[VIP专享]最新高考数学解题技巧大揭秘 专题16 椭圆、双曲线、抛物线
2024年高考数学专题16 妙解离心率问题(12大题型)(练习)(原卷版)

专题16 妙解离心率问题目录01顶角为直角的焦点三角形求解离心率的取值范围问题 (2)02焦点三角形顶角范围与离心率 (2)03共焦点的椭圆与双曲线问题 (3)04椭圆与双曲线的4a通径体 (4)05椭圆与双曲线的4a直角体 (5)06椭圆与双曲线的等腰三角形问题 (6)07双曲线的4a底边等腰三角形 (7)08焦点到渐近线距离为b (8)09焦点到渐近线垂线构造的直角三角形 (9)10以两焦点为直径的圆与渐近线相交问题 (10)11渐近线平行线与面积问题 (11)12数形结合转化长度角度 (11)01顶角为直角的焦点三角形求解离心率的取值范围问题1.(2024·安徽宣城·高三统考期末)已知椭圆()222210x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ^,设ABF a Ð=,且,124p p a æöÎç÷èø,则该椭圆的离心率e 的取值范围是( )A .12,23æöç÷èøB .C .D .23ö÷÷ø2.(2024·河北唐山·高三统考期末)已知椭圆()222210x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ^,设ABF a Ð=,且,64p p a éùÎêúëû,则该椭圆的离心率e 的取值范围是( )A .ùúûB .1ùúûC .D .3.(2024·江西南昌·高三南昌十中校考期末)已知椭圆()222210x y a b a b +=>>上一点A 关于原点的对称点为B 点,F 为其右焦点,若AF BF ^,设ABF a Ð=,且,43p p a æöÎç÷èø,则该椭圆的离心率的取值范围是( )A .1ö÷÷øB .ö÷÷øC .D .4.(2024·黑龙江大庆·高三铁人中学校考期末)已知双曲线C :22221x y a b -=(0a >,0b >)右支上非顶点的一点A 关于原点O 的对称点为B ,F 为其右焦点,若AF FB ^,设ABF q Ð=,且(,)124p pq Î,则双曲线C 离心率的取值范围是( )A .1(0,)2B .(12),C .(2,)+¥D .)+¥02焦点三角形顶角范围与离心率5.(2024·河南南阳·高三郑州一中阶段练习)已知1(,0)F c -,2(,0)F c 是椭圆22221(0)x y a b a b+=>>的左右两个焦点,P 为椭圆上的一点,且212PF PF c ×=uuu r uuu u r,则椭圆的离心率的取值范围为( )A .B .C .1[3D .6.(2024·黑龙江·校联考)已知0a b >>,1F ,2F ,是双曲线22122:1x y C a b -=的两个焦点,若点Р为椭圆22222:1x y C a b +=上的动点,当P 为椭圆的短轴端点时,12F PF Ð取最小值,则椭圆2C 离心率的取值范围为( )A.æçèB.ö÷÷øC.æççèD.ö÷÷ø7.(2024·贵州·高三凯里一中校考期末)已知椭圆2222:1x y C a b+=,0a b >>,12,F F 分别为椭圆的左右焦点,若椭圆C 上存在点()()000,0P x y x ³使得1260PF F oÐ=,则椭圆的离心率的取值范围为( )A.ö÷÷øB.æçèC .1,12éö÷êëøD .10,2æùçúèû8.(2024·全国·高三专题练习)已知椭圆()2222:10x y C a b a b +=>>,1F ,2F 分别为椭圆的左右焦点,若椭圆C 上存在点00(,)P x y (00x ³)使得1230PF F Ð=°,则椭圆的离心率的取值范围为( )A .10,2æöç÷èøB.æççèC .1,12éö÷êëøD.ö÷÷ø03共焦点的椭圆与双曲线问题9.(2024·安徽·校联考)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为1F 、2F ,且两条曲线在第一象限的交点为P ,12PF F D 是以1PF 为底边的等腰三角形,若110PF =,椭圆与双曲线的离心率分别为1e 、2e ,则1e 与2e 满足的关系是()A .12112e e +=B .12112e e -=C .122e e +=D .212e e -=10.(多选题)(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知椭圆1C :2222111x y a b +=()110a b >>与双曲线2C :2222221x y a b -=(20a >,20b >)有公共焦点1F ,2F ,且两条曲线在第一象限的交点为P ,若12PF F △是以1PF 为底边的等腰三角形,1C ,2C 的离心率分别为1e 和2e ,则( )A .22221122a b a b -=+B .12112e e +=C .212e e -=D .111,32e æöÎç÷èø11.(2024·湖北孝感·高三统考期末)已知椭圆和双曲线有共同的焦点1F 、2F ,M 是它们的一个交点,且121cos 4F MF Ð=,记椭圆和双曲线的离心率分别为1e 、2e ,则121e e 的最大值为 .12.(2024·江苏苏州·高三江苏省苏州第十中学校校考阶段练习)已知椭圆和双曲线有共同的焦点12,,,F F P Q 分别是它们在第一象限和第三象限的交点,且260QF P Ð=o ,记椭圆和双曲线的离心率分别为12,e e ,则221231e e +等于 .13.(2024·重庆沙坪坝·高三重庆一中校考期末)已知椭圆和双曲线有共同的焦点1F 、2F ,P 是它们的一个交点,1260F PF Ð=o ,记椭圆和双曲线的离心率分别为1e 、2e ,则2212e e +的最小值是 .04椭圆与双曲线的4a 通径体14.(2024·河南·高三统考阶段练习)已知椭圆()222210,0x y a b a b+=>>的离心率为35,左、右焦点分别为1F 、2F ,过1F 的直线与椭圆C 交于M 、N 两点,若212NF F F =,则11MF NF =( )A .25B .35C .12D .2315.(2024·全国·高三校联考阶段练习)已知椭圆E :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F (如图),过2F 的直线交E 于P ,Q 两点,且1PF x ^轴,2213PF F Q =,则E 的离心率为( )AB .12CD16.(2024·云南·校联考模拟预测)已知椭圆E :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F (如图),过2F 的直线交E 于P ,Q 两点,且1PF x ^轴,229PF F Q =,则E 的离心率为()A B .12C D 17.(2024·山西太原·高三山西大附中校考阶段练习)已知椭圆E :22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F (如图),过2F 的直线交E 于P ,Q 两点,且1PF x ^轴,223PF F Q =,则E 的离心率为( )A B .12C D05椭圆与双曲线的4a 直角体18.(2024·全国·高三校联考阶段练习)已知椭圆C 的左、右焦点为1F ,2F ,过1F 的直线交C 于A ,B 两点,若1123AF F B =,且22AF BF ^,则椭圆C 的离心率为( )A .12B C D 19.(2024·重庆·校联考)已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,过1F 的直线交双曲线C 的左支于P ,Q 两点,若2222PF PF QF =×uuu u r uuu u r uuuu r,且2PQF V 的周长为12a ,则双曲线C 的离心率为( )A B C D .20.(2024·广西桂林·高三统考期末)设1F ,2F 分别是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,113AF BF =,若23cos 5AF B Ð=,则椭圆E 的离心率为( )A .12B .23C D 21.(2024·湖南·校联考)已知A ,B ,C 是双曲线22221(0,0)x y a b a b-=>>上的三个点,直线AB 经过原点O ,AC 经过右焦F ,若BF AC ^,且3AF CF =,则该双曲线的离心率为A B .52C D .2322.