精密特种加工第3讲超精密磨削加工
超精密磨削加工地实用工艺分析报告材料

实用标准文案
精彩文档 超精密磨削加工的工艺分析(举例
磨削加工的特点与磨削加工工艺
磨削加工的特点有以下几点
1、磨具的运转速度高。
普通磨削可达30-50m/s ,高速磨削可达45-60m/s 甚至更高,其速度还有日益提高的趋势。
2、磨具的非均质结构。
磨具是由磨料,结合剂和气孔三要素组成的复合结构,其结构强度大大低于由单一均匀才智组成的一半金属切削加工刀具。
3、磨削的高热现象。
磨具的高速运动、磨削加工的多刃性和微量切削,都会产生大量的磨削热,不仅可能烧伤工件表面,而且高温时磨具本身发生物理、化学变化、产生热反应力、降低磨具的强度。
4、磨具的自砺现象。
在磨削力度作用下,磨钝的磨粒自身脆裂或脱落的现象,
称为磨具的自砺性。
磨削过程中的磨具自砺作用以及修正磨具的作业,都会产生大量磨削粉尘。
精密磨削和超精密磨削40页PPT

1
0
、
倚
南
窗
以
寄傲,审 Nhomakorabea容
膝
之
易
安
。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
精密磨削和超精密磨削
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1_第三章 精密与超精密磨料加工

由于微刃是在砂轮精细修整的基础上形成的, 因此分布在砂轮表层的同一深度上的微刃数量 多、等高性好,从而使加工表面的残留高度极 小。
(3)微刃的滑挤、摩擦、抛光作用
修整得到的砂轮微刃比较锐利。随着磨削时间 的增加而逐渐钝化,但等高性逐渐得到改善, 因而切削作用减弱,滑挤、摩擦、抛光作用加 强。同时磨削区的高温使金属软化,钝化微刃 的滑擦和挤压将工件表面凸峰辗平,降低了表 面粗糙度值。
1.超精密磨削机理
图3-5 超精密磨削的单颗磨粒切入模型
1.超精密磨削机理
1)磨粒可以看做一具有弹性支承的和大负前角切削刃的弹性体,弹性支承 为结合剂,如图3-6所示。 2)磨粒切削刃的切入深度由零开始逐渐增加,到达最大值后又逐渐减小, 直至为零。 3)整个磨粒与工件的接触过程依次为弹性区、塑性区、切削区、塑性区, 最后为弹性区,与切屑形状的形成一致。 4)在超精密磨削中,微切削作用、塑性流动、弹性破坏作用和滑擦作用依 切削条件的变化而顺序出现。
表3-5 精密研磨抛光的主要工艺因素
三、精密研磨、抛光的主要工艺因素
1)工件相对研磨盘作平面平行运动,使工件上各点具有相同或相近的研磨 行程。 2)工件上任一点不出现运动轨迹的周期性重复。 3)避免曲率过大的运动转角,保证研磨运动平稳。 4)保证工件走遍整个研磨盘表面,以使研磨盘磨损均匀,进而保证工件表 面的平面度。 5)及时变换工件的运动方向,以减小表面粗糙度值并保证表面均匀一致。
四、研磨盘与抛光盘
1.研磨盘 2.抛光盘
1.研磨盘
1)在槽内存储多余的磨粒,以防止磨料堆积而损伤工件表面。 2)加工过程中作为向工件供给磨粒的通道。 3)作为及时排屑的通道,以防止研磨表面被划伤。
2.抛光盘
超精密磨削和镜面磨削

超精密磨削和镜面磨削纳米和微纳米加工技术2022年10月目录一、技术概述二、超精密与镜面磨削机理及主要设备三、关键技术四、尚存问题一、技术概述1、超精密磨削:采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削,以获得亚微米级的尺寸精度。
2、镜面磨削:是使工件表面获得高光洁度的有效方法。
