微电子器件与IC设计基础_第2版_刘刚_陈涛_课后答案

微电子器件与IC设计基础_第2版_刘刚_陈涛_课后答案
微电子器件与IC设计基础_第2版_刘刚_陈涛_课后答案

课后习题答案

1.1 为什么经典物理无法准确描述电子的状态?在量子力学中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率

ω和波矢k 建立联系的,即

k n c

h p h E ==

==υ

ωυ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢

k 。

1.2 量子力学中用什么来描述波函数的时空变化规律?

解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以()()()t r t r t r ,,,2

ψψψ*

=表示波的强度,那么,t 时刻在r 附近的小体积元

z y x ???中检测到粒子的概率正比于()z y x t r ???2

,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不能导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。

1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT

E V C i g e

N N p n n ==002

式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。

1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

解:当半导体中掺入施主杂质后,在其导带底的下方,距离导带底很近的范围内可以引入局域化的量子态能级。该能级位于禁带中,称之为施主杂质能级。同理,当半导体中掺入受主杂质后,在其价带顶的上方,距离价带顶很近的范围内也可引入局域化的受主杂质能级。

施主能级距离导带底很近,施主杂质电离后,施主能级上的电子跃迁进入导带,其结果向导带提供传导电流的准自由电子;而受主能级距离价带顶很近,受主杂质电离后,价带顶的电子跃迁进入受主能级,其结果向价带提供传导电流的空穴。

1.6 试比较N 型半导体与P 型半导体的异同。

解:对同种材料制作的不同型号的半导体来说,具有以下相同点:二者都具有相同的晶格结构,相同的本征载流子浓度,都对温度很敏感。不同点是,N 型半导体所掺杂质是施主杂质,主要是靠电子导电,电子是多数载流子,空穴是少数载流子:而P 型半导体所掺杂质是受主杂质,主要靠空穴导电,空穴是多数载流子,电子是少数载流子。

1.7 从能带的角度说明杂质电离的过程。

解:杂质能级距离主能带很近,其电离能一般都远小于禁带宽度。因此,杂质能级与主能带之间的电子跃迁也比较容易完成。以施主杂质为例,施主能级上的电子就是被该施主原子束缚着的电子。它在室温下吸收晶格振动的能量或光子的能量(只要其能量高于杂质的电离能)后,就可以挣脱施主原子核对它的束缚,跃迁进入导带成为准自由电子。这一过程称之为杂质电离。电离以后的杂质带有正电荷,电离以前的杂质是电中性的。

1.8 什么是迁移率?什么是扩散系数?二者有何关系? 解:迁移率是描述载流子在电场作用下输运能力的一个物理量;扩散系数是描述载流子在其浓度梯度作用下输运能力的物理量。二者可以通过以下爱因斯坦关系建立联系:

q

kT =

μ

D

1.9 说明载流子的两种输运机制,并比较它们的异同。 解:载流子的输运机制可分为扩散运动和漂移运动两种。扩散运动是在半导体中存在载流子的浓度梯度时,高浓度一边的载流子将会向低浓度一边输运。这种运动称为载流子的扩散运动。扩散运动的强弱与浓度梯度的大小成正比,即与载流子的分布梯度有关。漂移运动是半导体中的载流子在电场力作用下的定向运动。其强弱只与电场的大小成正比,与载流子的分布没有关系。

1.10 什么是费米能级?什么是准费米能级?二者有何差别?

解:在热平衡条件下,半导体中能量为E 的能级被电子占据的几率f(E)服从费米-狄拉克分布

()kT

E E

F e

E f -+=

11

式中的E F 就是费米能级。它是一个描述半导体电子系统中电子填充能带水平的标志性参数,也称为热平衡系统的化学势。

准费米能级是半导体系统在非平衡条件下(如关照或有电注入下),有非平衡载流子存在时,为了描述导带电子在导带各能级上的分布以及价带空穴在价带各个能级上的分布而引入的一个参考量。其大小也反映了电子和空穴填充能带的水平。值得注意的是,一个能带内

消除非平衡的影响仅仅需要s 1211

10~10

--,而少子寿命约为s 610-。所以,在非平衡载流

子存在的绝大部分时间内主能带的电子都处于平衡分布。

1.11 什么是扩散长度?扩散长度与非平衡少数载流子寿命有何关系? 解:扩散长度是描述载流子浓度随着扩散深度增加而衰减的特征长度。扩散长度与非平衡少数载流子寿命的关系如下:

n n n p p D L ττ==,D L p

1.12 简述半导体材料的导电机理。

解:半导体的导电机理与金属是不同的。金属中只有一种载流子(电子)参与导电,而半导体中同时有两种载流子(电子和空穴)参与导电。本征半导体中导电的载流子是由于本征激发而产生的电子和空穴。它们是同时出现的,且i n p n ==00,两种载流子对电流的贡献相同。但是,在杂质半导体中往往有00p n >>,或者00p n <<,存在着多数载流子和少数载流子。所以,多数载流子对电流的贡献占据主要地位,而少数载流子对电流的贡献却可以忽略不计。

习 题1

1.1 计算速度为s cm 7

10的自由电子的德布洛意波长。

解:()m mv h p h 9

5

31341028.710

101.910626.6---?=???===λ 1.2 如果在单晶硅中分别掺入315

10

cm 的磷和31510cm 的硼,试计算300K 时,电子占据

杂质能级的概率。根据计算结果检验常温下杂质几乎完全电离的假设是否正确。

解:查表可知,磷作为硅晶体中的施主杂质,其电离能为eV 0.044E D =?, 硼作为硅晶体中的受主杂质,其电离能为eV 0.045E A =?。于是有

()eV E E D g i 516.0044.056.02

E -E E -E D

F D =-=?-=

=

能级为E D 的量子态被被电子占据的几率为

9104.21

026.0516.0exp 1

exp 1-?=+??? ??=??

