↑,设备材料要求增加,动力消耗也增加。
• P↑,精馏塔釜温↑,不饱和烃及重组分聚合
• P↑,α↓,分离困难。
∴生产中一般控制30~40atm。
• 采用多段压缩:
压缩升温时二烯烃、烯烃易聚合,∴为防止结焦,控制排气温度<100℃,采
侧壁烧嘴
管式裂解炉的炉型
( 二
1.鲁姆斯裂 解炉
)
管 式
2.凯洛格毫
裂
秒裂解炉
解
炉
的
炉 型
C裂解炉
SRT型裂解炉即短停留时间炉,是美国鲁姆
斯(Lummus)公司于1963年开发,1965
年工业化,以后又不断地改进了炉管的炉型
超伯的解选斯一温及裂缩的中司的超洛一下0解致.择特种度1炉解短收应,乙短(种,炉使秒性(炉和子炉停率用扬烯K停炉使。裂S毫(裂S型烃eR的,留,最子生留型物解秒lt5Tlo解,分o0结 该时 对 多 石 产时。料炉炉n型g~U炉 压e构炉间不的油装间1在结g由炉S19)简条&,型,同炉化置裂炉构0C7于是08公称件W裂先的改的型工均解管复毫年管目司e的U解后不善裂。公采炉内杂秒开径b前S在选技s推断裂解中司用简的,C)发较t世6e择术炉出改解原国和此称停投,0成小r界),年是。了进选料的齐种留资U所功,上公使S代根它,择有燕鲁裂S时相以所,R大R司生开据是是性较山石解间对T也需在T型在炉成始停美-为,大石油炉缩较称炉高乙7,的研留国Ⅰ了提的油化。短高为0管裂烯是产年究时斯~进高灵化工到。毫数解装美品代开间通Ⅵ一乙活工公因0秒量温置.国中开发、-0型步烯性公司裂裂多度5凯乙发的裂韦~。解, 烷等管副是产一品程较,少没,有乙弯烯头收,率阻较力高降而小命,名烃的分。压低,
乙烯的生产-裂解

任务一 生产方法的选择 任务二 生产准备 任务三 应用生产原理确定工艺条件 任务四 生产工艺流程的组织 任务五 正常生产操作 任务六 异常生产现象的判断和处理
任务一 生产方法的选择
一、烃类热裂解技术
石油系烃类原料(如天然气、炼厂气、石脑 油、柴油、重油等),在高温、隔绝空气的条件 下发生分解反应,生成碳原子数较少,相对分子 质量较低的烃类。制取乙烯、丙烯的同时联产丁 二烯、苯、甲苯、二甲苯等基本原料,也称管式 炉裂解或蒸汽裂解技术。以三烯(乙烯、丙烯、 丁二烯)和三苯(苯甲、苯、二甲苯)总量计, 约65%来自乙烯装置。乙烯生产能力是衡量一个 国家和地区石油化工生产水平的标志。
2.环烷烃的断链(开环)反应 环烷烃的热稳定性比相应的烷烃好。 环烷烃热裂解时,可以发生C-C链的断裂(开 环),生成乙烯、丁烯和丁二烯等烃类。 环烷烃脱氢生成芳烃优于开环生成烯烃
侧链烷基断裂比开环容易。带短侧链时,先断 侧链再裂解;带长侧链,先在侧链中间断裂。
3.芳烃的断侧链反应
芳环不断裂 断侧链生成苯、甲苯、二甲苯 芳烃缩合成稠环芳烃;进一步生成焦。
二、停留时间
1. 停留时间 指裂解原料由进
入裂解辐射管到离 开裂解辐射管所经 过的时间。
2.停留时间的选择 裂解温度:温度越高,
乙烯的峰值收率越高, 相应的最适宜停留时 间越短。
裂解原料:在一定的反应温度下,如裂解原料 较重,则停留时间应短一些,原料较轻则可稍 长一些;
裂解技术:五十年代停留时间为1.8~2.5秒, 目前一般为0.15~0.25秒,单程炉管可达0.1秒 以下,即以毫秒计。
芳烃—无侧链的芳烃基本上不易裂解为烯烃;有侧链的芳 烃,主要是侧链逐步断链及脱氢。芳烃倾向于脱氢缩合生 成稠环芳烃,直至结焦。所以芳烃不是裂解的合适原料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用裂解炉生产乙烯热裂解特点:高温,吸热量大低烃分压,短停留时间,避开二次反响的发生反响产物是简单的混合物热裂解的供热方式如下所示:直接供热法:工艺简单,裂解气质量低,本钱过高。