一般指加工表面粗糙度达到Ra0.02~0.01m,表面光泽如镜的磨削方法,只强调表面粗糙度。
一、技术概述二、机理和关键设备——超精密磨削1、超精密磨削二、机理和关键设备—超精密磨削机理:(1)微刃的微切削作用。
(2)微刃的等高切削作用。
(3)微刃的滑挤、摩擦、抛光作用。
二、机理和主要设备——超精密磨削二、机理和主要设备——超精密磨削磨屑形成过程由于砂轮工作表面形貌特点,其磨粒工作状态有三种:第一种:参加切除金属的称为有效磨粒;另一种:与切削层金属不接触称无效磨粒;第三种:刚好与切削层金属接触,仅产生滑擦而切不下金属。
二、机理和主要设备——超精密磨削一个有效磨粒切削过程分析如下:二、机理和主要设备——超精密磨削砂轮磨削固结磨料加工精密和超精密磨料加工固结磨具油石研磨精密珩磨砂带磨削涂覆磨具游离磨料加工精密研磨精密抛光砂带研抛二、机理和设备——超精密磨削超硬磨料砂轮金刚石砂形平轮二、机理和主要设备——超硬磨料砂轮碗形金刚石砂轮碟形金刚石砂轮精密和超精密磨削磨具—磨料及其选择超硬磨料、刚玉系列、碳化硅系列分类:天然磨料、人造磨料。
天然磨料由于价格昂贵、含杂质多、性质不均匀,因此,主要用人造磨料做砂轮。
生产中使用的磨料有氧化物(刚玉类)系、碳化物系和超硬磨料。
氧化物系(刚玉类)磨料:比碳化物系磨料强度、韧性好,但硬度差。
因此,用于磨削各种钢类工件;碳化物系磨料:用于磨削铸铁类、黄铜、软青铜、铝及硬质合金等硬脆工件。
二、机理和主要设备——超精密磨削磨料金刚石是最硬的磨料,适于加工硬质合金、光学玻璃、陶瓷等硬质材料。
精密加工和超精密加工 ppt课件

计算机数控
ppt课件
先进制造技术单击此处编来自母版标题样式ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击此处编辑母版标题样式
砂带磨削 珩磨
超精研 研磨
ppt课件
先进制造技术
单五击、此砂处带编磨削辑:母版标题样式
工艺整合化 在线加工检测一体化
绿色化
ppt课件
先进制造技术
2.3 精密、超精密磨削加工
单击此处编辑母版标题样式
一、概念
精密砂轮磨削:利用精细修正的粒度为60#~80#的普 通砂轮进行磨削,其加工精度可达1µm,表面粗糙度可达 Ra0.025µm。
超精密砂轮磨削:利用经过仔细修正的粒度为W40~ W5的砂轮进行磨削,可以获得加工精度为0.1µm,表面粗 糙度为Ra0.025~Ra0.008µm的加工表面。
不适宜加工铁族金属材料。
立方氮化硼(CBN)
硬度莫氏硬度9.8-10
导热系数、热膨胀系数和研磨 能力也很突出;
稳定性和化学惰性大大优于金 刚石
适合加工普通磨料难以加工且 金刚石又不宜加工的硬而韧的 金属材料如工具钢、模具钢、 不锈钢、耐热合金等特别是高 钒高速钢、铝高速钢等对磨削 温度较为敏感的金属材料。
微刃的微切削作用 微刃的等高切削作用 微刃的滑挤、摩擦、抛光作用
ppt课件
先进制造技术
单击此处编辑母版标题样式
ppt课件
先进制造技术
单击超此精精处磨编削机辑理母: 版标题样式
1、超精磨削是一种极薄切削,切屑厚度极小,磨削 深度可能小于晶粒的大小,磨削就在晶粒内进行,因此 磨削力一定要超过晶体内部非常大的原子、分子结合力, 从而磨粒上所承受的切应力就极速地增大,可能接近被 磨削材料的剪切强度极限。同时,磨粒切削刃处收到高 温和高压的作用,要求磨粒材料有很高的高温强度和高 温硬度。
《精密超精密加工》PPT课件

◆ 机理、特点
金刚石超精密加工技术