? ??-=

kT E E f i D E D

上述结果说明,施主能级上的电子几乎全部电离。

能级为E A 的量子态被空穴占据的几率为

9104.21026.0515.0exp 1

1exp 1A -?=+???

??=+??

? ??-=

kT E E f A i E

上述计算结果说明受主能级上的空穴几乎全部被电离。

1.3 硅中的施主杂质浓度最高为多少时材料是非简并的。

解:若假设非简并的条件为kT E E F C 2≥-, 那么,非简并时导带电子浓度为

()

3

182190108.3108.22exp exp -?=?=??? ??=??

? ??-=cm e kT kT N kT E E N n C F C C

非简并时,最高施主杂质浓度为

()

3180108.3-?==cm n N D

1.4某单晶硅样品中每立方厘米掺有15

10个硼原子,试计算K 300时该样品的准自由电子浓度、空穴浓度以及费米能级。如果掺入的是磷原子它们又是多少?

解:硼原子掺入硅晶体中可以引入受主杂质,材料是P 型半导体:3

5

1A 10-=cm N 该样品的空穴是多子,其浓度为351A 010-==cm N p

电子是少子,其浓度为()

()

3515

2

10

0201004.1101002.1-?=?=

=cm p n n i

费米能级为

()eV E E eV n p kT E E i i i i F 299.01002.110ln 026.0ln 10150-=????

???-=???

? ??-= 即费米能级在本征费米能级的下方0.299eV 处。

1.5某硅单晶样品中掺有3

16

10-cm 的硼、3

16

10-cm 的磷和3

15

10-cm 镓,试分析该材料是N 型半导体还是P 型半导体?准自由电子和空穴浓度各为多少?

解:由硼、磷、镓掺入硅中分别成为受主、施主和受主,它们在硅晶体中引入的杂质浓度依次为316110-=cm N A 、31610-=cm N D 、315210-=cm N A 由于

01031521>=-+-cm N N N D A A ,即受主原子总数大于施主原子总数,所以该材料

是P 型半导体。此时,硅材料中 空穴浓度为 3

15

010-=cm p

准自由电子浓度为 ()

()

3515

2

10

020********.1-≈?=

=cm p n n i

1.6有两块单晶硅样品,它们分别掺有3

15

10-cm 的硼和磷,试计算300K 时这两块样品的电阻率,并说明为什么N 型硅的导电性比同等掺杂的P 型硅好。 解:查P.22图 1.4.2可得空穴迁移率

()s V cm p ?≈2400μ,电子迁移率

()s V cm n ?≈21200μ

于是,掺硼的单晶硅电阻率为cm q p p B ?Ω=???==

-625.15400

106.1101

119

150μρ 掺磷的单晶硅电阻率为cm q n n p ?Ω=???==

-208.51200

106.1101

119

150μρ 因为电子的迁移率大于空穴的迁移率,所以在其它条件不变的情况下,N 型硅的导电性较P 型硅的导电性高。

1.7实验测出某均匀掺杂N 型硅的电阻率为cm ?Ω2,试估算施主杂质浓度。

解:本查P.301附录A 可得315103.2-?=cm N D ,再查P.22图1.4.2可得电子的迁移率为

()s V cm n ?≈21200μ。则施主杂质的浓度为

()

3

1519

106.21200

106.1211--?=???==

cm q N n n D μρ

1.8假设有一块掺有3

18

10-cm 施主杂质的硅样品,其截面积为m m μμ5.02.0?,长度为

m μ2。如果在样品两端加上5V 电压,通过样品的电流有多大?电子电流与空穴电流的比

值是多少?

解:掺有施主杂质浓度3

18

10-=cm N D 的硅样品,其电子浓度为()

318010-==cm N n D ,

再查P.22可得电子的迁移率()s V cm

n ?≈2

380μ,于是,该材料的电导率为

()

cm q n n ?Ω=???==-18.60380106.11019180μσ

在该样品两端加上5V 电压后的电场强度为()cm V L V E 44105.210

25?=?==

- 于是,电子电流密度为()

2641052.1105.28.60cm A E j n ?=??==σ 如果在样品两端加上

5V

电压,通过样品的电流为

()A A j I n n 34461052.1105.0102.01052.1---?=?????=?= 平衡空穴浓度为()()

3

18

202004.10410

1002.1-=?==cm n n p i 再查P.22图1.4.2可得空穴迁移率为()s V cm p ?≈2190μ,于是电子电流与空穴电流的比值为

1618001092.1190

104380

10?=??==p n p n p n I I μμ

1.9有一块掺杂浓度为3

17

10-cm 的N 型硅样品,如果在m μ1的范围内,空穴浓度从3

16

10-cm 线性降低到3

13

10-cm ,求空穴的扩散电流密度。

解:查P.22图1.4.2可得当3

17

10-=cm N 时,()

s V cm p ?=2

210μ,所以

()

s cm q

kT

D p P 246.5210026.0=?==

μ ()

419413

162111099.910

1010cm x p p dx dp ?=-=?-=- ()

219193.871099.946.5106.1cm A dx

dp

qD j p

p =????==-

1.10 光照射在一块掺杂浓度为3

1710-cm 的N 型硅样品上,假设光照引起的载流子产生率为

31310-cm ,求少数载流子浓度和电阻率,并画出光照前后的能带图。已知s p n μττ2==,

()s V cm n ?=21350μ,()s V cm p ?=2500μ,310105.1-?=cm n i 。

解:

317010-==cm N n D , 317010-≈?+=cm p n n

()

()

3

17

2

1020225010

105.1-=?==cm N n p D i 少数载流子浓度为(

)3

7

701021022250-?≈?+=?+=cm p p p

电导率为

()

cm s pq nq p 6.21106.16.21500

106.11021350106.1109

1971917≈?+=????+???=+=---μμσ

电阻率为()cm ?Ω?==

=

-21063.46

.211

1

σ

ρ

1.11 写出下列状态下连续性方程的简化形式: (1)无浓度梯度、无外加电场、有光照、稳态;