(2024·湖北·高三开学考试)已知,,A B C 是双曲线22221(0,0)x y a b a b -=>>上的三个点,AB 经过原点O ,AC 经过右焦点F ,若BF AC ^且2AF CF =,则该双曲线的离心率是( )A .53B C D .9423.(2024·山东聊城·统考)已知A ,B ,C 是双曲线()222210,0x y a b a b-=>>上的三点,直线AB 经过原点O ,AC 经过右焦点F ,若BF AC ^,且32CF FA =uuu r uuu r,则该双曲线的离心率为( )A B C .32D06椭圆与双曲线的等腰三角形问题24.(2024·江西上饶·高三阶段练习)已知双曲线()2222:1,0x y C a b a b-=>的左、右焦点分别为1F ,2F ,过2F 的直线与双曲线C 的右支相交于,P Q 两点,若1PQ PF ^,且1PF PQ =,则双曲线的离心率e =A B .1C D 125.(2024·北京海淀·校考模拟预测)双曲线C :22221x y a b -=(0,0)a b >>的左、右焦点分别为F 1、F 2,过F 1的直线与双曲线C 的右支在第一象限的交点为A ,与y 轴的交点为B ,且△ABF 2为等边三角形,则双曲线的离心率为( )A B C 1D 126.(2024·安徽·高三校联考阶段练习)如图,已知1F ,2F 分别为双曲线C :()222210,0x y a b a b-=>>的左右焦点,过1F 的直线与双曲线C 的左支交于A 、B 两点,连接2AF ,2BF ,在2ABF △中,2AB BF =,231cos 32ABF Ð=,则双曲线的离心率为( )A .2BC D07双曲线的4a 底边等腰三角形27.(2024·四川成都·石室中学校考)已知1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F l 与双曲线的左,右两支分别交于M ,N 两点,以2F 为圆心的圆过M ,N ,则双曲线C 的离心率为( )A B C .2D 28.(2024·江西九江·统考)设双曲线()2222100x y C a b a b -=:>,>的左、右焦点分别为F 1,F 2,过点F 2的直线分别交双曲线左、右两支于点P ,Q ,点M 为线段PQ 的中点,若P ,Q ,F 1都在以M 为圆心的圆上,且10PQ MF ×=uuu r uuuu r,则双曲线C 的离心率为( )A B .C D .29.(2024·安徽合肥·校联考模拟预测)设双曲线()2222:10x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线l 与双曲线左右两支交于M ,N 两点,以MN 为直径的圆过2F ,且222MN MF MN =×uuuu r uuuu r uuuu r,则双曲线C 的离心率为( )A B C .2D 30.(2024·河北石家庄·统考)已知1F ,2F 分别为椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 是椭圆上位于第一象限内的点,延长2PF 交椭圆于点Q ,若1PF PQ ^,且1PF PQ =,则椭圆的离心率为A B .2C D 131.(2024·山东烟台·统考)已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点A在C 的右支上,1AF 与C 交于点B ,若220F A F B ×=uuu u r uuu u r,且22F A F B =uuu u r uuu u r ,则C 的离心率为( )A B C D08焦点到渐近线距离为b32.(2024·四川泸州·高三统考期末)已知F 1,F 2为双曲线C :2222x y a b-=1(a >0,b >0)的左,右焦点,过F 2作C 的一条渐近线的垂线,垂足为P ,且与C 的右支交于点Q ,若1//OQ PF (O 为坐标原点),则C 的离心率为( )A B C .2D .333.(2024·安徽滁州·高三统考期末)设F 1,F 2分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,过F 2作双曲线的一条渐近线的垂线,垂足为H ,若|HF 1|=3|HF 2|,则双曲线的离心率为( )34.(2024·辽宁葫芦岛·统考)设F 1,F 2是双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=3|OP |,则C 的离心率为( )A B .2C D 35.(2024·广西玉林·统考模拟预测)已知双曲线2222:1(0,0)x y E a b a b-=>>的焦点在1F ,过点1F 的直线与两条渐近线的交点分别为M 、N 两点(点1F 位于点M 与点N 之间),且13MN F N =uuuu r uuuu r,又过点1F 作1F P OM ^于P (点O 为坐标原点),且||||ON OP =,则双曲线E 的离心率e =( )A B C D09焦点到渐近线垂线构造的直角三角形36.(2024·安徽宣城·统考)设F 是双曲线22221(0)x y b a a b -=>>的一个焦点,过F 作双曲线的一条渐近线的垂线,与两条渐近线分别交于,P Q 两点.若2FP FQ =uuu r uuu r,则双曲线的离心率为( )A B C .2D .537.(2024·浙江台州·高三台州一中校考阶段练习)如图,已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为H ,交另一条渐近线于点A ,已知O 为原点,且4||3AH a =,则该双曲线的离心率为( )A B C .2D 38.(2024·湖南长沙·高三雅礼中学校考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F作渐近线的垂线,垂足为B ,交y 轴于点C ,交另一条渐近线于点A ,并且点C 位于点A ,B 之间.已知O 为原点,且5||3OA a =,则双曲线离心率为( )339.(2024·四川巴中·统考模拟预测)已知双曲线C :22221x y a b -=(0a >,0b >),过C 的右焦点F 作垂直于渐近线的直线l 交两渐近线于A ,B 两点,A ,B 两点分别在一、四象限,若513AF BF =,则双曲线C 的离心率为( )A .1312B C D10以两焦点为直径的圆与渐近线相交问题40.(2024·湖南长沙·高三长沙市明德中学校考开学考试)已知双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点分别为1F 、2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uuu r,120F B F B ×=uuu r uuur,则C 的离心率为( )A .2B C 1+D 141.(2024·江苏徐州·统考模拟预测)已知F 是双曲线22221x y a b -=的左焦点,圆2222:O x y a b +=+与双曲线在第一象限的交点为P ,若PF 的中点在双曲线的渐近线上,则此双曲线的离心率是( )A B .2C D 42.(2024·山东烟台·统考)设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为3p 的直线与y 轴和双曲线的右支分别交于点A 、B ,若()112OA OB OF =+uuu v uuu v uuuv ,则该双曲线的离心率为A .2BC .2D 43.(2024·甘肃兰州·校联考)(2017·兰州模拟)已知F 1,F 2为双曲线22221x y a b -=(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线右支的一个交点为P ,PF 1与双曲线相交于点Q ,且|PQ |=2|QF 1|,则该双曲线的离心率为( )A B .2C D 44.(2024·福建莆田·统考)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,以线段12F F 为直径的圆与C 的渐近线在第一象限的交点为P ,且122PF PF b -=.设C 的离心率为e ,则2e =( )A B C D11渐近线平行线与面积问题45.