其裂解工艺始终没有很大进展!工业上烃类裂解生产乙烯的主要过程为:原料热裂解裂解气预处理〔包括热量回收、净化、气体压缩等〕裂解气分别产品乙烯、丙烯及联产物等。
一、原料烃组成对裂解结果的影响影响裂解结果的因素:原料特性;裂解工艺条件;裂解反响器型式;裂解方法等。
族组成,% 大庆 145~ 成功 145~ 任丘 145~ 大港 145~350℃〔质量〕350℃350℃350℃原料特性是最重要的影响因素!(一) 原料烃的族组成、含氢量、芳烃指数、特性因数裂解产物分布的影响1. 族组成〔简称 PONA 值〕定义:是指原料烃分子中所含各族烃的质量百分比P —烷族烃 N —环烷族烃 O —烯族烃A —芳香族烃从表 1-7 作一比较,在管式裂解炉的裂解条件下,原料愈轻,乙烯收率愈高。
随着烃分子量增大,N+A 含量增加,乙烯收率下降,液态裂解产物收率渐渐增加。
表 1-7 组成不同的原料裂解产物收率裂解原料 乙烷 丙烷 石脑油 抽余油 轻柴油 重柴油 原料组成特性 PPP+NP+N P+N+A P+N+A 乙烯 84* 44.0 31.7 32.9 28.3 25.0丙烯1.4 15.6 13.0 15.5 13.5 12.4 主要产物收率,%〔质量〕 丁二烯 1.43.44.75.3 4.8 4.8 混合芳烃 0.4 2.8 13.7 11.0 10.9 11.2其它12.8 34.2 36.835.842.546.6*包括乙烷循环裂解原料的 PONA 值常常被用来推断其是否适宜作裂解原料的重要依据。
表 1-8 介绍我国几个产地的轻柴油馏分族组成。
表 1-8 我国常压轻柴油馏分族组成P 烷族烃正构62.641.021.6 53.223.030.2 65.430.025.4 44.4烷烃异构烷烃环烷族烃其中24.216.45.62.2 28.019.67.01.4 23.817.45.41.0 34.420.610.43.4 一环二环三环以上A 芳烃其中一环二环三环以13.27.05.30.9 18.813.55.00.3 10.87.23.40.2 21.213.27.30.7 上我国轻柴油作裂解原料是较抱负的。
2.原料氢组成定义:是指原料烃分子中氢原子的质量百分比,不包含溶解的H2烃类裂解过程也是氢在裂解产物中重安排的过程。
原料含氢量对裂解产物分布的影响规律,大体上和 PONA 值的影响全都。
表 1-9 位各种烃和焦的含氢量比较。
表1-9 各种烃和焦的含氢量物质分子式含氢量,%〔质量〕甲烷乙烷丙烷丁烷烷烃 CH4C2H6C3H8C4H10CnH2n+2 252023.217.2n+1/(7n+1)×100环戊烷环己烷C5H10C6H12 14.2614.26苯甲苯萘蒽C6H6C7H8C10H8C14H10 7.78.76.255.62焦碳CaHbCn 0.3 ~0.1~0可以看出,碳原子数一样时,含氢量:烷烃>环烷烃>芳烃。
含氢量高的原料,裂解深度可深一些,产物中乙烯收率也高。
对重质烃类的裂解,按目前的技术水平,原料含氢量掌握在大于13%〔质量〕,气态产物的含氢量掌握在 18%〔质量〕,液态产物含氢量掌握在稍高于 7~8%〔质量〕时,就简洁结焦,堵塞炉管和急冷换热设备。
图 1-3 给出了不同含氢量原料裂解时产物收率。