(2)无外加电场、无光照等外因引起载流子的产生,稳态。

解: 以P 型半导体为例,电子为少数载流子,完整的连续性方程为

n n n n n n n G x E

n x n E x

n D t n τμμ022--

+??+??+??=?? (1) 无浓度梯度、无外加电场、有光照、稳态情况下上式可以简化为

n

n n n G τ0

-=

因为无浓度梯度,所以含有浓度梯度的项均等于零,即

022=??+??x n

E x

n D n n μ

因为无外加电场,所以,含有电场的项也为零,即

0=??+??x

E n x n E

n n μμ 又因为有光照,所以产生率G 不等于零;因为讨论的是稳态情况,所以,载流子浓度不随

时间变化

0=??t

n

(2) 同理,无外加电场、无光照等外因引起载流子的产生,稳态情况下连续性方程可以

简化为

n n n n x

n D τ0

22-=?? 对

p p p p p p p G x E

p x p E x

p D t p τμμ022--

+??-??-??=??,作相应的简化,同样可以得到 (1)p

p p p G τ0

-=

和(2)p p p p x p D τ0

2

2-=

??。

电子科技大学微电子器件实验讲义

1-1 1-2 1-1 1-2 1XJ4810 2 3 1XJ4810 XJ48101-3 1 2 3 50Hz 4 5 6

XJ4810XJ4810[1] 1-3 XJ4810 23DG6 npn 1R i R i CE V B BE i I V R 3DG6V CE = 10V Q R i 1- 4 0~10V + + 0.1~1k x 0 .1V/ y 0.1mA/ x 1V/10V x 0.1V/V CE =10V 1-5 .200101.002 .03 10 V V B BE i CE I V R 1-4 1-5

2h FE h FE 1- 4 0~50V + + 0.1~1k x 2V/ y 2mA/ 0.02mA/ 1-6 11002. 02.2100 1.010 10101010B C V CE V mA C I B C V CE V mA C I FE I I I I h h FE h FE 1-7x 1-6 1-7 I B g I B B I CE c V I g ""--2mA/I E

CB V E C I I 3V CES V BES V CES V BES V CES C --E V BES B --E V BES =0.7~0.8V V BES =0.3~0.4V V CES V BES V BES 1-4I C =10mA I B =1mA 0~50V 0.5~1K + + x 0.05V/ y 1mA/ 0.1mA/ / 10 1011I C =10mA V CE V CES 1-8V CES =0.15V y x 0.1V/1-9I B =1mA V BE V BES 1-9V BES = 0.78V 1-8 V CES 1-9 V BES 4BV CBO BV CEO BV EBO V B BV CEO BV CBO c Wc BV CBO x mB V B W C c W C BV CBO C --B BV CEO

微电子器件_刘刚前三章课后答案

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢建立联系的,即 c h p h E ====υω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点 来看,半导体和绝缘体都存在着禁 带,绝缘体因其禁带宽度较大 (6~7eV),室温下本征激发的载流子 近乎为零,所以绝缘体室温下不能 导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子器件__刘刚前三章课后答案(DOC)

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢k 建立联系的,即 k n c h p h E ====υ ω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢k 。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以 ()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体 积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不 能导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子器件设计

微电子器件设计作业—MOSFET 考虑一个理想N沟和P沟MOSFET互补对,要将其设计为偏置相同时的I—V曲线也相同。器件有相同的氧化层厚度t ox=25nm,相同的沟道长度L=2μm,假设二氧化硅层是理想的。N沟器件的沟道宽度为W=20μm,μn=600cm2/Vs,μp=220 cm2/Vs,且保持不变。(a)确定p型和n型衬底掺杂浓度。(b)阈值电压是多少?(c)p沟器件的沟道宽度是多少? 设计方案 一、分析 但实际工业生产中,NMOS和PMOS均做在同一晶片上,即共用同一衬底。在互补MOS技术中,同时用到了NMOS和PMOS,而PMOS器件的实现可以通过将所有的掺杂类型取反。 对于本设计来说: 互补对:指NMOS和PMOS特性的绝对值相等; 偏置相同:指二者所加偏压的绝对值相同,当所加偏置电压相同时I—V、ID—VDS 和ID—VGS曲线都分别相同。也即是两个MOS 管的阈值电压和偏置相同时的跨导gm均相等。 迁移率:由于实际中的有效迁移率受诸多因素(栅电压、衬底浓度不均匀等)的影响,如果要精确确定器件的特性,需要大量的误差计算,以及结合实际实验和设备的有关测量进行准确设计。因此在本设计中,迁移率视为恒定的有效迁移率,。同时,忽略温度的影响, 掺杂

浓度对载流子有散射作用。在MOS 管的反型层中,当表面感生电荷密度小于10e12cm -2时,电子和空穴的有效迁移率均是常数,为半导体内迁移率的一半。 模型:因为N 沟和P 沟MOSFET 沟道长度相等,均为L=2μm,属于长沟道器件,该设计整体选定长沟道MOS 器件模型。 二、 确定各参数 1、确定p 型和n 型衬底掺杂浓度 (1)、计算P 型衬底掺杂浓度 衬底浓度时采用半导体载流子扩散模型。根据要求,形成反型层 后电子迁移率μn =600cm 2 /Vs 。由于在MOS 管的反型层中,表面感生 电荷密度小于10e12cm -2时,电子和空穴的有效迁移率是常数,为半 导体内迁移率的一半,则半导体内电子迁移率μn =1200cm 2/Vs 。 利用半导体载流子扩散模型: 2 160.9 1180232cm /Vs 1(Na/810 ) n μ=+ +? (2.115) 可以计算出:P 型衬底浓度为Nap=1.48×1016 / cm 3 (2)、计算N 型衬底掺杂浓度 形成反型层后的空穴迁移率μp =220 cm 2/Vs,半导体内迁移率那么就为μp =440 cm 2/Vs. 利用半导体载流子扩散模型: 2 p 17 1.25 370130cm /Vs 1(d/810 ) N μ=+ +? (2.116)