(2024·安徽芜湖·统考)设M 为双曲线()222:1016x y D a a -=>上任意一点,过点M 作双曲线两渐近线的平行线,分别与两渐近线交于A ,B 两点.若ABM V 的面积为4,则双曲线D 的离心率为( )A B .2C D 46.(2024·浙江·校联考模拟预测)过双曲线()222210,0x y a b a b-=>>上的任意一点P ,作双曲线渐近线的平行线,分别交渐近线于点M ,N ,若214OM ON b ׳uuuu v uuu v ,则双曲线离心率的取值范围是( )A .ö+¥÷÷øB .æççèC .ö+¥÷÷øD .æççè47.(2024·福建·)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过双曲线C 上任意一点P 分别作C 的两条渐近线的垂线,垂足分别为,,A B 8||||9PA PB ×=,12F F 等于3212x x æö-ç÷èø展开式的常数项,则双曲线C 的离心率为A .3B .3CD .12数形结合转化长度角度48.(2024·山东泰安·统考)已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,椭圆C 在第一象限存在点M ,使得112=MF F F ,直线1F M 与y 轴交于点A ,且2F A 是21MF F Ð的角平分线,则椭圆C 的离心率为 .49.(2024·云南·高三云南师大附中校考阶段练习)已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为A ,B ,右焦点为F ,P 为椭圆上一点,直线AP 与直线x a =交于点M ,PFB Ð的角平分线与直线x a =交于点N ,若PF AB ^,MAB △的面积是NFB V 面积的6倍,则椭圆C 的离心率是 .50.(2024·四川凉山·高三统考期末)已知椭圆()2222:10x y C a b a b+=>>,左、右焦点分别为1F 、2F ,若过()1,0F c -的直线与圆2222c x y æö+=ç÷èø相切,与椭圆在第一象限交于点P ,且2PF 垂直于x 轴,则椭圆的离心率为 .。
高中圆锥曲线题型及解题方法

高中圆锥曲线题型及解题方法
高中数学中的圆锥曲线是指椭圆、双曲线和抛物线这三种曲线。
下面是一些常见的高中圆锥曲线题型及其解题方法:
1.椭圆题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。
o确定关键参数:通过比较方程的系数,确定椭圆的中心、长轴和短轴的长度。
o图形性质:通过关键参数判断椭圆的形状,并确定焦点和直径等性质。
2.双曲线题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。
o确定关键参数:通过比较方程的系数,确定双曲线的中心、焦距和各轴的长度。
o图形性质:通过关键参数判断双曲线的形状,确定焦点、渐近线和渐近角等性质。
3.抛物线题型:
o方程转化:将标准方程转化为顶点形式或焦点式。
o确定关键参数:通过比较方程的系数,确定抛物线的顶点、焦距和开口方向。
o图形性质:通过关键参数判断抛物线的形状,确定
对称轴、焦点和准线等性质。
解题方法的关键在于确定关键参数,然后利用这些参数来判断曲线的形状和性质。
同时,要熟练掌握方程转化的方法,以便在解题过程中将方程转化为更容易分析的形式。
除了掌握相应的公式和技巧,还需要多做练习,加深对圆锥曲线图形和性质的理解。
同时,理论和实践相结合,通过画图、观察和推理的方式加深对圆锥曲线的认识。
最重要的是理解概念和思想,而不只是死记硬背。
只有真正理解了圆锥曲线的几何性质,才能更好地应用于解题,并在应用过程中灵活运用。
2023高考数学大题的最佳解题技巧及解题思路,清华学长告诉你如何拿高分

2023高考数学大题的最佳解题技巧及解题思路,清华学长告诉你如何拿高分2023高考数学大题的最佳解题技巧及解题思路,清华学长告知你如何拿高分把握数学解题思想是解答数学题时不行缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,把握解题技巧,并将做过的题目加以划分,最终几天集中复习。
2023高考数学大题的最佳解题技巧及解题思路六种解题技巧一、三角函数题留意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很简单由于马虎,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最终下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最终一问证明不等式成立时,假如一端是常数,另一端是含有n的式子时,一般考虑用放缩法;假如两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,肯定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时肯定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简洁(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简洁;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、留意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1、搞清随机试验包含的全部基本领件和所求大事包含的基本领件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(依据p1+p2+...+pn=1);5、留意计数时利用列举、树图等基本方法;6、留意放回抽样,不放回抽样;7、留意“零散的”的学问点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、留意条件概率公式;9、留意平均分组、不完全平均分组问题。
高考数学复习重难点六种双曲线解题方法(核心考点讲与练)

重难点13六种双曲线解题方法(核心考点讲与练)能力拓展题型一:待定系数法求双曲线方程一、单选题1.(2022·河南·模拟预测(文))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,一条渐近线方程为y =,过双曲线C 的右焦点2F 作倾斜角为3π的直线l 交双曲线的右支于A ,B 两点,若1AF B △的周长为36,则双曲线C 的标准方程为()A .22124x y -=B .22142x y -=C .2212y x -=D .2212x y -=2.(2022·四川·宜宾市教科所三模(理))若等轴双曲线的焦距为4,则它的一个顶点到一条渐近线的距离为()A .1B .32C .2D .33.(2022·宁夏·石嘴山市第一中学三模(理))双曲线E 与椭圆22:162x y C +=焦点相同且离心率是椭圆C 离E 的标准方程为()A .2213y x -=B .2221yx -=C .22122x y -=D .2213x y -=4.(2022·内蒙古包头·二模(理))已知1F ,2F 是双曲线()2222:10,0x yC a b a b-=>>的两个焦点,R 是C 上的一点,且12120F RF =∠︒,1241::RF RF =,C 经过点2,3Q ⎛ ⎝⎭,则C 的实轴长为()AB .C .6D .3二、多选题5.(2022·江苏·扬州中学高三阶段练习)已知双曲线E :()222210x y a b a b-=>>的左、右焦点分别为()13,0F -,()23,0F ,两条渐近线的夹角正切值为直线l :30kx y k --=与双曲线E 的右支交于A ,B 两点,设1F AB的内心为I ,则()A .双曲线E 的标准方程为22163x y -=B .满足AB =l 有2条C .2IF AB⊥D .1F AB 与IAB △的面积的比值的取值范围是(]2,66.(2022·全国·高三专题练习)已知双曲线22:1C mx ny +=,其焦点()0,5到渐近线的距离为3,则下列说法正确的是()A .双曲线C 的方程为221169y x -=B .双曲线C 的渐近线方程为34y x=±C .双曲线C 的离心率为54D .双曲线C 上的点到焦点距离的最小值为17.