➢ 切削在晶粒内进行; ➢ 切削力>原子结合力(剪切应力达13000N/ mm2);
➢ 刀尖处温度极高,应力极大,普通刀具难以承受
➢ 高速切削(与传统精密切削相反),工件变形小,表层高温不会波及工件内 层,可获得高精度和好表面质量。
◆ 应用
➢ 用于铜、铝及其合金精密切削(切铁金属,由于亲合作用,产生“碳化磨 损”,影响刀具寿命和加工质量); ➢ 加工各种红外光学材料如锗、硅、ZnS和ZnSe等 ➢ 加工有机玻璃和各种塑料; ➢ 典型产品:光学反射镜、射电望远镜主镜面、大型投影电视屏幕、照像机塑 料镜片、树脂隐形眼镜镜片等。
精密与超精密加工技术
精密主轴部件是精密和超精密机床的关键部件之一,它的性能直接影响精 密和超精密加工质量。
对主轴的要求:回转精度、转动平稳、无振动,其关键在于使用精密轴承。 床身和导轨:具有尺寸稳定性好、热膨胀系数小、振动衰减能力强、耐磨 性和加工工艺性好等。 通常用优质耐磨铸铁、花岗岩、人造花岗岩等。 进给驱动系统:精密机床必须具有精密的进给驱动精度。 精密和超精密加工的精度由检测精度来保证的,为了消除误差,必须使用 误差补偿技术。
精密与超精密加工技术
3、磨削液的作用: 冷却作用、润滑作用、清洗作用等。一般选用乳化
液和离子型磨削液。 4、磨削加工一般安排在最后的终加工阶段。 5、磨削质量评价:
加工表面的几何特征:表面粗糙度、加工表面缺陷 加工表面层材料的性能:塑性变形与加工硬化、残 余应力与金相组织变化。 6、磨削力的影响因素:砂轮速度 、工件速度及进给 量 、砂轮的磨损 。
1)金刚石刀具超精密切削; 2)精密和镜面磨削; 3)精密研磨和抛光;
1.金刚石刀具超精密切削
《精密超精密加工》课件
04
精密超精密加工材料
金属材料
01
02
03
钢铁
常用的金属材料,具有高 强度、耐磨性和耐腐蚀性 ,适用于各种精密超精密 加工应用。
铜合金
具有良好的导热性和导电 性,广泛用于电子和通信 行业。
钛合金
具有高强度、轻质和耐腐 蚀性,常用于航空和医疗 领域。
非金属材料
陶瓷
具有高硬度、耐高温和化学稳定性,适用于高精度和 高硬度的加工需求。
详细描述
防止加工过程中的损伤需要从多个方面入手,包括优化刀具设计、选择合适的切削参数 、加强刀具管理和维护等。此外,采用新型的涂层技术和刀具材料也是防止损伤的有效
手段。
06
பைடு நூலகம்
精密超精密加工的应用案例
航空航天领域的应用案例
总结词
精密超精密加工技术在航空航天领域的应用广泛,涉 及发动机叶片、涡轮盘、航空仪表等关键部件的制造 。
这些技术包括离子束加工、电子束加工、激光束加工等。这些技术通常具有更高的加工精度和更广泛 的适用范围,可以应用于各种不同的材料和领域。
03
精密超精密加工设备与工具
超精密切削加工设备
01
超精密切削加工设备主要用于高 精度零件的切削加工,其特点是 切削精度高、加工表面质量好、 加工效率高。
02
常见的超精密切削加工设备包括 数控机床、激光切割机、水切割 机等。
汽车工业领域的应用案例
总结词
精密超精密加工技术在汽车工业领域的应用主要涉及 汽车发动机、变速器、制动系统等关键零部件的制造 。
详细描述
在汽车工业领域,精密超精密加工技术主要用于制造汽 车发动机、变速器、制动系统等关键零部件。这些零部 件的性能对汽车的性能和安全性有重要影响。精密超精 密加工技术能够提高零部件的精度和耐磨性,降低摩擦 和阻力,提高燃油经济性和排放性能。同时,还能缩短 产品研发周期,提高生产效率,降低制造成本。
精密和超精密砂轮磨削精密砂轮磨削
.
