分子筛的离子交换与修饰参考幻灯片
第三章分子筛催化详解演示文稿

天然气、裂解气脱H2S、CO2比硅胶净化度提高
10~20倍。 烃类分离:
脱蜡:异构烷中分离正构烷;
从混合二甲苯中分离对二甲苯(KBaY分子筛)
第八页,共50页。
2、六十年代 — 人工合成工业催化剂
Y型分子筛:人工合成沸石分子筛。 主要应用领域:
催化裂化、加氢裂化、催化重整、芳烃及烷烃异构化、烷基 化过程、歧化过程等。
HZSM-5 36.8 27.21 1.30 1.30 1.10 0.90 0.80
PHZSM-5 17.5 MgHZSM-5 4.63 P·MgZSM 18.0
66.00 72.55 90.01
0.85 0.85 0.18 0.12 0.05 0.65 0.60 0.10 0.07 0.02 1.00 1.00 0.20 0.05 0.01
过渡金属簇状物存在时,可使分子H2与质子H+之
间相互转化。如:
(2Agn)+ + H2
(Agn)+ + 2H+
第四十一页,共50页。
2、沸石分子筛酸性调变
对于其它类型的分子筛,如耐酸性强的分子筛ZSM-5、
丝光沸石等,可以通过稀盐酸直接交换将质子引入,但该
法常导致分子筛骨架脱铝。 这就是NaY要首先变成NH4Y,然后再转化成HY的
第三十六页,共50页。
H型
脱阳离子型
➢ (红外光谱OH伸缩振动带)
3640㎝-1
B酸
HY分子筛表面
1450㎝-1
L酸
脱阳离子沸石表面
第三十七页,共50页。
离子交换法演示文稿

12
第十二页,共43页。
“strong and weak” refer to the extent that the ionization
state of the functional groups varies with pH.
• The terms strong and weak do not refer to the strength with which the
19
第十九页,共43页。
(五)其它离子交换树脂 • 2、选择性交换树脂
第二十页,共43页。
应用:含重金属离子的废水
应用:除去色素
(氧化还原树脂,略)
20
第三节 离子交换动力学*
21
第二十一页,共43页。
离子交换速度的影响因素:
• 1、树脂粒度:树脂粒度大,交换速度慢。 • 2、搅拌速度 • 3、树脂交联度:交联度大,交换速度低。 • 4、离子半径和离子价:离子每增加一个电荷,交
36
第三十六页,共43页。
洗脱方式
改变溶液pH及离子强度:
37
第三十七页,共43页。
思考题
• 1. 混合溶液中,待分离目的蛋白质T的pI为7.9,杂质蛋白A 的pI为5.4,杂质蛋白质B的pI为4.9,实验室现有SP Sepharose™ Fast Flow (一种强阳离子交换树脂),请设 计一套实验方案,使用离子交换技术纯化目的蛋白质T。
functional groups bind to proteins. • Strong ion exchangers show no variation in ion exchange capacity with
change in pH .
分子筛

• 3. 择形催化剂的性能要求与调变 择形选择性的调变,可以通过毒化外表面活性中心; 修饰窗孔入口的大小,常用旧修饰剂为四乙基原硅酸酯, 也可改变晶粒大小等。 择形催化的最大实用价值,在于利用它表征孔结构的 不同。 择型催化在炼油工艺和石油化工生产中取得了广泛的应 用。如分子筛脱蜡、择型异构化、择型重整、甲醇合成汽 油、甲醇制乙烯、芳烃择型烷基化等等都是。 参考书: 《择形催化》 曾昭槐 编著 中国石化出版社 1994 北京
分子筛及其催化作用
沸石分子筛是一类重要的无机微 孔材料,具有优异的择形催化、酸碱催化、 吸附分离和离子交换能力,在许多工业过 程包括催化、吸附和离子交换等有广泛的 应用。沸石分子筛的基本骨架元素是硅、 铝及与其配位的氧原子,基本结构单元为 硅氧四面体和铝氧四面体,四面体可以按 照不同的组合方式相连,构筑成各式各样 的沸石分子筛骨架结构。
沸石分子筛的结构单元
硅、铝氧四面体(硅、铝位于四面体重心,氧在四面体角顶)是为第一 结构单元;一级单元以氧为桥(氧桥)首尾相连而成第二结构单元 (环),如单四元环(S4R——平面四边形,其边代表氧桥,顶点为硅、 铝等),单六、八元环(S6R,S8R)等;各种单多元环以氧桥连接,形 成第三结构单元(多面体和笼),如双四、六、八元环(D4R,亦称立方 体笼;D6R,亦称六角柱笼;D8R,亦称八面柱笼)及β笼. α笼和β笼是A、X和Y型分子筛晶体结构的基础。
• 择形催化共有以下四种不同的形式: • (A) 反应物的择形催化 • 例如,丁醇的三种异构体的催化脱水,用CaX, 正构体较之异构体更难于脱水;用CaA,则丁醇2完全不能反应,带支链的异丁醇脱水速率也极低, 正丁醇则转化很快。 • 油品的分子筛脱蜡,重油的加氢裂化等 。 • (B) 产物的择形催化 • Mobil公司开发的混合二甲苯经择形催化生产 P-X的技术 。
催化剂制备方法PPT课件