微电子器件实验5模版 联合仿真 nmos

南京邮电大学 课内实验报告 课程名:微电子器件设计 任课教师: 专业:微电子学 学号: 姓名: 2014/2015学年第2学期 南京邮电大学电子科学与工程学院

《微电子器件设计》课程实验第 5 次实验报告 实验内容及基本要求: 实验项目名称:MOS晶体管的工艺器件联合仿真 实验类型:验证 每组人数:1 实验内容及要求: 内容:采用Tsuprem4仿真软件对MOS晶体管进行工艺仿真,并采用MEDICI仿真软件对该MOS晶体管进行器件仿真。 要求:能够将工艺仿真软件得到的器件数据输出到某个文件中,并能在器件仿真中调用该文件。会画出并分析器件仿真结果。 实验考核办法: 实验结束要求写出实验报告。内容如下: 1、问题的分析与解答; 2、结果分析,比较不同器件结构参数对仿真结果的影响; 3、器件设计的进一步思考。 实验结果:(附后) 实验代码如下: COMMENT Example 9B - TSUPREM-4/MEDICI Interface COMMENT TSUPREM-4 Input File OPTION DEVICE=PS COMMENT Specify the mesh LINE X LOCATION=0 SPACING=0.20 LINE X LOCATION=0.9 SPACING=0.06 LINE X LOCATION=1.8 SPACING=0.2 LINE Y LOCATION=0 SPACING=0.01 LINE Y LOCATION=0.1 SPACING=0.01 LINE Y LOCATION=0.5 SPACING=0.10

LINE Y LOCATION=1.5 SPACING=0.2 LINE Y LOCATION=3.0 SPACING=1.0 ELIMIN ROWS X.MIN=0.0 X.MAX=0.7 Y.MIN=0.0 Y.MAX=0.15 ELIMIN ROWS X.MIN=0.0 X.MAX=0.7 Y.MIN=0.06 Y.MAX=0.20 ELIMIN COL X.MIN=0.8 Y.MIN=1.0 COMMENT Initialize and plot mesh structure INITIALIZ <100> BORON=1E15 SELECT TITLE=”TSUPREM-4: Initial Mesh” PLOT.2D GRID COMMENT Initial oxide DEPOSIT OXIDE THICKNESS=0.03 COMMENT Models selection. For this simple example, the OED COMMENT model is not turned on (to reduce CPU time) METHOD VERTICAL COMMENT P-well implant IMPLANT BORON DOSE=3E13 ENERGY=45 COMMENT P-well drive DIFFUSE TEMP=1100 TIME=500 DRYO2 PRESS=0.02 ETCH OXIDE ALL COMMENT Pad oxidation DIFFUSE TEMP=900 TIME=20 DRYO2 COMMENT Pad nitride DEPOSIT NITRIDE THICKNESS=0.1 COMMENT Field oxidation DIFFUSE TEMP=1000 TIME=360 WETO2 ETCH NITRIDE ALL COMMENT Vt adjust implant IMPLANT BORON ENERGY=40 DOSE=1E12 ETCH OXIDE ALL COMMENT Gate oxidation DIFFUSE TEMP=900 TIME=35 DRYO2 DEPOSIT POLYSILICON THICKNESS=0.3 DIVISIONS=4 COMMENT Poly and oxide etch ETCH POLY LEFT P1.X=0.8 P1.Y=-0.5 P2.X=0.8 P2.Y=0.5 ETCH OXIDE LEFT P1.X=0.8 P1.Y=-0.5 P2.X=0.8 P2.Y=0.5 DEPOSIT OXIDE THICKNESS=0.02 COMMENT LDD implant IMPLANT PHOS ENERGY=50 DOSE=5E13 COMMENT LTO DEPOSIT OXIDE THICK=0.2 DIVISIONS=10 COMMENT Spacer etch ETCH OXIDE DRY THICK=0.22 COMMENT S/D implant IMPLANT ARSENIC ENERGY=100

微电子器件与IC设计基础第二版第1章习题

第一章 思考题: 1.1简单解释原子能级和晶体能带之间的联系和区别。 答:在孤立原子中,原子核外面的电子受到这个原子核所带正电荷的作用,按其能量的大小分布在不同的电子轨道上绕核运转。 原子中不同轨道上电子能量的大小 用彼此有一定间隔的横线段组成的 能级图来表示(见图1.1b)。能级的 位置越高,表示该能级上电子的能量 就越大。原子结合成晶体后,一个原 子核外的电子除了受到这个原子核 所带正电荷以及核外电子所带负电 荷的作用以外,还要受到这个原子周 围其它原子所带正负电荷的作用。也 就是说,晶体中的电子是在原子核的 正电荷形成的周期性势场中作如图 1.1(a)中箭头所示的共有化运动。 正因为如此,原来描述孤立原子中电 子能量大小的能级就被分裂成为一 系列彼此相距很近的准连续的能级, 其形状好似一条条反映电子能量大小的带子,故称之为能带,见图1.1(b)。 1.2以硅为例,解释什么是施主杂质和施主能级?什么是受主杂质和受主能级? 答:以硅为例,见图1.2(a), 如果在单晶硅中掺入Ⅴ族元素 的杂质磷(P+),磷原子()P将 取代Ⅳ族的硅(Si)原子的位置 而成为所谓的施主杂质。因为 磷原子外层有五个价电子,它 和周围的四个硅原子形成共价 键后还多出一个电子,这个多 余的电子受到磷原子核的微弱 束缚力而绕着该原子核做一定 半径的圆周运动,它只需要吸 收很小的能量(百分之几个电 子伏特)就能挣脱磷原子核的 束缚而成为可以在整个晶体中 运动的准自由电子,原来的磷 原子则成为了磷离子()+P,称 之为正电中心。从电子能量大小的观点来看,导带底能量E C表示导带中速度为零的电子所