(2022·全国·高三专题练习)已知双曲线1C :2222111x y a b -=(10a >,10b >)的一条渐近线的方程为y =,且过点31,2⎛⎫ ⎪⎝⎭,椭圆2C :22221x ya b+=(0a b >>)的焦距与双曲线1C 的焦距相同,且椭圆2C 的左右焦点分别为12,F F ,过1F 的直线交2C 于()11,A y (10y >),B 两点,则下列叙述正确的是()A .双曲线的离心率为2B .双曲线的实轴长为12C .点B 的横坐标的取值范围为()2,1--D .点B 的横坐标的取值范围为()3,1--三、填空题8.(2022·福建宁德·模拟预测)若过点)的双曲线的渐近线为2y x =±,则该双曲线的标准方程是___________.四、解答题9.(2022·全国·模拟预测)已知双曲线()2222:10,0x y E a b a b-=>>的一条渐近线的倾斜角为30 ,点(在双曲线E 上.(1)求双曲线E 的标准方程;(2)若动直线l 与双曲线E 相切,过点()2,0P 作直线l 的垂线,垂足为H ,试判断OH 是否为定值?如果是,请求出该值;如果不是,请说明理由.10.(2022·上海市七宝中学高三期中)双曲线C :22221x y a b-=(a >0,b >0)经过点),且渐近线方程为y x =±.(1)求a ,b 的值;(2)点A ,B ,D 是双曲线C 上不同的三点,且B ,D 两点关于y 轴对称,ABD △的外接圆经过原点O .求证:点A 与点B 的纵坐标互为倒数;(3)在(2)的条件下,试问是否存在一个定圆与直线AB 相切,若有,求出定圆方程,没有说明理由.11.(2022·全国·高三专题练习)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点,A B 分别在C 的两条渐近线上,AF x ⊥轴,,AB OB BF ⊥∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点()()00,0o P x y y ≠的直线002:1x xl y y a -=与直线AF 相交于点M ,与直线32x =相交于点N ,证明:当点P 在C 上移动时,MFNF恒为定值,并求此定值.12.(2022·河北衡水中学一模)在平面直角坐标系xOy中,双曲线()2222:10,0y xC a b a b-=>>,实轴长为4.(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,直线l 过点()0,P t 且垂直于y 轴(P 位于原点与上顶点之间),过P 的直线交C 于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若O ,A ,N ,M 四点共圆,求点P 的坐标.13.(2022·河南·三模(理))已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,a ,b ,c 成等差数列,过F 的直线交双曲线C 于P 、Q 两点,若双曲线C 过点165,3T ⎛⎫- ⎪⎝⎭.(1)求双曲线C 的标准方程;(2)过双曲线C 的左顶点A 作直线AP 、AQ ,分别与直线x m =交于M 、N 两点,是否存在实数m ,使得以MN 为直径的圆恒过F ,若存在,求出m 的值;若不存在,请说明理由.题型二:相同渐近线双曲线方程求法一、单选题1.(2022·浙江嘉兴·模拟预测)已知双曲线C 的渐近线方程为340x y ±=,且焦距为10,则双曲线C 的标准方程是()A .221916x y -=B .221169x y -=C .221169x y -=或221916y x -=D .221916x y -=或221169y x -=2.(2020·全国·高三专题练习)已知双曲线C 与双曲线22126x y -=有公共的渐近线,且经过点(P -,则双曲线C 的离心率为().A BC .4D .23.(2020·全国·高三专题练习)已知双曲线C 的一个焦点为()0,5,且与双曲线2214x y -=的渐近线相同,则双曲线C 的标准方程为A .2214y x -=B .221520y x -=C .221205x y -=D .2214x y -=二、多选题4.(2020·全国·高三阶段练习)已知双曲线C 过点(且渐近线为y =,则下列结论正确的是()A .C 的方程为2213y x -=B .C 的离心率为2C .曲线2331x y e -=-经过C 的一个焦点D 10y --=与C 有两个公共点5.(2021·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,一条渐近线过点(,则下列结论正确的是()A .双曲线CB .双曲线C 与双曲线22124y x -=有相同的渐近线C .若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D .若直线2:a l xc=与渐近线围成的三角形面积为则焦距为三、填空题6.(2022·辽宁·模拟预测)焦点在x 轴上的双曲线C 与双曲线22149x y-=有共同的渐近线,且C 的焦点到一条渐近线的距离为C 的方程为______.7.(2022·全国·高三专题练习)若双曲线2222:1y x C a b-=(0a >,0b >)与双曲线22:146x y D -=有相同的渐近线,且C 经过点()2,6,则C 的实轴长为_________四、解答题8.(2022·全国·高三专题练习)已知双曲线()22122:10,0x y C a b a b-=>>与222:193x x C -=有相同的渐近线,点()2,0F 为1C 的右焦点,,A B 为1C 的左,右顶点.(1)求双曲线1C 的标准方程;(2)若直线l 过点F 交双曲线1C 的右支于,M N 两点,设直线,AM BN 斜率分别为12,k k ,是否存在实数入使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.题型三:直接法解决离心率问题一、单选题1.(2022·广东·佛山市南海区艺术高级中学模拟预测)已知双曲线的方程2214x y -=,则该双曲线的离心率为()A BC .2D 2.(2022·黑龙江·哈九中模拟预测(理))如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A ,B 两点反射后,分别经过点C 和D .且3cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为()A B .3C D .33.(2022·浙江金华·三模)已知双曲线C :()222210,0x y a b a b-=>>,O 为坐标原点,F 为双曲线C 的左焦点,若C 的右支上存在一点P ,使得OFP △外接圆M 的半径为1,且四边形MFOP 为菱形,则双曲线C 的离心率是()A 1B 1C 1D .24.(2022·重庆八中高三阶段练习)如图,已知1F ,2F 为双曲线E :22221(0,0)x y a b a b -=>>的左、右焦点,过点1F ,2F 分别作直线1l ,2l 交双曲线E 于A ,B ,C ,D 四点,使得四边形ABCD 为平行四边形,且以AD 为直径的圆过1F ,11DF AF =,则双曲线E 的离心率为()A BC .52D .25.(2022·贵州黔东南·一模(理))已知双曲线2222:1(0,0)x y C a b a b-=>>,直线2x a =与C 交于A 、B 两点(A在B 的上方),DA AB = ,点E 在y 轴上,且EA x ∥轴.若BDE 的内心到y 轴的距离为43a,则C 的离心率为().A .2B C D 二、多选题6.(2022·山东烟台·一模)已知双曲线C :22145x y -=,1F ,2F 为C 的左、右焦点,则()A .双曲线()221045x y m m m-=>++和C 的离心率相等B .若P 为C 上一点,且1290F PF ∠=︒,则12F PF △的周长为6+C .若直线1y tx =-与C 没有公共点,则2t <-或2t >D .在C 的左、右两支上分别存在点M ,N 使得114F M F N=三、填空题7.(2022·安徽·合肥一中模拟预测(理))已知双曲线C :22214x y b-=(0b >),以C 的焦点为圆心,3为半径的圆与C 的渐近线相交,则双曲线C 的离心率的取值范围是________________.8.