过 滤
干燥
洗 涤
Na型 丝光
沸石
18
浸渍法
将载体放进含有活性物质的液体中浸渍
载体(如Al2O3)的沉淀 洗涤干燥 载体的成型 用活性组份浸渍 干燥
焙烧分解
活化还原
2021
负载型金属催化剂
19
浸渍法的原理
活性组份在载体表面上的吸附 毛细管压力使液体渗透到载体空隙内部 提高浸渍量(可抽真空或提高浸渍液温度) 活性组份在载体上的不均匀分布
粉末细,成型后机械强度高,但成球困难 加入粘合剂(水),量少成球时间长,量
大时造成多胞,难成球 加大转盘转数和倾斜度,粒度下降;转盘
深,粒度大
2021
47
固体催化剂制备方法进展
超细粒度催化剂
– 超细粒子在纳米尺度时的表面效应
– 反应中的扩散行为
– 催化剂活性增强
溶胶凝胶法
– 多组分在胶体中分布均匀
加热到90-100 0C尿素, 同时释放出OH-
2021
11
导晶沉淀法
借助晶化导向剂引导非晶型沉淀转化为 晶型沉淀
X,Y分子筛 合成
分子筛合 成原料
加晶种 晶化
2021
无定型物 转
X,Y晶体 化
高结晶度
12
沉淀时金属盐类的选择
一般选用硝酸盐(大都溶于水) 贵金属为氯化物的浓盐酸溶液 铼选用高铼酸(H2Re2O7)
金属盐溶液
NaOH(Na2CO3)
沉淀
活
洗涤 干燥 焙烧 研磨 成型
化
催化剂
2021
8
单组分沉淀法
制备非贵金属的单组分催化剂或载体
Al3+ + OH-
载体Al2O3
分子筛层析

分子筛层析
离子交换分子筛层析是一种通过交换分子筛吸附离子分子来对物质进行分析、测试或
提取的方法。
它通过吸附在分子筛表面上的离子来分离、测定或提取有机化合物或无机盐类、酸和碱类物质。
离子交换分子筛的原理是,将目标吸附在分子筛的表面上,利用筛上
的离子进行交换,或将物质从离子交换层中离子换出,而使非离子交换物质留在筛上。
离子交换分子筛的主要优势是操作简便,容易回收回收物,而且操作成本低。
离子交
换分子筛通常用于含有有机离子体系的测试或分离。
它可用于分离各种有机物质,如矿物
精制品、天然气中的有机气体和有机离子、金属离子和有机化合物等。
离子交换分子筛还
可以用于吸附有机离子或无机盐类,以提取酸碱性物质、细微有机分子、催化剂和药物等。
为了实现离子交换分子筛的操作,需要使用精确的技术手段来准备离子交换分子筛的
原料,如各种有机化合物、离子体系和酸碱体系。
这一步骤需要控制一定的温度和pH值,确保离子交换分子筛能正常操作。
在吸附离子体系等物质之前,需要给筛加以洗涤,以清
除表面上的杂质。
然后将待测物加入离子交换分子筛,执行吸附和换出的反复程序,最终
完成离子交换分子筛的任务。
离子交换分子筛既可以单独使用,也可以作为其他实验的一部分。
它可以作为其他分
析法的前处理,以及对有机离子的测定和提取准备,也可以作为实验操作的一个步骤。
离
子交换分子筛除可用于有机离子体系外,还可用于有机化合物、金属离子和无机盐类的测
定分离和提取。
这种分析方法简洁、高效且成本低廉,是化学领域的一种重要的技术手段。
分子筛简介

改性与修饰的应用前景
环境保护
能源化工
改性与修饰后的分子筛可用于空气净化、 水处理、废气废液处理等领域,有效去除 环境中的有害物质。
在石油化工、天然气化工、煤化工等领域 ,改性与修饰后的分子筛可提高产品的分 离效率和产率,降低能耗和成本。
医药领域
其他领域
在药物合成、分离纯化、药物载体等方面 ,改性与修饰后的分子筛可提高药物的纯 度和疗效,降低副作用。
除了上述应用领域,改性与修饰后的分子 筛还可应用于电化学、传感器、催化剂等 领域,具有广泛的应用前景。
06
分子筛的发展趋势与展望
技术创新与突破方向
1 2
开发新型分子筛材料
研究新的合成方法,开发具有优异性能的新型分 子筛材料,以满足不断变化的市场需求。
分子筛的改性研究
通过改性技术,提高分子筛的稳定性和活性,优 化其结构和性能,以拓展其应用领域。
药物合成
分子筛可用于药物合成,如一些药物 的有效成分可以通过分子筛进行分离 和纯化。
05
分子筛的改性与修饰
改性方法
物理法
通过改变分子筛的物理性质,如粒径、比表面积 等,以改善其吸附和分离性能。
化学法
通过化学反应改变分子筛的表面性质,引入新的 功能基团,提高分子筛的选择性和吸附容量。
复合法
结合物理法和化学法,同时改变分子筛的物理和 化学性质,以获得更好的改性效果。
纯水的制备等。
催化剂载体应用
石油化工
分子筛作为催化剂载体,可用于 石油裂解、重油轻质化等反应中 ,提高催化剂的活性和稳定性。
环保领域
分子筛作为催化剂载体,可用于 废气处理、污水处理等领域,如 用于去除硫化氢、氨气等有害气 体。
其他应用领域及实例
离子交换树脂演示幻灯片