微电子器件基础题13页word文档

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163 A 1.510cm N -=?,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电荷。内建电场的方向是从(N )区指向(P )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越(短),内建电场的最大值就越(大),内建电势V bi 就越(大),反向饱和电流I 0就越(小),势垒 电容C T 就越( ),雪崩击穿电压就越(低)。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为 (0.8)伏特。 6、当对PN 结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒 高度会(降低)。 7、当对PN 结外加反向电压时,其势垒区宽度会(变宽),势垒区的势垒 高度会(增高)。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关 系可表示为( )。若P 型区的掺杂浓度173A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(高);当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(低)。 10、PN 结的正向电流由(空穴扩散Jdp )电流、(电子扩散电流Jdn )电流和(势垒区复合电流Jr )电流三部分所组成。 11、PN 结的正向电流很大,是因为正向电流的电荷来源是(多子);PN 结的反向电流很小,是因为反向电流的电荷来源是(少子)。 12、当对PN 结外加正向电压时,由N 区注入P 区的非平衡电子一边向前扩散,一边(复合)。每经过一个扩散长度的距离,非平衡电子浓度降到原来的( )。 13、PN 结扩散电流的表达式为( )。这个表达式在正 向电压下可简化为( ),在反向电压下可简化为( )。 14、在PN 结的正向电流中,当电压较低时,以(复合)电流为主;当电 压较高时,以(扩散)电流为主。 15、薄基区二极管是指PN 结的某一个或两个中性区的长度小于(少子扩 散长度)。在薄基区二极管中,少子浓度的分布近似为(线性)。

832微电子器件考试大纲详细

考试科目832微电子器件考试形式笔试(闭卷) 考试时间180分钟考试总分150分 一、总体要求 主要考察学生掌握“微电子器件”的基本知识、基本理论的情况,以及用这些基本知识和基本理论分析问题和解决问题的能力。 二、内容 1.半导体器件基本方程 1)半导体器件基本方程的物理意义 2)一维形式的半导体器件基本方程 3)基本方程的主要简化形式 2.PN结 1)突变结与线性缓变结的定义 2)PN结空间电荷区的形成

4)耗尽区宽度、内建电场与内建电势的计算5)正向及反向电压下PN结中的载流子运动情况6)PN结的能带图 7)PN结的少子分布图 8) PN结的直流伏安特性 9)PN结反向饱和电流的计算及影响因素 10)薄基区二极管的特点

11)大注入效应 12)PN结雪崩击穿的机理、雪崩击穿电压的计算及影响因素、齐纳击穿的机理及特点、热击穿的机理13)PN结势垒电容与扩散电容的定义、计算与特点 14)PN结的交流小信号参数与等效电路 15)PN结的开关特性与少子存储效应

2)基区输运系数与发射结注入效率的定义及计算 3)共基极与共发射极直流电流放大系数的定义及计算 4)基区渡越时间的概念及计算 5)缓变基区晶体管的特点 6)小电流时电流放大系数的下降 7)发射区重掺杂效应 8)晶体管的直流电流电压方程、晶体管的直流输出特性曲线图

9)基区宽度调变效应 10)晶体管各种反向电流的定义与测量 11)晶体管各种击穿电压的定义与测量、基区穿通效应12)方块电阻的概念及计算

13)晶体管的小信号参数 14)晶体管的电流放大系数与频率的关系、组成晶体管信号延迟时间的四个主要时间常数、高频晶体管特征频率的定义、计算与测量、影响特征频率的主要因素

微电子器件 课程基本要求

微电子器件 钟智勇 办公室:<微电子楼>217室 电话:83201440 E mail: zzy@https://www.360docs.net/doc/d818106679.html, -mail:zzy@uestc edu cn 8:00--10:00 周二晚上8:00 答疑时间:周二晚上 答疑时间:

教材与参考书 1、教材与参考书 教材: 教材 微电子器件(第3版),陈星弼,张庆中,2011年 参考书 参考书: 1.半导体器件基础,B.L.Anderson, R.L.Anderson, 清华大学出版社,2008年 2.半导体器件基础,Robert F. Pierret, 电子工业出版社,2004年 2半导体器件基础Robert F Pierret电子工业出版社 3.集成电路器件电子学(第三版),Richard S. Muller,电子工业出版社, 2004年 4.半导体器件物理与工艺(第二版),施敏,苏州大学出版社,2002年 5.半导体物理与器件(第三版),Donald A. Neamen, 清华大学出版社, 2003年 6. Physics of Semiconductor Devices( 3th Edition), S M Sze, Wiley- Interscience, 2007

2、学时、成绩构成与考核 总学时数:72学时 其中课堂讲授:60学时,实验:12 学时 成绩构成: 70分期中考试:分平时:10分实验:10 期末考试:70 分、期中考试:10分、平时:10 分、实验:10 分考试形式:闭卷考试

3、课程要求 1、网上只公布教材的标准课件与参阅资料,请做好笔记! 网址:网络学堂:http://222.197.183.243/wlxt/course.aspx?courseid=0311下载密码i 下载密码:micro 2、请带计算器与作业本上课! 请带计算器与作业本上课! 3、鼓励学生学习,以下情况加分(最高加分为5分): 鼓励学生学习以下情况加分(最高加分为 3.1 完成调研作业并在期末做presentation(ppt)者 3.2 在黑板上完成课堂练习者 3.3 指出教材错误及对教学/教材提出建设性意见者

微电子器件试验-晶体管开关特性的测试分析

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点:211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:晶体管开关特性的测试分析 三、实验学时:3 四、实验原理: 图1 如图1所示,如果在晶体管基极输入一脉冲信号Vi,则基极和集电极电流波型如 图所示。故由图可读出其延迟时间T d 、上升时间T r 、存储时间T s 和下降时间T f 。 晶体管开关时间参数一般是按照集电极电流i C 的变化来定义:?延迟时间t d:从脉冲信号加入到i C上升到0.1I CS。 ?上升时间t r:从0.1I CS上升到0.9 I CS。 ?存储时间t s:从脉冲信号去除到i C下降到0.9 I CS。