(2022·山东日照·二模)如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A ,B 两点反射后,分别经过点C 和D ,且4cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为___________.9.(2022·浙江·三模)已知双曲线222:1(0)4x y C b b-=>的两个焦点分别为12,F F ,点()00,P x y 是双曲线第一象限上一点,在点P 处作双曲线C 的切线l ,若点12,F F 到切线l 的距离之积为3,则双曲线C 的离心率为_______.四、解答题10.(2022·河北张家口·三模)已知0b a >>,点)A,2B b ⎛⎫ ⎪ ⎪⎝⎭,动点P满足||||PA PB =,点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线y kx m =+与曲线C 相切,与曲线2222:1x yE a b-=交于M 、N 两点,且π2MON ∠=(O 为坐标原点),求曲线E 的离心率.题型四:构造齐次方程法求离心率的值或范围一、单选题1.(2022·湖北省天门中学模拟预测)已知共焦点的椭圆和双曲线,焦点为1F ,2F ,记它们其中的一个交点为P ,且12120F PF ∠=︒,则该椭圆离心率1e 与双曲线离心率2e 必定满足的关系式为()A .1213e e 144+=B .221231e e 144+=C .22123114e 4e +=D .22121314e 4e +=2.(2022·浙江·赫威斯育才高中模拟预测)已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,过1F 的直线l 与双曲线C 左、右支分别交于A ,B 两点,若2||AB BF =,12BF F △2,双曲线C的离心率为e ,则2e =()AB .2C.2D.5+3.(2022·浙江·模拟预测)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,M 为右支上一点,2112120,MF F MF F ∠=︒ 的内切圆圆心为Q ,直线MQ 交x 轴于点N ,||2||MQ QN =,则双曲线的离心率为()A .54B .43CD二、多选题4.(2022·全国·模拟预测)已知O 为坐标原点,双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,l 是C 的一条渐近线,以F 为圆心,a 为半径的圆与l 交于A ,B 两点,则()A .过点O 且与圆F 相切的直线与双曲线C 没有公共点B .CC .若0FA FB ⋅>,则C的离心率的取值范围是⎝D .若OA AB =uu r uu u r,则C的离心率为3三、双空题5.(2022·湖北武汉·模拟预测)已知1F ,2F ,是双曲线C :22213x yb-=的左右焦点,过1F 的直线与双曲线左支交于点A ,与右支交于点B ,12AF F △与12BF F △内切圆的圆心分别为1I ,2I ,半径分别为1r ,2r ,则1I 的横坐标为__________;若12:1:3r r =,则双曲线离心率为__________.四、填空题6.(2022·河北·模拟预测)已知12,F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过点1F 的直线与双曲线C 的左、右两支分别交于,M N 两点,且()12112221sin 2,0sin 3NF F MF MN F F NF NF F ∠∠=++⋅= ,则双曲线C 的离心率是__________.7.(2022·福建三明·模拟预测)已知双曲线()222210,0x y a b a b -=>>的左、右焦点分别为1F 、2F ,双曲线上一点A 关于原点O 对称的点为B ,且满足110AF BF ⋅= ,21tan 3ABF ∠=,则该双曲线的离心率为___________.8.(2022·安徽马鞍山·三模(文))已知双曲线E 的焦点在x 轴上,中心为坐标原点,F 为E 的右焦点,过点F 作直线1l 与E 的左右两支分别交于A ,B 两点,过点F 作直线2l 与E 的右支交于C ,D 两点,若点B 恰为ACD △的重心,且ACD △为等腰直角三角形,则双曲线E 的离心率为___________.五、解答题9.(2022·全国·高三专题练习)设A ,B 为双曲线2222:1x y C a b-=(0,0)a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于,P Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.10.(2021·全国·高三专题练习)设双曲线1C 的方程为22221(0,0)x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线1C 上的任意一点,引QB PB ⊥,QA PA ⊥,AQ 与BQ 交于点Q .(1)求Q 点的轨迹方程;(2)设(1)中所求轨迹为2C ,1C 、2C 的离心率分别为1e 、2e ,当1e ≥2e 的取值范围.题型五:渐近线综合问题一、单选题1.(2022·安徽·安庆一中高三阶段练习(文))已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(),0F c ,离心率3e =,过F 的直线与C 的两条渐近线的交点分别为,,A B OAB 为直角三角形,3AB =,则C 的方程为()A .22142x y -=B .2213x y -=C .22163x y -=D .22184x y -=2.(2022·山西吕梁·三模(文))已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率e 是它的一条渐近线斜率的2倍,则e =()AB C D .23.(2022·江西宜春·模拟预测(文))若双曲线()222210,0x y a b a b-=>>的一个顶点为A ,过点A 的直线330x y --=与双曲线只有一个公共点,则该双曲线的焦距为()A .B .C .D .4.(2022·四川遂宁·模拟预测(文))设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点是1F ,2F ,O为原点,若以12F F 为直径的圆与C 的渐近线的一个交点为P ,且1=F P ,则C 的渐近线方程为()A .y =B .y x=±C .y =D .y =5.(2022·海南·模拟预测)已知双曲线222:1(0)y E x b b-=>的一条渐近线与直线20x y +=垂直,则E 的焦点坐标为()A .⎛⎫ ⎪ ⎪⎝⎭B .⎛⎫⎪ ⎪⎝⎭C .(D .(二、多选题6.(2022·福建南平·三模)已知双曲线C 的方程为()222210,0x y a b a b-=>>,1F ,2F 分别为双曲线C 的左、右焦点,过2F 且与x 轴垂直的直线交双曲线C 于M ,N 两点,又8MN a =,则()A .双曲线C 的渐近线方程为2y x=±B .双曲线C 的顶点到两渐近线距离的积的5倍等于焦点到渐近线距离的平方C .双曲线C 的实轴长、虚轴长、焦距成等比数列D .双曲线C 上存在点P ,满足213PF PF =7.(2022·湖南·一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,过点F 作C 的一条渐近线的平行线交C 于点A ,交另一条渐近线于点B .若2=FA AB ,则下列说法正确的是()A .双曲线C 的渐近线方程为2y x =±B .双曲线CC .点A 到两渐近线的距离的乘积为23b D .O 为坐标原点,则tan AOB ∠=8.(2022·全国·高三专题练习)下列双曲线的渐近线方程为12y x =±的是()A .2214x y -=B .22142x y -=C .2214y x -=D .221416y x -=三、填空题9.(2022·全国·模拟预测)已知1F ,2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,则下列说法正确的序号是___________.①122a F F >;②若a b =,则双曲线C ;③若点P 在双曲线C 的右支上,1PF 与y 轴交于M ,112PM F P =-,则22bPF a =;④若双曲线C 35.