从图中可以看出:含氢量 P>N>A 液体产物收率 P<N<A乙烯收率 P>N>A 简洁结焦倾向 P<N<A3.芳烃指数〔BMCI〕定义:BMCI=48640/TV+473.7×d15.615.6-456.8TV=(T10+ T30+ T50+ T70+ T90)/5TV—体积平均沸点,KT10、T30…—分别代表恩氏蒸馏馏出体积为 10%,30%…时的温度,K基准:n-C6H14 的BMCI=0芳烃的 BMCI=100因此,BMCI 值越小,乙烯收率越高,当 BMCI﹤35 时,才能做裂解原料。
4.特性因素 KK=1.216(T 立)1/3 /d15.6T 立=〔〕3T 立—立方平均沸点;xiv—I 组分的体积分率;Ti—I 组分的沸点,k。
小结:原料烃参数对裂解结果的影响1)当PONA 增大,乙烯收率增大;2)当氢含量增大,乙烯收率增大;3)当 BMCI 减小,乙烯收率增大;4)当K 增大,乙烯收率增大。
(二)几种烃原料的裂解结果比较(二)几种烃原料的裂解结果比较这里列举了乙烷、丙烷、石脑油、轻柴油、重柴油作原料的裂解产物〔表1-11〕。
表 1-11 不同原料的裂解产物分布〔单程〕原料乙烷丙烷石脑油轻柴油原料规格94% 95.7% 43~159℃173~131℃辐射管出口温度,℃737 840 820 790裂解条件辐射管出口压力,kpa 154.7 100 100 107 水蒸气/油〔质量〕0.33 0.4 0.60 0.75裂解产物组成,%〔质量〕H2 3.08 1.25 0.8 0.6CH4 7.45 20.35 13.7 10.1C2H4 43.3 29.97 26.1 23.0C2H6 37.3 3.76 4.0 4.2C3H6 32.7 20.33 16.0 14.75C3H8 32.7 19.26 0.5 0.3C4 1.1 3.58 12.4 9.65C5+ 4.64 0.92 25.6 19.0燃料油25.6 17.25 由表1-11可见,原料不同,裂解产物组成是不同的,裂解条件也有差异。
适宜的裂解条件是:①最大可能的乙烯收率;②适宜的裂解周期以保证年开工率。
按生产单位乙烯所需的原料及联产品数量来比较见表 1-12。
表1-12 生产 1 吨乙烯所需原料量及联副产物量指标乙烷丙烷石脑油轻柴油需原料量,t 1.30 2.38 3.18 3.79联产品,t 0.2995 1.38 2.60 27.9其中,丙烯,t 0.0374 0.386 0.47 0.538丁二烯,t 0. 0176 0.075 0.119 0.148B、T、X* 0.095 0.49 0.50*B、T、X 为苯、甲苯、二甲苯从表 1-11,1-12 比较可得:1)原料由轻到重,一样原料所得乙烯收率下降。
2)原料由轻到重,裂解产物中液体燃料油增加,产气量削减。
3)原料由轻到重,联产物量增大,为降低乙烯本钱,必定考虑联产物的回收和综合利用,由此增加了装置和投资。
二、操作条件对裂解结果的影响〔一〕衡量裂解结果的几个指标. 转化率(X)转化率=2.选择性(S)选择性==3.收率和质量收率〔Y〕收率=质量收率=Y=X×SX:单程转化率,总转化率Y:单程收率,总收率4.产气率产气率=气体总质量/原料质量*100%(二〕裂解温度的影响温度对产物分布的影响主要有两方面:①影响一次产物分布;②影响一次反对二次反响的竞争。
1.温度对一次反响产物分部的影响温度对一次反响产物分布的影响,按链式反响机理,是通过各种链式反响相对量的影响来实现的。
表1-13 是应用链式反响动力学数据计算得到的异戊烷在不同温度裂解式的一次产物分布。
