极坐标和参数方程基础知识及重点题型

极坐标和参数方程基础知识及重点题型
极坐标和参数方程基础知识及重点题型

高中数学回归课本校本教材24

(一)基础知识 参数极坐标

1.极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。

2.常见的曲线的极坐标方程

(1)直线过点M 00(,)ρθ,倾斜角为α常见的等量关系:

正弦定理

sin sin OP OM

OMP OPM

=∠∠,0OMP παθ∠=-+OPM αθ∠=-;

(2)圆心P 00(,)ρθ半径为R 的极坐标方程的等量关系:勾股定理或余弦定理;

(3)圆锥曲线极坐标:1cos ep

e ρθ

=

-,当1e >时,方程表示双曲线;当1e =时,方程表示抛物线;当01

e <<时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。极坐标方程3

24cos ρθ

=-表示的曲线

是 双曲线

3.参数方程:(1)圆222()()x a x b r -+-=的参数方程:cos ,sin x a r x b r θθ-=-= (2)椭圆22

221x y a b

+=的参数方程:cos ,sin x a x b θθ==

(3)直线过点M 00(,)x y ,倾斜角为α的参数方程:00tan y y x x α-=-即00

cos sin x x y y t θθ

--==, 即00cos sin x x t y y t α

α

=+??

=+?注:0cos x x t θ-=

,0

sin y y t

θ-=据锐角三角函数定义,T 几何意义是有向线段MP 的数量00000()00.

t l M M x y M M M M M M t M M t ><其中表示直线上以定点为起点,任意一点,为终点的有向线段的数量,当点在的上方时,;当点在的下方时,;

如:将参数方程22

2sin (sin x y θθθ

?=+?

?=??为参数)化为普通方程为2(23)y x x =-≤≤ 将2sin y θ=代入22sin x θ=+即可,但是20sin 1θ≤≤;

4. 极坐标和直角坐标互化公式:cos sin x y ρθρθ=??=? 或2

2

2

tan (0)x

y y

x x

ρθ?

=+?

?

=≠??

,θ的象限由点(x,y)所在象限确定. (1)它们互化的条件则是:极点与原点重合,极轴与x 轴正半轴重合.

(2)将点(,)ρθ变成直角坐标(cos ,sin )ρθρθ,也可以根据几何意义和三角函数的定义获得。 5. 极坐标的几个注意点:

(1)极坐标和直角坐标转化的必要条件是具有共同的坐标原点(极点) 如:已知圆C 的参数方程为32cos 2sin x y θ

θ?=??=??

(θ

为参数),若P 是圆C 与y 轴正半轴的交点,以圆心C 为极点,x 轴的正半轴为极轴建立极坐标系,求过点P 的圆C 的切线

的极坐标方程。5cos()26

π

ρθ-

= 如:已知抛物线2

4y x =,以焦点F 为极点,x 轴的正半轴为极轴建立极坐标系,求抛物线的极坐标方程。即2

1cos ρθ

=

-。

(2)对极坐标中的极径和参数方程中的参数的几何意义认识不足 ()()22

2420()21

x pt y px p t y pt y t x t ?==>?

=?=抛物线的参数方程为:为参数.由于,因此参数的几何意义是抛物线上的点与抛物线的顶点连线的斜率的倒数.

如:已知椭圆的长轴长为6,焦距1242F F =,过椭圆左焦点F 1作一直线,交椭圆于两点M 、N ,设21(0)F FM ααπ∠=≤<,当α为何值时,MN 与椭圆短轴长相等?56

6

π

π

α=

(3)直角坐标和极坐标一般不要混合使用:如:已知某曲线的极坐标方程为222sin()204

π

ρρθ-+-=。

(1)将上述曲线方程化为普通方程;(2)若点(,)P x y 是该曲线上任意点,求x y +的取值围。[222,222]-+ (二)基本计算

1.求点的极坐标:有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;如:点M 的直角坐标是(1,3)-,则点M 的极坐标为 2(2,

)3π 提示:2(2,2),3

k k Z π

π+∈都是点M 的极坐标. 2. 求曲线轨迹的方程步骤: (1)建立坐标系;(2)在曲线上取一点P (,)ρθ;(3)写出等式;(4)根据,ρθ几何意义用,ρθ表示上述等式,并化简(注意:,x y ρθ≠≠);(5)验证。如:长为2a 的线段,其端点在Ox 轴和Oy 轴正方向上滑动,从原点作这条线段的垂线,垂足为M ,求点M 的轨迹的极坐标方程(Ox 轴为极轴),再化为直角坐标方程.