?下降时间t f:从0.9 I CS下降到0.1 I CS。 ?其中t d + t r即开启时间、 t s + t f即关闭时间。 五、实验目的: 掌握晶体管开关特性测量原理。并能熟练地运用仪器其对双极晶体管的开关时间进行测试。 六、实验内容: 掌握晶体管开关特性测量原理,用如下实验装置图2观察晶体管输入输出波型,读出各参数。 改变外电路偏置,研究电路偏置对开关时间的影响。 图2 七、实验器材(设备、元器件): 双踪示波器、脉冲发生器、直流稳压电源、测试盒、9031NPN 八、实验步骤: 1、按上图2连接仪器,校准仪器。 2、上脉冲,记录输入输出波型及NPN的开关参数。

九、实验数据及结果分析: 测量9103NPN的开关参数即:延迟时间T d、上升时间T r、存储时间T s和下降时间T f。 十、实验结论: 通过测试,可以知道:晶体管的开关时间中存储时间比例最高。 十一、总结及心得体会: 晶体管开关时间是衡量晶体管开关速度特性的重要参数。据了解,晶体管开关作用优点如下:控制大功率、直接工作在整流380V市电上的晶体管功率开关,以及简单和优化的基极驱动造就的高性能。从而可以知道它对数字电路的工作频率和整机性能有直接影响。本实验的使我掌握了晶体管开关时间的物理性质和测量原理方法,理解了双极晶体管开关特性的基本参数。促进了我能够结合课本更加直观地认识晶体管开关作用的相关概念,继而提高了自己对于晶体管的学习兴趣,为将来的学术和工作都打下了良好的的实践基础。 十二、对本实验过程及方法、手段的改进建议: 实验仪器老旧,建议更新。 报告评分: 指导教师签字:

GJB548B_2005微电子器件试验方法和程序文件

WORD 格式整理 GJB 548B-2005 微电子器件试验方法和程序 点击次数: 181 发布时间: 2011-3-1 14:24:07 GJB 548B-2005 代替 GJB 548A-1996 中华人民共和国国家军用标准 微电子器件试验方法和程序 Test methods and procedures for microelectronic device 方法 1009.2盐雾(盐汽) 1目的 本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验 1.1术语和定义 1.1.1腐蚀corrosion 指涂层和 ( 或 ) 底金属由于化学或电化学的作用而逐渐地损坏 1.1.2腐蚀部位corrosion site 指涂层和 ( 或 ) 底金属被腐蚀的部位,即腐蚀位置 1.1.3腐蚀生成物(淀积物) corrosion product(dcposit) 指腐蚀作用的结果 ( 即锈或氧化铁、氧化镍、氧化锡等 ) 。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4腐蚀色斑corrosion stain 腐蚀色斑是由腐蚀产生的半透明沉淀物。 1.1.5气泡blister 指涂层和底金属之间的局部突起和分离 1.1.6针孔pinhole 指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。 1.1.7凹坑pitting 指涂层和 ( 或 ) 底金属的局部腐蚀,在某一点或小区域形成空洞 1.1.8起皮flaking 指局部涂层分离,而使底金属显露

2设备 盐雾试验所用设备应包括: a)带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料( 玻璃、塑料等) 制造。在试验 箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风, 以防止产生“高压” ,并保持盐雾的均匀分布; b)能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采 用符合试验条件 C 和 D( 见 3.2) 要求的备用盐溶液容器; c)使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由 20%氧、80%氮组成的混合气体 ( 应防止诸如油和灰尘 等杂质随气体进入雾化器中); d)试验箱应能加热和控制 e)在高于试验箱温度的某温度下,使空气潮湿的手段; f)空气或惰性气体于燥器; g)1 倍 ~3 倍、 10 倍~20 倍和 30 倍 ~60 倍的放大镜。 3 程序 3.1试验箱的维护和初始处理 试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在 (35 ±3) ℃ ,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。 某些试验可能在清洗 之前进行,这取决于盛盐溶液的容器的大小和所规定的试验条件( 见 3.2) 。当需要做长时间试验 ( 见 3.2 的试验 条件 C 和 D)时,盛盐溶液的容器可采用备用的容器来补充,以便试验不中断。清洗后,试 验箱开始工作时,盐溶

电子科技大学《微电子器件》课程重点与难点

重点与难点 第1章半导体器件基本方程 一般来说要从原始形式的半导体器件基本方程出发来求解析解是极其困难的,通常需要先对方程在一定的具体条件下采用某些假设来加以简化,然后再来求其近似解。随着半导体器件的尺寸不断缩小,建立新解析模型的工作也越来越困难,一些假设受到了更大的限制并变得更为复杂。简化的原则是既要使计算变得容易,又要能保证达到足够的精确度。如果把计算的容易度与精确度的乘积作为优值的话,那么从某种意义上来说,对半导体器件的分析问题,就是不断地寻找具有更高优值的简化方法。要向学生反复解释,任何方法都是近似的,关键是看其精确程度和难易程度。此外,有些近似方法在某些条件下能够采用,但在另外的条件下就不能采用,这会在后面的内容中具体体现出来。 第2章PN结 第2.1节PN结的平衡状态 本节的重点是PN结空间电荷区的形成、内建电势的推导与计算、耗尽区宽度的推导与计算。 本节的难点是对耗尽近似的理解。要向学生强调多子浓度与少子浓度相差极其巨大,从而有助于理解耗尽近似的概念,即所谓耗尽,是指“耗尽区”中的载流子浓度与平衡多子浓度或掺杂浓度相比可以忽略。