由表 1-13 可以看出,裂解温度不同,就有不同的一次产物分布,提高温度,可以获得较高的乙烯、丙烯收率。
表1-13 裂解温度对异戊烷一次产物分布的影响(计算值)组分 wt% H2 CH4 C2H4 C3H6 i-C4H8 1-C4H8 2-C4H8 总计C=2+C=3 600℃0.7 16.4 10.1 15.2 34.0 10.1 13.5 100 25.3 1000℃ 1.6 14.5 13.6 20.3 22.5 13.6 14.5 100 33.92.温度对一次反响和二次反响相互竞争的影响—热力学的动力学分析烃类裂解时,影响乙烯收率的二次反响主要是烯烃脱氢、分解生碳和烯烃脱氢缩合结焦反响。
C2H6<==>C2H4+H2 kp1C2H4<==>C2H2+H2 kp2C2H2<==>2C+H2 kp3⑴热力学分析烃分解生碳反响具有较大负值,在热力学上比一次反响占确定优势!但分解过程必需先经过乙炔阶段,所以,主要看乙烯脱氢转化为乙炔的反响在热力学上是否有利?乙烯转化为乙炔的反响,在温度低于760℃时平衡常数很小。
表1-14〔P41〕给出了以下三个反响在不同温度下的平衡常数值。
表1-14 乙烷分解生碳过程各反响的平衡常数温度,℃kp1 kp2 kp3827 1.675 0.01495 6.556×107927 6.234 0.08053 8.662×1061027 18.89 0.3350 1.570×1061127 48.86 1.134 3.446×1051227 111.98 3.248 3.248×105由表可以看出,随着温度的上升,kp1 和kp2 都增大,其中 kp2 的增大速率更大些。
另一方面,kp3 虽然随着温度上升而减小,但其确定值仍旧很大,故提高温度有利于乙烷脱氢平衡,固然也更有利于乙烯脱氢生成乙炔,过高温度更有利于碳的生成。
⑵动力学分析当有几个反响在热力学上同时发生时:假设反响速度彼此相当,则热力学因素对这几个反响的相对优势将其打算作用;假设各个反响的速度相差悬殊,则动力学对其相对优势就会起重要作用。
温度是通过反响速度常数来影响反响速度的。
温度对反响速度的影响程度与反响活化能有关。
转变反响温度:能转变各个一次反响的相对反响速度,影响一次产物的分布;也能转变一次反响对二次反响的相对速度。
上升反响温度:能加快一次反响反响速度,提高转化率;也能加快二次反响的速度,导致一次产物的加速消逝。
简化的动力学图示如下所示:乙烯连续脱氢生成乙炔的二次反响与一次反响的竞争,主要取决于 k1/k2 的比值及随温度的变化关系。
k1/k2 的比值越大,一次反响越占优势。
k1=1014exp(-69000/RT) (s-1)k2=2.57×108exp(-40000/RT) (s-1)k3=9.7×1010exp(-62023/RT) (s-1)一次反响的活化能大于二次反响,上升温度有利于提高 k1/k2 的比值〔见图1-4〕,也即有利于提高一次反响对二次反响的相对速度,提高乙烯收率。
对于另一类二次反响即氢缩合反响与一次反响的竞争,也有同样规律。
C2H4+C4H6→液体产物r4=k4[C2H4][C4H6]k4=3.0×107exp(-27500/RT) (s-1.mol-1)C3H6+C4H6→液体产物r5=k5[C3H6][C4H6]k5=3.0×107exp(-27500/RT) 2C4H6→液体产物r6=k6[C4H6]2k6=6.9×108exp(-26800/RT) 连续阅读(s-1.mol-1) (s-1.mol-1)。