解:设点M 的极坐标为(,)ρθ,则OBM AOM θ∠=∠=,且||2sin OA a θ=,||cos 2sin cos sin2OA a a ρθθθθ===,∴点M

的轨迹的极坐标方程为sin 2(0)2a π

ρθθ=<<.由sin2a ρθ=可得322sin cos a ρρθθ=,

∴3

222

()2x y axy +=其直角坐标方程为3222()2(0,0)x y axy x y +=>>. 3.求轨迹方程的常用方法:

⑴直接法:直接通过建立x 、y 之间的关系,构成(,)0F x y =,是求轨迹最基本的方法. ⑵待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回方程

⑶代入法(相关点法或转移法). 如:从极点作圆2cos a ρθ=的弦,求各弦中点的轨迹方程.解:设所求曲线上的动点M 的极坐标为

(,)ρθ,圆2cos a ρθ=上的动点的极坐标为11(,)ρθ由题设可知,1

12θθρρ=??=?,将其代入圆的方程得:cos ()22a ππ

ρθθ=-≤≤. ⑷定义法:如果能够确定动点轨迹满足某已知曲线定义,则可由曲线定义直接写出方程.

⑸交轨法(参数法):当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.

4.参数和极径的几何意义的运用:ρ表示OM 的长度;T 几何意义是有向线段MP 的数量;如:已知过点(9,3)P 的直线l 与x 轴正半轴、

y 轴正半轴分别交于A B 两点,则AB 最小值为

83提示:设9cos 3sin x t y t α

α

=+???

=+??倾斜角为α,则12AB t t =-或

AB=12||||t t +,1293,cos t t α=-=-

,则93()cos l αα=-+,29sin 3cos ()cos l αααα-'=-+ 339sin 3cos αα

--=令()0l α'=,333tan (3)α=-

=-所以,tan ,1503

αα=-=,min 93

()(150)83cos150l l α==-+=注意:本题可以取倾斜角的补角为α 如 过抛物线28y x =的焦点F 作倾斜角为4

π

的直线,交抛物线于,A B 两点,求线段AB 的长度.解:对此抛物线有1,4e p ==,所以抛物线的极坐标方程为41cos ρθ=

-,,A B 两点的极坐标分别为4π和54

π

,||4(1cos 4)4(22)FA π=-=+, ||4(1cos54)4(22)FB π=-=-,

∴||||||16AB FA FB =+=.∴线段AB 的长度为16.

5.参数方程的应用----求最值: 如:已知点(,)P x y 是圆222x y y +=上的动点,(1)求2x y +的取值围;(2)若0x y a ++≥恒成立,数a 的取值围。[51,51]-++.(2)cos sin 10x y a a θθ++=+++≥ [21,)--+∞.

如:在椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值.解:设椭圆的参数方程为4cos 23sin x y θ

θ

=???=??,4cos 43sin 12

5

d θθ--=

4545cos 3sin 32cos()3553

π

θθθ=

--=+- 当cos()13πθ+=,即53πθ=

时,min 45d =,此时所求点为(2,3)-.

C.选修4 – 4 参数方程与极坐标

已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合。若曲线C 1的方程为28sin 15ρρθ=-,

曲线C 2

的方程为,(x y ααα

?=??=??为参数)

。 (1)将C 1的方程化为直角坐标方程; (2)若C 2上的点Q 对应的参数为3=4

π

α,P 为C 1上的动点,求PQ 的最小值。 提示:(1)228150x y y +-+=. (2)当34

απ

=

时,得(2,1)Q -,点Q 到1C

所以PQ

1.

在极坐标系中,求经过三点O (0,0),A (2,2π),B

(4

π

)的圆的极坐标方程.

解:设(,)P ρθ是所求圆上的任意一点,则cos()4OP OB θπ=-,

故所求的圆的极坐标方程为)4

ρθπ

=-.

已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若直线l 的极坐标方程为

23)4

sin(=-π

θρ.