联起来,使之成为体型高分子化合物。在聚合物中起交联作用 的二乙烯苯的质量百分率称为树脂的交联度,常用DVB表示。
(2)第二阶段:引入活性基团,可以制得阳离子交换树脂, 也可以制得阴离子交换树脂。
❖ 1)磺酸型苯乙烯系阳离子交换树脂
三、离子交换树脂的分类
1、按活性基团的性质分类 ❖ 阳离子交换树脂:能与水中阳离子进行交换反应的称为阳离
子交换树脂;根据H离子电离的强弱程度分为:强酸性和弱 酸性阳离子交换树脂 ❖ 阴离子交换树脂:能与水中阴离子进行交换反应的称为阴离 子交换树脂。根据OH根离子电离的强弱程度分为:强碱性和 弱碱性阴离子交换树脂 ❖ 另外,按活性基团性质还可以分为螯合、两性和氧化还原等 树脂。 2、按树脂单体的种类分类 ❖ 有苯乙烯系、丙烯酸系和酚醛系等
3)密度
❖ 离子交换树脂的密度是水处理工艺中的实用数据。离子交换 树脂的密度有以下几种表示法:
❖ (1)干真密度。干真密度即在干燥状态下树脂本身的密度:
干 真 密 度 树 干 脂 树 的 脂 真 质 体 量 积 g/ml
❖ 真体积是指树脂的排液体积,不包括颗粒内的孔隙和颗粒间 的空隙。求真体积时,用不会使树脂溶胀的溶剂,如甲苯。
❖ 当反应进行到失效后,为了恢复离子交换树脂交换能力, 就可以利用离子交换反应的可逆性,用硫酸或盐酸溶液通 过此失效的离子交换树脂,以恢复其交换能力,其反应如 下式: R2Ca+2H+ →2RH+Ca2+
❖ 离子交换反应的可逆性,是离子交换树脂可以反复使用的 重要性质。
2)酸、碱性
❖ H型阳离子交换树脂和OH型阴离子交换树脂的性能与电解质 酸、碱相同。在水中有电离出H+和OH-的能力。因此,根据此 能力的大小可以有强弱之分。例如:
分子筛

《催化作用原理》第二章作业对不同分子筛结构的总结1.A型分子筛(LAT)的结构A型分子筛(LAT)由一下三个基本结构组成(如图1所示):图1.A型分筛(LAT)基本组成结构A型分子筛(LAT)的基本晶胞组成:中间是图1中的lat结构,其八个角处的六元环在接八个sod结构,sod结构与lat结构中的四圆环以d4R结构连接,形成的立体结构如图2所示。
立体图平面截图图2.A型分子筛(LAT)的晶胞立体结构2.A型分子筛的应用A型分子筛具有较强的吸水性,利用其固有的特点,制成的A型分子筛膜具有很好的脱水性能。
例如,用A沸石膜采用全蒸发分离醇—水混合物。
由均质溶液在大孔氧化锆复合物载体上制备出片状和管状的NaA沸石膜。
KA沸石膜是从钠型通过离子交换而得。
通过全蒸发测试了这些膜从异丙醇/水混合物中脱出水的性能,Na型和K型A沸石都有高选择性,热处理温度达150℃时膜的性能不受影响。
1、Y型分子筛(FAU)的结构Y型分子筛(FAU)由以下两个结构组成(如图3所示):图3.Y型分筛(FAU)基本组成结构Y型分子筛(FAU)的立体结构组成:sod结构和d6R结构相互连接形成一个十二圆环,四个十二圆环近似按四面体的各个面排列形成一个晶胞。
晶胞间相互连接排列形成了层状结构。
如图4所示。
图4.Y型分子筛(FAU)的晶胞及立体结构2、Y型分子筛的应用FAU型沸石分子筛是硅铝酸盐结晶体,由于其孔径较大(O.74 rim),将其生长在多孔陶瓷等载体上则形成不同于其他沸石膜的大孔分子筛膜,适用于对较大分子的分离和石油化工、精细化工领域。
且由于其孔径可调,是通过物理和化学方法修饰获得不同孔径的分子筛膜的理想材料,受到国内外膜科技工作者的重视。
FAU型沸石膜根据其Si/A1比的不同,分为NaX型沸石膜和NaY型沸石膜,当硅铝比在1.5以下时,称为NaX型沸石膜;当硅铝比大于1。
5时,称为NaY型沸石膜。
物质的结构决定性能,NaY 分子筛相对均匀的、发达的孔结构,离子交换后保留的丰富的质子酸位使其酸催化作用成为可能。