四、解答题10.(2022·全国·模拟预测)已知双曲线()22220,0:1T a x y b b a >->=的一条渐近线1l 的方程为3y x =,且右焦点F 到1l 的距离为1.(1)求双曲线T 的标准方程;(2)若点P 为直线1l 上一点,倾斜角为60︒的直线l '与双曲线T 的右支交于M ,N 两点,且PMN 为等边三角形,求直线l '在x 轴上的截距.题型六:利用自变量范围求离心率范围一、单选题1.(2022·山西太原·二模(理))已知双曲线()222210,0x y a b a b-=>>的右焦点为()F ,点Q 为双曲线左支上一动点,圆221x y +=与y 轴的一个交点为P ,若8PQ QF +≥,则双曲线离心率的最大值为()AB C D .2.(2022·全国·高三专题练习)已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点F (0),点Q 是双曲线C 的左支上一动点,圆E :221x y +=与y 轴的一个交点为P ,若13PQ QF PF ++≥,则双曲线C 的离心率的最大值为()A .3B .3C .5D .3.(2022·全国·高三专题练习(文))已知点F 为双曲线2222:1(,0)x y C a b a b -=>的右焦点,直线y kx =,k ∈⎣与双曲线C 交于A ,B 两点,若AF BF ⊥,则该双曲线的离心率的取值范围是()A .+B .1⎤⎦C .1⎡⎤⎣⎦D .2⎡⎣4.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>,若双曲线不存在以点()2,a a 为中点的弦,则双曲线离心率e 的取值范围是()A .1,3⎛ ⎝⎦B .23⎣⎦C .3⎡⎫+∞⎪⎢⎪⎣⎭D .2⎫+∞⎪⎪⎣⎭二、多选题5.(2022·全国·高三专题练习)已知曲线C :()22142x y m R m m +=∈--,则下列说法正确的是()A .若24m <<,则曲线C 为椭圆B .若4m >,则曲线C 为焦点在y 轴上的双曲线C .若曲线C 为双曲线,则其焦距是定值D .若曲线C 为焦点在x三、填空题6.(2021·重庆一中高三阶段练习)已知椭圆C :()222124x y a a +=>的左、右焦点分别为1F ,2F ,若C 上存在点P 使得12PF PF ⊥,则双曲线Γ:22218x y a -=的离心率的取值范围是______.7.(2022·浙江绍兴·高三期末)已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>.左,右焦点,若C 上存在一点M ,使得123MF MF MO +=成立,其中O 是坐标原点,则C 的离心率的取值范围是__________.四、解答题8.(2021·新疆昌吉·高三阶段练习(文))已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、,点P 在双曲线的右支上(点P 不在x 轴上),且125PF PF =.(1)用a 表示12,PF PF ;(2)若12F PF ∠是钝角,求双曲线离心率e 的取值范围.9.(2022·全国·高三专题练习)如图,已知梯形ABCD 中2AB CD =,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点当2334λ≤≤时,求双曲线离心率e 的取值范围.高考一轮复习专项。
2021届高考二轮数学人教版课件:第2部分 专题5 第2讲 椭圆、双曲线、抛物线

D.x32-y2=1
第二部分 专题五 解析几何
高考二轮总复习 • 数学
返回导航
【解析】
由题意可得菱形的一个内角为60°,ab=
3 3
,一条对角线
的长为c,另一条对角线的长为 33c,
所以12c·33c=2 3 3,c=2,而a2+b2=c2=4,
解得:a2=3,b2=1, 双曲线C的方程为x32-y2=1,
第二部分 专题五 解析几何
高考二轮总复习 • 数学
返回导航
2.(2020·运城三模)已知双曲线C:
x2 a2
-
y2 b2
=1(a>0,b>0)的两条渐近
线与曲线x+ 3|y|=c(c= a2+b2)围成一个面积为233的菱形,则双曲线
C的方程为
( D)
A.x62-y22=1
B.x22-y62=1
C.x2-y32=1
的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的
中心为原点,焦点F1,F2均在x轴上,C的面积为2 3 π,过点F1的直线交
C于点A,B,且△ABF2的周长为8,则C的标准方程为
(C )
A.x42+y2=1
B.x32+y42=1
C.x42+y32=1
D.1x62 +43y2=1
(4)(2020·北京昌平区期末)抛物线y2=2px上一点M到焦点F(1,0)的距 离等于4,则p=__2__;点M的坐标为__(_3_,__±_2__3_)__.
第二部分 专题五 解析几何
高考二轮总复习 • 数学
返回导航
(文科) 年份 卷别
Ⅰ卷
Ⅱ卷 2020
Ⅲ卷
题号 11 9
7、14
考查角度
高考圆锥曲线大题题型及解题技巧

高考圆锥曲线大题题型及解题技巧x高考圆锥曲线大题题型及解题技巧一、基本概念圆锥曲线是椭圆、双曲线与圆锥体的综合体,它说明物体穿过三种物理媒质,如水、气体和固体物质,以及它们之间的相互转换性。
二、圆锥曲线的基本特点1、圆锥曲线具有规律性:它的主要特征是抛物线的函数形式呈现出以对称中心为中心的规律性,在此基础上拓展形成了螺旋状的曲线;2、圆锥曲线与旋转有关:圆锥曲线的曲线形状可以用某种旋转的路径进行描述;3、圆锥曲线的曲线表示有多种变化:圆锥曲线可以表示为二维图形或三维图形,可以表示为数学方程式,也可以表示为一组矢量。
三、圆锥曲线大题解题技巧1、分析题干:根据题干内容,在解题之前要细致地分析题干,弄清楚问题的范围,是对一组数据进行分析,还是对某种形式的函数进行分析,要把握好范围和类型,以便选择正确的解题方法;2、画出曲线图:如果是需要求曲线的半径、圆心坐标和焦点等信息,可以先画出曲线图,有助于理清思路;3、推导出数学公式:如果是要分析曲线的性质,可以根据曲线的特性,推导出相应的数学公式,以便求解;4、运用矩阵的相关理论:在计算曲线的性质时,可以运用矩阵的相关理论,根据相关的矩阵的乘法,求出所求的值。
五、练习1、(XX年某省某市高考)已知圆锥曲线的参数方程为:$$left{begin{array}{l} x^{2} + y^{2}=a^{2} z^{2} a>0, a eq 1 end{array}ight.$$(1)求出曲线的中心坐标;(2)求出曲线的渐近线方程和焦点坐标。
解:(1)令参数方程中的参数$a=frac{1}{m}$,代入参数方程可得:$$left{begin{array}{l} x^{2} + y^{2}=frac{1}{m^{2}} z^{2} m>0, meq 1 end{array}ight.$$令$z=0$,得到$x^{2} + y^{2}=0$,由此可知曲线的中心坐标为:$(0, 0)$。
数学(理)高考二轮复习:专题五第二讲《椭圆、双曲线、抛物线的定义、方程与性质》课件(共46张PPT)
a2+b2=25
a2=20
依题意1=ba×2
,解得b2=5 ,∴双曲线 C 的方程为
2x02 -y52=1.
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短 限时规范训练 上页 下页
试题
通解 优解
考点一
考点二
考点三
2.设 F1,F2 分别为椭圆x42+y2=1 的左、右焦点,点 P 在椭圆上,
第二讲 椭圆、双曲线、抛物线的定义、方程与性质 课前自主诊断 课堂对点补短
考点三 直线与椭圆、双曲线、抛物线的位置关系
限时规范训练 上页 下页
试题
解析
考点一 考点二
考点三
6.(2016·高考全国Ⅰ卷)设圆 x2+y2+2x-15=0 的圆心为 A,直 线 l 过点 B(1,0)且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E. (1)证明|EA|+|EB|为定值,并写出点 E 的轨迹方程; (2)设点 E 的轨迹为曲线 C1,直线 l 交 C1 于 M,N 两点,过 B 且 与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积 的取值范围.