(1)把直线l 的极坐标方程化为直角坐标系方程;

(2)已知P 为椭圆1916:22=+y x C 上一点(已知曲线C 的参数方程为()4cos 3sin x y ααα=??=?

,为参数,

)求P 到直线l 的距离的最大值.

解:(1)直线l

的极坐标方程sin 4ρθπ?

?-= ??

?

sin cos θθ-=

即sin cos 6ρθρθ-=,所以直线l 的直角坐标方程为60x y -+=;

(2)P 为椭圆22

1169

x y C +=:上一点,设(4cos 3sin )P αα,,其中[02)α∈π,,

则P 到直线l

的距离d =

4cos 5?= 所以当cos()1α?+=时,d

(图)

在极坐标系中,圆C

的方程为)4

ρθπ

=+,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,

直线l 的参数方程为,

12x t y t

=??

=+?(t 为参数),判断直线l 和圆C 的位置关系.

解:消去参数t ,得直线l 的直角坐标方程为21y x =+;

)4

π

ρθ=+

即2(sin cos )ρθθ=+,

两边同乘以ρ得22(sin cos )ρρθρθ=+,得⊙C 的直角坐标方程为:22(1)(1)2x x -+-=, 圆心C 到直线l

的距离d =

=

<,所以直线l 和⊙C 相交. 已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是32,545x t y t

?=-+???=?(t 为参数). (1)将曲线C 的极坐标方程化为直角坐标方程;

(2)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值. 解:(1)曲线C 的极坐标方程可化为22sin ρρθ= 又222,cos ,sin x y x y ρρθρθ+===,

所以曲线C 的直角坐标方程为2220x y y +-=

(2)将直线l 的参数方程化为直角坐标方程,得4(2)3y x =--

令0y =,得2x =,即M 点的坐标为(2,0).

又曲线C 为圆,圆C 的圆心坐标为(1,0),半径1r =

,则MC =

所以1MN MC r +=≤

3.

1OP

OQ

=

的距离为

(

)()()0

00000 10.1321121sin() 2.(,),(,).4.x A l x y A l d m l P Q m ρρρπρρθρθρθθθθθ-+==

=+=?==? -=?? =? ==?:以极点为原点,极轴为轴的正半轴,建立直角坐标系,则点的直角坐标为直线的直角坐标方解程为因为到直线的距离,由得直线的方程为设所,则析以①

()()()123123124sin (

)4

2

34cos (2)4

224(0)2

12(4)2,0(0)2

42()t (a 2010)n Ox C C C C C C M N C C A B O AB MN π

π

ρθθππ

π

ρθθθππ

ρθπππ

θαρα=≤≤

=≤≤<≤=≤≤

=≥<<

如图,在极坐标系中,已知曲线::;

:或;:.

求由曲线,,围成的区域的面积;

设,,,射线,与

曲线,分别交于,不同于极点两点.若线段的中点恰好落在直线上变,浙江 卷

求式训练α的值.

0220001()sin()221131

()().()881642.sin()244

1si 4n(4

4

)2P l r Q x y Q ππ

πρθθθρπ

ρθ++--===-=-因为点,在直线上,所以②将①代入②,得,

即.这就是点的轨迹方化为直角坐标方程为因此点的轨迹是以,为圆心,为程.

半径的圆.

()()22222111

122 2.22(2)4422

11

4246 4.

42

2()2sin 2cos 2

OSP A B S S S AB G ONG πππππππρρ

ρα?ραα=??-?=-=??--==?+??-=-+∠===+弓形阴影部分由已知,所以,

故所求面积设的中点解为,,,由题意知析:,,

2sin cos sin sin 5

522sin 2cos sin()sin sin 2

sin cos sin()sin 2cos sin 3sin cos 0sin 0tan 3.

ON OG OGN OGN ONG ??αα

πα??

?ααα?ααααααα=

=?=∠∠+=--+==++-=≠=在中,,

即,所以,化简得,又因为,所以

()()(6cos 3sin )()6,00,3C C G x y A B θθ:由动点在椭圆上运动,可设的坐标为,,点的坐标为,.

依题意可知,,由重心坐标解析公式可知,

()2222

606cos 222cos cos 3

2

033sin 1sin 1sin 3(2)114

x x y y x y θθθθθθ++?

-==+??=????++??-===+???

-++-=①,由此得,②①②,得即为所求.