第2.2节PN结的直流电流电压方程 本节的重点是对PN结扩散电流的推导。讲课时应该先作定性介绍,让学生先在大脑中建立起物理图象,然后再作定量的数学推导。当PN结上无外加电压时,多子的扩散趋势正好被高度为qV bi的势垒所阻挡,电流为零。外加正向电压时,降低了的势垒无法阻止载流子的扩散,于是构成了流过PN结的正向电流。正向电流的电荷来源是P区空穴和N区电子,它们都是多子,所以正向电流很大。外加反向电压时,由于势垒增高,多子的扩散变得更困难。应当注意,“势垒增高”是对多子而言的,对各区的少子来说,情况恰好相反,它们遇到了更深的势阱,因此反而更容易被拉到对方区域去,从而构成流过PN结的反向电流。反向电流的电荷来源是少子,所以反向电流很小。 本节的难点是对有外加电压时势垒区两旁载流子的运动方式的理解、以及电子(空穴)电流向空穴(电子)电流的转化。 第2.3节准费米能级与大注入效应 本节的重点是PN结在外加正向电压和反向电压时的能带图、大注入条件及大注入条件下的PN结电流公式。 本节的难点是大注入条件下自建场的形成原因。要向学生说明,大注入自建场的推导与前面进行过的非均匀掺杂内建场的推导在本质上是相同的,都是令多子电流密度方程为零而解出电场,这也是分析微电子器件时的一种常用方法。 第2.4节PN结的击穿 本节的重点是利用雪崩击穿临界电场和通过查曲线来求得雪崩击穿电压的方法,以及PN结的实际结构(高阻区的厚度和结深)对击穿电压的影响,这些都是实际工程中的常见问题。

微电子工艺课程设计

微电子工艺课程设计 一、摘要 仿真(simulation)这一术语已不仅广泛出现在各种科技书书刊上,甚至已频繁出现于各种新闻媒体上。不同的书刊和字典对仿真这一术语的定义性简释大同小异,以下3种最有代表性,仿真是一个系统或过程的功能用另一系统或过程的功能的仿真表示;用能适用于计算机的数学模型表示实际物理过程或系统;不同实验对问题的检验。仿真(也即模拟)的可信度和精度很大程度上基于建模(modeling)的可信度和精度。建模和仿真(modeling and simulation)是研究自然科学、工程科学、人文科学和社会科学的重要方法,是开发产品、制定决策的重要手段。据不完全统计,目前,有关建模和仿真方面的研究论文已占各类国际、国内专业学术会议总数的10%以上,占了很可观的份额。 集成电路仿真通过集成电路仿真器(simulator)执行。集成电路仿真器由计算机主机及输入、输出等外围设备(硬件)和有关仿真程序(软件)组成。按仿真内容不同,集成电路仿真一般可分为:系统功能仿真、逻辑仿真、电路仿真、器件仿真及工艺仿真等不同层次(level)的仿真。其中工艺和器件的仿真,国际上也常称作“集成电路工艺和器件的计算机辅助设计”(Technology CAD of IC),简称“IC TCAD”。

二、 综述 这次课程设计要求是:设计一个均匀掺杂的pnp 型双极晶体管,使T=346K 时,β=173。V CEO =18V ,V CBO =90V ,晶体管工作于小注入条件下,最大集电极电流为IC=15mA 。设计时应尽量减小基区宽度调制效应的影响。要求我们先进行相关的计算,为工艺过程中的量进行计算。然后通过Silvaco-TCAD 进行模拟。 TCAD 就是Technology Computer Aided Design ,指半导体工艺模拟以及器件模拟工具,世界上商用的TCAD 工具有Silvaco 公司的Athena 和Atlas ,Synopsys 公司的TSupprem 和Medici 以及ISE 公司(已经被Synopsys 公司收购)的Dios 和Dessis 以及Crosslight Software 公司的Csuprem 和APSYS 。这次课程设计运用Silvaco-TCAD 软件进行工艺模拟。通过具体的工艺设计,最后使工艺产出的PNP 双极型晶体管满足所需要的条件。 三、 方案设计与分析 各区掺杂浓度及相关参数的计算 对于击穿电压较高的器件,在接近雪崩击穿时,集电结空间电荷区已扩展至均匀掺杂的外延层。因此,当集电结上的偏置电压接近击穿电压V 时, 集电结可用突变 结近似,对于Si 器件击穿电压为 4 3 13 106- ?=)(BC B N V , 集电区杂质浓度为: 3 4 13 34 13)1106106CEO n CBO C BV BV N β+?=?=()( 由于BV CBO =90所以Nc=*1015 cm -3 一般的晶体管各区的浓度要满足NE>>NB>NC 设N B =10N C ;N E =100N B 则: Nc=*1015 cm -3 ;N B =*1016 cm -3 ;N E =*1018 cm -3 根据室温下载流子迁移率与掺杂浓度的函数关系,得到少子迁移率: s V cm ?==/13002n C μμ;s V cm P B ?==/3302μμ;s V cm N E ?==/1502μμ 根据公式可得少子的扩散系数:

(完整word版)微电子器件与IC设计基础_第2版,刘刚,陈涛,课后答案.doc

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率和波矢 k 建立联系的,即 E h h p n k c 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率和波矢k。 1.2量子力学中用什么来描述波函数的时空变化规律? 解:波函数是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量 的波动,而是粒子在空间的概率分布,是一种几率波。如果用r , t 表示粒子的德布洛意 r ,t 2 r , t 表示波的强度,那么,t 时刻在 r 附近的小体积元 波的振幅,以r ,t x y z 中检测到粒子的概率正比于 2 r ,t x y z 。 1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图 1.3 所示,从能带的观点来看,半导体和 绝缘体都存在着禁带,绝缘体因其禁带宽度较大 (6~7eV) ,室温下本征激发的载流子近乎为零,所 以绝缘体室温下不能导电。半导体禁带宽度较小, 只有1~2eV ,室温下已经有一定数量的电子从价 带激发到导带。所以半导体在室温下就有一定的 导电能力。而导体没有禁带,导带与价带重迭在 一起,或者存在半满带,因此室温下导体就具有 良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,n0 p0 n i。对于某一确定 的半导体材料,其本征载流子浓度为 2 n0 p0 N C N V e E g kT n i 式中, N C,N V以及 Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。