10,点 P(2,1)在 C 的一条渐近线上,则 C 的方程为( A )
A.2x02 -y52=1
B.x52-2y02 =1
C.8x02-2y02 =1
D.2x02-8y02 =1
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短
限时规范训练 上页 下页
试题
解析
考点一 考点二 考点三
长即可表示出面积,解方程求 b 即可. 由题意知双曲线的渐近线方程为 y=±b2x,圆的方程为 x2+y2=4,
最新-2021届高考数学 专题六第2讲 椭圆、双曲线、抛物线复习课件 理 精品
可得 a2=5b2,c2=a2+b2=6b2,e=ac=
30 5.
(2)联立yx=2-x5-y2c=,5b2, 得 4x2-10cx+35b2=0.
设 A(x1,y1),B(x2,y2),则xx11+x2=x2=3545b2c2.,
①
设O→C=(x3,y3),O→C=λO→A+O→B,
即xy33==λλyx11++yx22., 又 C 为双曲线上一点,即 x32 5 y32 5b2 ,
3.(2011·山东)已知双曲线ax22-by22=1(a>0,b>0)的两条渐近线均 和圆 C:x2+y2-6x+5=0 相切,且双曲线的右焦点为圆 C
的圆心,则该双曲线的方程为
()
A.x52-y42=1 C.x32-y62=1
B .x42-y52=1 D.x62-y32=1
解析 ∵双曲线ax22-by22=1 的渐近线方程为 y=±bax, 圆 C 的标准方程为(x-3)2+y2=4,
又|BC|=2|BF|,所以|BC|=2|BM|.
由 BM∥AQ 得,|AC|=2|AQ|=6,
|CF|=3. ∴|NF|=12|CF|=32. 即 p=32.抛物线方程为 y2=3x. 答案 (1)B (2)y2=3x
二、圆锥曲线的方程及应用 例 2 (2010·天津) 已知椭圆xa22+by22=1(a>b>0)的离心率 e=
=-21(+2-4k82k2)+1+6k4k2(1+4k4k2+1+6k4k2)=4(16(k14++41k52k)22-1)=4
整理得
7k2=2,故
k=±
714.所以
y0=±2
14 5.
综上,y0=±2
2或
y0=±2
14 5.
高考数学复习重难点三种抛物线解题方法(核心考点讲与练)
重难点14三种抛物线解题方法(核心考点讲与练)能力拓展题型一:定义法求焦半径一、单选题1.(2022·全国·模拟预测(文))对于正数a ,p ,抛物线()24y a px -=的焦点为1F ,抛物线24y x =-的焦点为2F ,线段12F F 与两个抛物线的交点分别为P ,Q .若123F F =,1PQ =,则22a p +的值为()A .6B .254C .7D .2742.(2022·湖北·模拟预测)已知抛物线C 的焦点为F ,点,A B 在抛物线上,过线段AB 的中点M 作抛物线C 的准线的垂线,垂足为N ,以AB 为直径的圆过点F ,则MNAB的最大值为()A .12B C .2D .13.(2022·广东佛山·模拟预测)已知抛物线C :()220y px p =>的焦点为F ,过焦点且斜率为的直线l 与抛物线C 交于A ,B (A 在B 的上方)两点,若AF BF λ=,则λ的值为()A BC .2D4.(2022·安徽·巢湖市第一中学模拟预测(文))已知抛物线C :()220y px p =>的焦点为F ,Q 为C 上一点,M 为C 的准线l 上一点且//QM x 轴.若O 为坐标原点,P 在x 轴上,且在点F 的右侧,4OP =,QF QP =,120MQP ∠=︒,则准线l 的方程为()A .165x =-B .25x =-C .45x =-D .85x =-二、多选题5.(2022·全国·模拟预测)已知抛物线24y x =,焦点为F ,直线l 与抛物线交于A ,B 两点,则下列选项正确的是()A .当直线l 过焦点F 时,以AF 为直径的圆与y 轴相切B .若线段AB 中点的纵坐标为2,则直线AB 的斜率为1C .若OA OB ⊥,则弦长AB 最小值为8D .当直线l 过焦点F 且斜率为2时,AB ,AF ,BF 成等差数列6.(2022·福建泉州·模拟预测)已知A (a ,0),M (3,-2),点P 在抛物线24y x =上,则()A .当1a =时,PA 最小值为1B .当3a =时,PA 的最小值为3C .当1a =时,PA PM +的最小值为4D .当3a =时,PA PM -的最大值为27.(2022·全国·模拟预测)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是()A .E 的准线方程为116y =-B .AB 的最大值为6C .若2AF FB = ,则直线AB 的方程为14y x =±+D .若OA OB ⊥,则AOB 面积的最小值为168.(2022·广东佛山·模拟预测)已知直线l :2p y k x ⎛⎫=- ⎪⎝⎭与抛物线C :()220y px p =>相交于A ,B 两点,点A 在x 轴上方,点()1,1M --是抛物线C 的准线与以AB 为直径的圆的公共点,则下列结论正确的是()A .2p =B .2k =-C .MF AB ⊥D .25FA FB =9.(2022·重庆一中高三阶段练习)已知抛物线24y x =的焦点为F ,过点F 的直线交该抛物线于()11,A x y ,()22,B x y 两点,点T (-1,0),则下列结论正确的是()A .124y y =-B .111AF BF+=C .若三角形TAB 的面积为S ,则S 的最小值为D .若线段AT 中点为Q ,且2AT BQ =,则4AF BF -=三、解答题10.(2022·辽宁·沈阳二中模拟预测)曲线C 10x +=,点D 的坐标()1,0,点P 的坐标()1,2.(1)设E 是曲线C 上的点,且E 到D 的距离等于4,求E 的坐标:(2)设A ,B 是曲线C 上横坐标不等于1的两个不同的动点,直线PA ,PB 与y 轴分别交于M 、N 两点,线段MN 的垂直平分线经过点P .证明;直线AB 的斜率为定值,并求出此值.11.(2022·河南焦作·三模(理))已知抛物线2:2(0)C y px p =>的焦点为F ,直线8y =与抛物线C 交于点P ,且5||2PF p =.(1)求抛物线C 的方程;(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,求PQ 的最小值.12.(2022·贵州毕节·三模(理))已知抛物线()2:20C x py p =>的焦点为F ,且点F 与()22:21M x y +-= 上点的距离的最大值为114.(1)求p ;(2)当01p <≤时,设B ,D ,E 是抛物线C 上的三个点,若直线BD ,BE 均与M 相切,求证:直线DE 与M 相切.题型二:定义转换法求距离的最值问题一、单选题1.(2022·重庆巴蜀中学高三阶段练习)已知定点(3,3)M -,点P 为拋物线2:4C x y =上一动点,P 到x 轴的距离为d ,则||d PM +的最小值为()A .4B .5C1D2.(2022·青海·大通回族土族自治县教学研究室二模(文))已知抛物线28y x =的焦点为F ,过F 的直线l 与抛物线相交于A ,B 两点,则9AF BF-的最小值为()A .1B .32C .52D .63.(2022·河北张家口·三模)已知点P 是抛物线24y x =上的动点,过点P 向y 轴作垂线,垂足记为N ,动点M 满足||||PM PN +最小值为3,则点M 的轨迹长度为()A .163πB .8πC .163π+D .8π+4.