(极坐标与参数方程)教学案( 4 )

高二数学 (极坐标与参数方程)教学案( 4 ) 常见曲线的极坐标方程 一、课前自主预习 1.将下列极坐标方程化为直角坐标方程 ⑴5=ρ, ⑵sin 2ρθ=, ⑶πθ4 3 =, 2.写出下列特殊图形的直线方程 图3 图1 _________________ _________________ ____________________ 图5 图4 ______________ ________________ 3.写出下列特殊图形圆的极坐标方程 . 图3 图2 图1 O ____________________ ________________ ________________________ 图5 图4 _____________________ ____________________

4. 若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:_____________ 若圆心为00(,)M ρθ,半径为r 的圆方程为:__________________________________ 二、课堂合作探究 例1:按下列条件写出它的极坐标方程: ⑴求过极点,倾角为π/4的射线的极坐标方程.⑵求过极点, 倾角为π/4的直线的极坐标方程.⑶求过极点及??? ??6, 6πA 的直线方程.⑷求过点?? ? ??6,6πA 平行于极轴的直线⑸求过点?? ? ??6,6πA 且倾斜角为32π的直线方程.. 例2、:按下列条件写出圆的极坐标方程: (1)以()0,3A 为圆心,且过极点的圆(2)以?? ? ??2, 8πB 为圆心,且过极点的圆 (3)以极点O 与点()0,4-C 连接的线段为直径的圆(4)圆心在极轴上,且过极点与点??? ? ? 6,32πD 的圆 例3、自极点O 作射线与直线4=θρsos 相交于点M,在OM 上取一点P,使得OM ·OP=12,求点P 的轨迹方程.

极坐标与参数方程题型三:最值问题

极坐标与参数方程题型二:最值问题 13.在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1) 求曲线的普通方程与曲线的直角坐标方程; (2) 设为曲线上的动点,求点到上点的距离的最小值,并求此时点的坐标. 14、已知曲线C :x 24+y 29=1,直线l :? ????x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程、直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值. 15、以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点()y x P ,在该圆上,求y x +的最大值和最小值.

16、已知曲线C 的极坐标方程θρsin 2=,直线l 的参数方程)(22223为参数t t y t x ??? ????=+=, 以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系; (1)求曲线l C 与直线的直角坐标方程. (2)若M 、N 分别为曲线l C 与直线上的两个动点,求||MN 的最小值. 17、已知直线l 的参数方程为1212 x t y ?=????=+??(t 为参数),曲线C 的参数方程为 2cos sin x y θθ =+??=?(θ为参数)。(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4, )3π,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求点Q 到直线l 的距离的最小值与最大值。 18、以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为???=+=α αsin cos 1t y t x (t 为参数,πα<<0),曲线C 的极坐标方程为θθρcos 4sin 2=. (Ⅰ)求曲线C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求AB 的最小值.

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos=

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

参数方程和极坐标方程知识点归纳

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩 变换。 2、极坐标系的概念 在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与 ),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出: ) 0(ta ≠= x x y θ? ?? 图1

极坐标与参数方程 经典练习题含答案详解

一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.曲线25()12x t t y t =-+?? =-?为参数与坐标轴的交点是( ). A .21(0,)(,0)5 2 、 B .11(0,)(,0)5 2 、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9 、 2.把方程1xy =化为以t 参数的参数方程是( ). A .1 21 2x t y t -?=???=? B .sin 1sin x t y t =???=?? C .cos 1cos x t y t =???=?? D .tan 1tan x t y t =???=?? 3.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ). A . 23 B .23- C .32 D .32 - 4.点(1,2)在圆18cos 8sin x y θ θ=-+??=? 的( ). A .内部 B .外部 C .圆上 D .与θ的值有关 5.参数方程为1()2 x t t t y ?=+? ??=?为参数表示的曲线是( ). A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆???+=+-=θθsin 24cos 23y x 与? ??==θθ sin 3cos 3y x 的位置关系是( ). A .内切 B .外切 C .相离 D .内含 7 .与参数方程为)x t y ?=?? =??为参数等价的普通方程为( ). A .22 14 y x + = B .22 1(01)4y x x +=≤≤ C .22 1(02)4y x y +=≤≤ D .22 1(01,02)4 y x x y +=≤≤≤≤

高中数学选修4-4-极坐标与参数方程-知识点与题型

一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( ) A . B . C . D . 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标. 题型二 极坐标方程的应用 由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.