最新微电子器件基础题

微电子器件基础题

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=?,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电 荷。内建电场的方向是从(N )区指向(P )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越(短),内建电场的最大值就 越(大),内建电势V bi 就越(大),反向饱和电流I 0就越(小),势垒电容C T 就越( ),雪崩击穿电压就越(低)。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为(0.8)伏 特。 6、当对PN 结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒高度 会(降低)。 7、当对PN 结外加反向电压时,其势垒区宽度会(变宽),势垒区的势垒高度 会(增高)。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可 表示为( )。若P 型区的掺杂浓度173 A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平 衡少子浓度(高);当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(低)。 10、PN 结的正向电流由(空穴扩散Jdp )电流、(电子扩散电流Jdn )电流和 (势垒区复合电流Jr )电流三部分所组成。 11、PN 结的正向电流很大,是因为正向电流的电荷来源是(多子);PN 结的 反向电流很小,是因为反向电流的电荷来源是(少子)。 12、当对PN 结外加正向电压时,由N 区注入P 区的非平衡电子一边向前扩散,一边(复合)。每经过一个扩散长度的距离,非平衡电子浓度降到原来的( )。 13、PN 结扩散电流的表达式为( )。这个表达式在正向电压下可简 化为( ),在反向电压下可简化为( )。 14、在PN 结的正向电流中,当电压较低时,以(复合)电流为主;当电压较 高时,以(扩散)电流为主。 15、薄基区二极管是指PN 结的某一个或两个中性区的长度小于(少子扩散长 度)。在薄基区二极管中,少子浓度的分布近似为(线性)。 16、小注入条件是指注入某区边界附近的(非平衡少子)浓度远小于该区的 (平衡多子)浓度,因此该区总的多子浓度中的(非平衡)多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的(非平衡少子)浓度远大于该区的 (平衡多子)浓度,因此该区总的多子浓度中的(平衡)多子浓度可以忽略。

微电子器件试验二极管高低温特性测试及分析完整版

微电子器件试验二极管高低温特性测试及分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点: 211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:二极管高低温特性测试及分析 三、实验学时:3 四、实验原理: 1、如图1,二极管的基本原理是一个PN结。具有PN结的特性——单向导电 性,如图2所示。 图 1 二极管构成原理 2、正向特性:二极管两端加正向电压,产生正向电流。正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。 3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。 4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。

图 2 二极管直流特性 五、实验目的: 学习晶体管图示仪的使用,掌握二极管的高低温直流特性。 六、实验内容: 1、测量当二极管的正向电流为100A时的正向导通压降; 2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。 七、实验器材(设备、元器件): 二极管、晶体管特性图示仪、恒温箱 八、实验步骤: 1、测晶体管的正向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 ~1kΩ(适当选择) ?x轴作用电压0 .1V/度 ?y轴作用电流10A/度 2、测晶体管的反向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 10k~100kΩ(适当选择) ?x轴作用电压1V/度 ?y轴作用电流A/度 3、对高温时的二极管进行参数测量。 九、实验数据及结果分析: 实验数据: 十、实验结论:

微电子实验完成版

实验指导书 教学单位:电子工程系 课程名称:微电子器件 面向专业:电子科学与技术 电子科技大学中山学院 2008年5月

实验指导书 实验名称:实验一图示仪检测晶体管和MOS管参数学时安排:4 实验类别:验证性实验要求:必做 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄一、实验目的和任务 本实验目的是用图示仪检测晶体管直流参数;学习并掌握该仪器的基本测试原理和使用方法,并巩固及加深对晶体管原理课程的理解。 二、实验原理介绍 测定晶体管的特性曲线和各种直流参数,最原始的方法是逐点测试扫描图法。例如测定PNP晶体管共发射极输出特性(V c ~ I c | I b = 常数),只要R B远大于晶体管的输入电阻,则确定一个基极电位E BB,而改变集电极电位E CC,即能测出确定I B条件下V C和I C各个对应值,适当选取坐标就可绘制出晶体管特性曲线。若要得到一族曲线,就得改变数次I B值。显然,这种测试方速度太慢,而且在测试击穿特性(如击穿电压V CEO、V CBO)和最大I CM 时易烧坏晶体管。如果E CC能随时间连续变化,击穿电压和最大电流将是瞬时值,只要不过大,一般不会损坏晶体管。如果把基极电压(或电流)改变数次,用一个等阶梯波代替,且把集电极电压和电流加到示波器上,就能直接从示波管的屏幕上得到一族晶体管特性曲线。 其中仪器里面的阶梯波信号电路:它包括阶梯波发生器、阶梯放大器及阶梯选择开关。它的作用是产生一个阶梯幅度相等,重复频率为100周和200周并与集电极半波正弦扫描电压有一定对应关系的阶梯波,根据测试要求,通过“阶梯选择”开关改变阶梯波幅度的大小(即改变被测晶体管基极电流或基极电压的阶梯值)、阶梯波的极性,对于每组出现的阶梯数也可由“级/簇”开关控制其大小。 集电极扫描电路:由扫描电压发生器、极性开关及功耗限制电阻组成。它给被测晶体管提供一个100周半波正弦扫描电压,其幅值有五个档位,且线性可调。根据被测管的类型,改变扫描电压极性、幅度,选择适当功耗电阻值。注意:对于NPN晶体管测量时,扫描电压极性选择为“+”,阶梯信号的极性为“+”;而PNP管测试时,扫描电压极性为“-”,阶梯信号极性为“-”。测试管座上C和E孔分别接在仪器内部电源的正极和负极上;而当扫描电压极性为“-”时,测试管座上C孔和E孔分别接在仪器内部电源的负极和正极上。在测试击穿电压时不要接错。 为使在测试时不损坏晶体管,在测试电路中引入了功耗限制电阻。功耗限制电阻在测量

相关文档
最新文档