(2022·全国·模拟预测)已知点P 为抛物线2:4C y x =上的动点,点F 为抛物线的焦点,点()3,2A ,设点Q 为以点P 为圆心,PF 为半径的圆上的动点,QA 的最大值为Q d ,当点P 在抛物线上运动时,则Q d 的最小值为()A .B C .4D .55.(2022·河南·西平县高级中学模拟预测(理))已知M 是抛物线212x y =上一点,F 为其焦点,()3,6C ,则MF MC +的最小值为()A .10B .9C .8D .76.(2022·全国·高三专题练习)已知抛物线22(0)y px p =>的焦点为F ,过F 且倾斜角为4π的直线l 与抛物线相交于A ,B 两点,||8AB =,过A ,B 两点分别作抛物线的切线,交于点Q .下列说法正确的是()A .QA QB⊥B .AOB (O 为坐标原点)的面积为C .112||||AF BF +=D .若()1,1M ,P 是抛物线上一动点,则||||PM PF +的最小值为52二、多选题7.(2022·河北·模拟预测)设抛物线2:8C x y =的焦点为F ,准线为l ,()00,P x y 为C 上一动点,(2,1)A ,则下列结论正确的是()A .当02x =时,抛物线C 在点P 处的切线方程为220x y --=B .当04x =时,||PF 的值为6C .||||PA PF +的最小值为3D .||||PA PF -8.(2022·湖北·宜城市第一中学高三阶段练习)已知F 是抛物线24y x =的焦点,P 是抛物线24y x =上一动点,Q 是()()22:411C x y -+-= 上一动点,则下列说法正确的有()A .PF的最小值为1B .QF C .PF PQ +的最小值为4D .PF PQ +19.(2022·福建福州·三模)已知抛物线()220y px p =>的准线为l ,点M 在抛物线上,以M 为圆心的圆与l 相切于点N ,点()5,0A 与抛物线的焦点F 不重合,且MN MA =,120NMA ∠=︒,则()A .圆M 的半径是4B .圆M 与直线1y =-相切C .抛物线上的点P 到点A 的距离的最小值为4D .抛物线上的点P 到点A ,F 的距离之和的最小值为4三、填空题10.(2021·山东·青岛西海岸新区第一高级中学高三期末)已知抛物线()2:20C y px p =>的焦点为F ,点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线C 上一点,圆M 与线段MF 相交于点A ,且被直线2px=MA ,若2MA AF=,则AF =___________.四、解答题11.(2022·浙江·高三专题练习)已知椭圆22122:1(0)x y C a b a b+=>>,经过拋物线22:2(0)C y px p =>的焦点F 的直线1l 与2C 交于,P Q 两点,2C 在点P 处的切线2l 交1C 于,A B 两点,如图.(1)当直线PF 垂直x 轴时,2PF =,求2C 的准线方程;(2)若三角形ABQ 的重心G 在x 轴上,且2a b <,求PF QF的取值范围.题型三:定义法求焦点弦一、单选题1.(2022·河北石家庄·高三阶段练习)过抛物线2:4C y x =的焦点作直线交抛物线于A ,B 两点,若A 、B 两点横坐标的等差中项为2,则||AB =)A .8B .6C .D .42.(2022·全国·高三专题练习)已知抛物线2:4C y x =的焦点为F ,过点F 分别作两条直线12,l l ,直线1l 与抛物线C 交于A 、B 两点,直线2l 与抛物线C 交于D 、E 两点,若1l 与2l 的斜率的平方和为2,则AB DE +的最小值为()A .24B .20C .16D .12二、多选题3.(2022·全国·高三专题练习)(多选题)已知抛物线24y x =,过焦点F 作一直线l 交抛物线于()11,A x y ,()22,B x y 两点,以下结论正确的有()A .AB 没有最大值也没有最小值B .122AB x x =++C .124y y =-D .111FA FB+=4.(2022·全国·高三专题练习)(多选题)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y 、()22,Q x y ,点P 在l 上的射影为1P ,则()A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条三、填空题5.(2022·全国·模拟预测)抛物线2:2C y px =的焦点F 恰好是圆()2211x y -+=的圆心,过点F 且倾斜角为45︒的直线l 与C 交于不同的A ,B 两点,则AB =______.6.(2022·辽宁·模拟预测)已知抛物线2:8C y x =的焦点为F ,直线l 过点F 与C 交于A ,B 两点,与C 的准线交于点P ,若3AP BP =,则l 的斜率为______.四、解答题7.(2022·吉林长春·模拟预测(理))已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B 两点,求FA FB FC ⋅⋅的取值范围.8.(2022·全国·模拟预测)直线l :kx -y -k =0过抛物线C :()220y px p =>的焦点F ,且与C 交于不同的两点A ,B .(1)若AF ,BF ,AB 成等差数列,求实数k 的值;(2)试判断在x 轴上存在多少个点()(),00T t t >,总在以AB 为直径的圆上.高考一轮复习专项。
2020届高考数学大二轮复习冲刺经典专题第二编讲专题专题五解析几何第2讲椭圆、双曲线、抛物线课件文
∴∠F1PF2=60°,由余弦定理可得 4c2=16a2+4a2-2·4a·2a·cos60°, ∴c= 3a,∴b= c2-a2= 2a. ∴ba= 2,∴双曲线 C 的渐近线方程为 y=± 2x.故选 A.
(2)已知 F1,F2 为双曲线ax22-by22=1(a>0,b>0)的左、右焦点,以 F1F2 为直
第二编 讲专题 专题五 解析几何
第2讲 椭圆、双曲线、抛物线
「考情研析」1.考查圆锥曲线的定义、方程及几何性质,特别是椭圆、 双曲线的离心率和双曲线的渐近线. 2.以解答题的形式考查直线与圆锥曲 线的位置关系(弦长、中点等).
1
PART ONE
核心知识回顾
1.圆锥曲线的定义式 (1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|); (2)双曲线:||PF1|-|PF2||=2a(2a<|F1F2|); (3)抛物线:|PF|=|PM|,点 F 不在直线 l 上,PM⊥l 于 M(l 为抛物线的准 线方程).
A.y=± 2x
B.y=±
2 2x
C.y=±2x D.y=±2 2x
答案 A
解析 由题意得,|PF1|=2|PF2|,|PF1|-|PF2|=2a,∴|PF1|=4a,|PF2|= 2a,
由于 P,M 关于原点对称,F1,F2 关于原点对称,∴线段 PM,F1F2 互 相平分,四边形 PF1MF2 为平行四边形,PF1∥MF2,∵∠MF2N=60°,
D. 10
答案 B
解析 设双曲线的右焦点为 F′,取 MN 的中点 P,连接 F′P,F′M, F′N,如图所示,由F→N=3F→M,可知|MF|=|MP|=|NP|.又 O 为 FF′的中点, 可知 OM∥PF′.∵OM⊥FN,∴PF′⊥FN.∴PF′为线段 MN 的垂直平分线.