极坐标与参数方程含答案(经典39题)(整理版)

高考极坐标参数方程(经典39题) 1.在极坐标系中,以点(2,)2 C π 为圆心,半径为3的圆C 与直线:() 3 l R π θρ= ∈交于,A B 两点. (1)求圆C 及直线l 的普通方程. (2)求弦长AB . 2.在极坐标系中,曲线2 :sin 2cos L ρθθ=,过点A (5,α) (α为锐角且3tan 4α= )作平行于()4 R π θρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直 角坐标系,写出曲线L 和直线l 的普通方程; (Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2 , 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以 极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值. 4.已知直线l 的参数方程是)(24222 2 是参数t t y t x ??? ??? ?+== ,圆C 的极坐标方程为 )4 cos(2π θρ+=. (1)求圆心C 的直角坐标; (2)由直线l 上的点向圆C 引切线,求切线长的最小值.

5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3?? ?=+=.在极坐标 系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,求实数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为 (2, ) 3π ,半径r=1,P 在圆C 上运 动。 (I )求圆C 的极坐标方程; (II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。 7.在极坐标系中,极点为坐标原点O ,已知圆C 的圆心坐标为 ) 4,2(C π,半径为2,直线l 的极坐标方程为22)4sin(= θ+πρ. (1)求圆C 的极坐标方程; (2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长. 8.平面直角坐标系中,将曲线? ? ?==ααsin cos 4y x (α为参数)上的每一点纵坐标不变, 横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度.

全参数方程与极坐标(精华版)

参数方程与极坐标 参数方程知识回顾: 一、 定义:在取定的坐标系中,如果曲线上任意一点的坐标 x 、y 都是某个参数t 的函数, x f (t ) 即 y f (t ) ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点 M ( x , y )都在这条 曲线上,那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数t 叫做参变数,简称参数. 二、 二次曲线的参数方程 1、圆的参数方程: 中心在(x o , y o ),半径等于r 的圆: { x r cos 特殊地,当圆心是原点时,、 y r si n 注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵 坐标与参数间的关系。 Eg1 :已知点P (x , y )是圆x 2+y 2-6x-4y+12=0 上的动点,求: (1 ) x 2+y 2的最值;(2 ) x+y 的最值;(3 )点P 到直线x+y-1=0 的距离d 的最值。 Eg2 :将下列参数方程化为普通方程 总结:参数方程化为普通方程步骤: (1 )消参(2 )求定义域 2、椭圆的参数方程: 中心在原点,焦点在 x 轴上的椭圆: x x 0 rcos 〔y y o rsin (为参数, 的几何意义为圆心角) (1 ) x=2+3cos y=3sin 1 (|3) x=t+ 一 t Y 2 1 I y=t 2+ ” x=s in y=cos

4、抛物线的参数方程: 顶点在原点,焦点在 x 轴正半轴上的抛物线: x 2pt 2 y 2pt (t 为参数,p > 0 , t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程 x a cos y bsin (为参数, 的几何意义是离心角,如图角 AON 是离心角) 注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆, 点的轨迹是椭圆,中心在(x o ,y o )椭圆的参数方程: X 。 a cos y bsi n x Eg :求椭圆 36 y =1上的点到 M (2,0) 20 的最小值。 3、双曲线的参数方程: 中心在原点,焦点在 x 轴上的双曲线: a sec bta n 为参数,代表离心角) ,中心在 (x o ,y o ),焦点在x 轴上的双曲线: x x 0 asec y y 0 bta n 2 2

极坐标参数方程高考练习含答案非常好的练习题

极坐标与参数方程高考精练(经典39题) 1.在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3 l R πθρ=∈交于,A B 两点.(1)求圆C 及直线l 的普通方程.(2)求弦长AB . 2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α= )作平行于()4R π θρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标 系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4 sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值. 4.已知直线l 的参数方程是)(242222是参数t t y t x ???????+==,圆C 的极坐标方程为)4cos(2π θρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3???=+=.在极坐标系(与直角 坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方 程为θρcos 4=.

(Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,求实数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π ,半径r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极 点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方 程。 7.在极坐标系中,极点为坐标原点O ,已知圆C 的圆心坐标为 )4,2(C π,半径为2,直线l 的极坐标方程为22)4sin(=θ+πρ.(1)求圆C 的极坐标方程;(2)若圆C 和直线l 相交 于A ,B 两点,求线段AB 的长. 8.平面直角坐标系中,将曲线???==ααsin cos 4y x (α为参数)上的每一点纵坐标不变,横坐标变 为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍 得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方 程为θρsin 4=,求1C 和2C 公共弦的长度. 9.在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是θρcos 4=,直线l 的参数方程是??? ????=+-=. 21, 233t y t x (t 为参数)。求极点在直线l 上的射影点P 的极坐标;若M 、N 分别为曲线C 、直线l 上的动点,求MN 的最小值。

极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳 题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下: {22222 cos sin tan (0x y x y x y y x x ραρα ρρθ==?=++??=≠+?? ???????→ ←???????或(1)极坐标方程直角坐标方程 2 2 1θθ=????????????→←????????????消参(代入法、加减法、sin +cos 等)圆、椭圆、直线的参数方程 (2)参数方程直角坐标方程 ??→??→←??←?? (3)参数方程直角坐标方程(普通方程)极坐标方程 1、已知直线l 的参数方程为 11233x t y t ? =+? ? ?=? (t 为参数) 以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的方程为2sin 3cos 0 θρθ=. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)写出直线 l 与曲线C 交点的一个极坐标. 题型二:三个常用的参数方程及其应用 (1)圆 222 ()()x a y b r -+-=的参数方程是:

cos sin ()x a r y b r θ θθ =+?? =+?为参数 (2)椭圆 22 221(0,0,)x y a b a b a b +=>>≠的参数方程是: cos ,()sin x a y b θ θθ=?? =? 为参数 (3)过定点0 (,)P x y 倾斜角为α的直线l 的标准参数方程为: 00cos ,()sin x x t t y y t α α =+?? =+?为参数 对(3)注意: P 点所对应的参数为0 t =,记直线 l 上任意两点,A B 所对应的参数分别为1 2 ,t t ,则① 12 AB t t =-,② 1212121212,0 ,0 t t t t PA PA t t t t t t ?+?>?+=+=? -? )以坐标原点O 为极点, 以x 轴正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为cos 24 πρθ??+=- ?? ? (Ⅰ)设P 是曲线C 上的一个动点,当2a =时,求点P 到直线l 的距离的最小值;

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总 1.在直角坐标系xoy 中,圆C 的参数方程1cos (sin x y ? ?? =+??=?为参数) .以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线l 的极坐标方程是 C 的交点为 O 、P ,与直线l 的交点为Q ,求线段PQ 的长. 解:(1)圆C 的普通方程是22(1)1x y -+=,又cos ,sin x y ρθρθ==; 所以圆C 的极坐标方程是2cos ρθ=. ---5分 (2)设11(,)ρθ为点P 的极坐标,则有 设22(,)ρθ为点Q 的极坐标,则有 由于12θθ=,所以,所以线段PQ 的长为2. 2.已知直线l 的参数方程为431x t a y t =-+??=-? (t 为参数),在直角坐标系xOy 中,以O 点为极 点, x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为 26sin 8 ρρθ-=-. (1)求圆M 的直角坐标方程; (2)若直线l 截圆M a 的值. 解:(1)∵2 222268(36si )n 81x y y x y ρρθ+--=-?=-?+-=, ∴圆M 的直角坐标方程为2 2 (3)1x y +-=;(5分)

(2)把直线l的参数方程 4 31 x t a y t =-+ ? ? =- ? (t为参数)化为普通方程得:34340 x y a +-+=, ∵直线l截圆M所得弦长 为,且圆M的圆心(0,3) M到直线l的距 离 |163|19 522 a d a - ===?=或 37 6 a=,∴ 37 6 a=或 9 2 a=.(10分)3.已知曲线C的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。 (1)求曲线c的极坐标方程 (2)若直线l的极坐标方程为 ρ (sinθ+cosθ)=1,求直线l被曲线c截得的弦长。 解:(1)∵曲线c的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数) ∴曲线c的普通方程为(x-2)2+(y-1)2=5 将? ? ? = = θ ρ θ ρ sin cos y x 代入并化简得: ρ =4cosθ+2sinθ 即曲线c的极坐标方程为 ρ =4cosθ+2sinθ (2)∵l的直角坐标方程为x+y-1=0 ∴圆心c到直线l的距离为d=2 2 =2∴弦长为22 5-=23 4.已知曲线C: 2 21 9 x y += ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 sin() 4 π ρθ-= (1)写出曲线C的参数方程,直线l的直角坐标方程; (2)设P是曲线C上任一点,求P到直线l的距离的最大值.

极坐标与参数方程题型及解题方法

Ⅰ复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立: ρθρ θy sin x cos = = 3、 参数方程{ cos sin x r y r θθ ==表示什么曲线? 4、 圆(x-a)2+(y-b)2=r2的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ. ρ和θ的值确定了,则P 点的位置就 确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么?

Ⅱ 题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化 (3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程2222 t t t t x t y --?=-? ?=+??(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()() 2 2 2222224t t t t x y ---=--+=-, 即有22 4y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为 2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B

最新极坐标参数方程题型归纳--7种

极坐标与参数方程(高考真题)题型归纳 一、极坐标方程与直角坐标方程的互化 1.(2015·广东理,14)已知直线l 的极坐标方程为2ρsin ????θ-π4=2,点A 的极坐标为A ????22,7π 4,则点A 到直线l 的距离为________. [立意与点拨] 本题考查极坐标与平面直角坐标的互化、点到直线的距离,属于容易题.解答本题先进行极直互化,再求距离. 二、参数方程与直角坐标方程的互化 【解析】椭圆方程为:14622=+y x ,因为1cos sin 2 2=+x x ,令???==α αcos 2sin 6y x ,则有 X+2y=αsin 6+αcos 4=()?α++sin 166,最大值22,最小值22- 三、根据条件求直线和圆的极坐标方程 四、求曲线的交点及交点距离 4.(2015·湖北高考)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为? ??x =t -1t , y =t + 1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________. 【解析】 直线l 的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x -y =0,曲线C 的参 数方程? ??x =t -1t ,y =t + 1t 两式经过平方相减,化为普通方程为y 2-x 2=4,联立? ??? ?3x -y =0,y 2-x 2=4 解得???x =-22,y =-322或? ??x =2 2, y =32 2 . 所以点A ????-22,-322,B ???? 22,322. 所以|AB |= ????-22-222+??? ?-322-3222=2 5.

参数方程和极坐标方程知识点归纳

参数方程和极坐标方程知 识点归纳 Prepared on 24 November 2020

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 2、极坐标系的概念 O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 设M 是平面内一点,极点O 与点M 的距离||OM 叫做点 M 的ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0 (∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θ ρ-与),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θ ρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ) (极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定 ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 (,)x y ,极坐标是(,)ρθ,从图中可以得出: 4、简单曲线的极坐标方程 ⑴圆的极坐标方程 ①以极点为圆心,a 为半径的圆的极坐标方程是 a ρ=;(如图1) ②以(,0)a )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =;(如图2) y O H O 图1 M (,)ρθ θ ρcos 2a =θ ρsin 2a =图4 θ ρsin 2a -=图5 θ ρcos 2a -=a =ρ图1 ) cos(2?θρ-=a 图6

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

(完整版)极坐标与参数方程专题复习

坐标系与参数方程 一、考试大纲解析: 1.坐标系 (1)理解坐标系的作用; (2)了解平面坐标系伸缩变换作用下图形的变化情况; (3)能在坐标系中用极坐标表示点的位置,理解在极坐标和平面之间坐标系表示点的位置的区别,能进行极坐标和直角坐标的互化; (4)能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标和直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义; 2.参数方程 (1)了解参数方程和参数方程的意义; (2)能选择适当的参数写出直线、圆、圆锥曲线的参数方程; (3)能用参数方程解决一些数学问题和实际的运用; 二、题型分布: 极坐标和参数方程是新课标考纲里的选考内容之一,在每年的高考试卷中,极坐标和参数方程都是放在选作题的一题中来考查。由于极坐标是新添的内容,考纲要求比较简单,所以在考试中一般不会有很难的题目。 三、知识点回顾 坐标系 1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简 称伸缩变换。 2.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。 如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

极坐标与参数方程习题

! 极坐标与参数方程习题 一、选择题 1.直线12+=x y 的参数方程是( ) A 、???+==1 22 2 t y t x (t 为参数) B 、???+=-=1412t y t x (t 为参数) C 、 ???-=-=121 t y t x (t 为参数) D 、?? ?+==1 sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( ) A .0 B .1 C .-2 D .8 3.已知??? ? ? -3,5πM ,下列所给出的不能表示点的坐标的是( ) . A 、?? ? ? ?- 3,5π B 、?? ? ? ?3 4, 5π C 、?? ? ? ?- 3 2,5π D 、?? ? ? ?- -35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线 对称的是( ) A .(-ρ,θ) B .(-ρ,-θ) C .(ρ,2π-θ) D .(ρ,2π+θ) 5.点() 3,1-P ,则它的极坐标是 ( ) A 、?? ? ? ? 3, 2π B 、?? ? ? ?34, 2π C 、?? ? ? ?- 3,2π D 、?? ? ? ?- 34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲 线13cos :sin x C y θ θ =+?? =? (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ). 】 7.参数方程为1()2 x t t t y ?=+? ??=?为参数表示的曲线是( )

极坐标与参数方程知识点及题型归纳总结

极坐标与参数方程知识点及题型归纳总结 知识点精讲 一、极坐标系 在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示). 这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角. 二、极坐标与直角坐标的互化 设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立: cos sin x y ρθρθ=??=?或222 tan (0) x y y x x ρθ?=+? ?=≠?? (对0ρ<也成立). 三、极坐标的几何意义 r ρ=——表示以O 为圆心,r 为半径的圆; 0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线; 2cos a ρθ=表示以(,0)a 为圆心过O 点的圆. (可化直角坐标: 2 2cos a ρρθ=2 2 2x y ax ?+=2 2 2 ()x a y a ?-+=.) 四、直线的参数方程 直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为 00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程: 00sin ()()cos 2 y y x x απ αα-= -≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα =+??=+?,2π α=也成立,故直线的参数方程为

典型极坐标参数方程练习题带答案

极坐标参数方程练习题 1在直角坐标系xOy 中,直线Ci : x = — 2,圆C 2: (x -1)2 + (y — 2)2= 1,以坐标原点为极 点,x 轴的正半轴为极轴建立极坐标系. (1) 求 C i , C 的极坐标方程; n (2) 若直线C 3的极坐标方程为 归~4(p€ R),设C 2与C 3的交点为M , ”,求厶C 2MN 的面 积. 解:(1)因为x = pcos 0 , y = pin 0,所以C i 的极坐标方程为pcos B= — 2, C 2 的极坐标方程为 p 2— 2 pcos 0 — 4 psin 0 + 4 = 0. n (2)将 0= ~4代入 p 2— 2 p cos 0 — 4 pin 0 + 4= 0,得 p 2 — 3 2 p + 4= 0,解得 p i = 2 2,p 2= 2故 p — p= 2,即 |MN| = 2. 1 由于C 2的半径为1,所以△ C 2MN 的面积为 4. (2014辽宁,23, 10分,中)将圆x 2 + y 2= 1上每一点的横坐标保持不变,纵坐标 变为 原来的2倍,得曲线C. (1) 写出C 的参数方程; (2) 设直线I : 2x + y — 2 = 0与C 的交点为P 1,巨,以坐标原点为极点,x 轴正半轴为极 轴建立极坐标系,求过线段 P 1P 2的中点且与I 垂直的直线的极坐标方程. x = X 1, 解:(1)设(X 1, y 1)为圆上的点,经变换为C 上点(x , y),依题意,得 c y = 2y 1, 由 X 1 + y 2= 1 得 x 2 + 2y 2 = 1. 即曲线C 的方程为x 2 +y 4 = 1. x = cos t , 故C 的参数方程为 (t 为参数). y =2sin t 不妨设P 1(1, 0), P 2(0, 2),则线段P 1P 2的中点坐标为 2 1,所求直线斜率为k =?, ⑵由 y 2 x 2+4 = 1, 4 解得 2x + y — 2 = 0 x = 1, y = 0 x = 0, y = 2.

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公 在一般情况下,由确定角时,可根据点所在的象限最小正角. 4.常见曲线的极坐标方程

注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程. 二、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的那么,由方程组①所确定的点都在这条曲线上,并且对于的每一个允许值,函数①. 方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. (2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周

相关文档
最新文档