6
磨削加工
.
7
磨削加工
.
8
磨削加工
.
9
磨削机床
.
10
磨削机床
.
11
砂轮
.
12
内圆磨砂轮
.
13
砂轮磨头
.
14
超硬磨料砂轮
平形金刚石砂轮
.
15
超硬磨料砂轮
碗形金刚石砂轮
碟形金刚石砂轮
.
16
涂附磨具
涂覆磨具是将磨料用粘接剂均匀地涂敷在纸、 布、化纤或其他复合材料等基底上的磨具。
.
18
磨削特点
砂轮经修正,可形成极细微的刃口以切除工件表面极 薄的金属层。
磨削加工能获得极高的加工精度和极细的表示粗糙度, 磨削通常可达到Ra 1.25~0.16µm,镜面磨削粗糙度 Ra0.01µm光滑表面。
砂轮在磨削时,部分磨钝的磨粒在一定条件下能自动 脱落或崩碎,从而使砂轮保持良好的磨削性能。
.
19
第一节 精密磨削(定义见P38)
一、精密磨削机理
(1)微刃的微切削作用 (2)微刃的等高切削作用 (3)微刃的滑挤、摩擦、抛光作用
.
适宜对钢、铁、 陶瓷、玻璃等 硬脆材料加工
20
二、磨削用量
砂轮速度
不能太高:否则容 易烧伤、产生裂纹、
一般在15~30m/s 降低加工精度。加
工机床容易振动
工件速度 一般在6~12m/min
一般为50~100mm/min或0.06-
工件纵向进给量 0.5mm/r
横向进给量(吃刀量) 一般取0.6~2.5μm/单行程
横向进给次数
一般约2~3次(单行程)
精密与超精密磨削技术
精密与超精密磨削技术一、精密与超精密磨削技术国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削研究,以获得亚微米级尺寸精度。
微细磨料磨削,用于超精密镜面磨削树脂结合剂砂轮金刚石磨粒平均直径可小至4μm。
日本用激光研磨过人造单晶金刚石上切出大量等高性一致微小切刃,对硬脆材料进行精密磨削加工,效果很好。
超硬材料微粉砂轮超精密磨削主要用于磨削难加工材料,精度可达0.025μm。
日本开发了电解线修整(ELID)超精密镜面磨削技术,使得用超细微(或超微粉)超硬磨料制造砂轮成为可能,可实现硬脆材料高精度、高效率超精密磨削。
作平面研磨运动双端面精密磨削技术,其加工精度、切除率都比研磨高得多,且可获得很高平面度,工具模具制造,磨削保证产品精度质量最后一道工序。
技术关键除磨床本身外、磨削工艺也起决定性作用。
磨削脆性材料时,由于材料本身物理特性,切屑形成多为脆性断裂,磨剂后表面比较粗糙。
某些应用场合如光学元件,这样粗糙表面必须进行抛光,它虽能改善工件表面粗糙度,但由于很难控制形状精度,抛光后经常会降低。
为了解决这一矛盾,80年代末日本欧美众多公司研究机构相继推回了两种新磨削工艺:塑性磨削(Ductile Grinding)镜面磨削(Mirror Grinding)。
1.塑性磨削它主要针对脆性材料而言,其命名来源出自该种工艺切屑形成机理,即磨削脆性材料时,切屑形成与塑性材料相似,切屑通过剪切形式被磨粒从基体上切除下来。
所以这种磨削方式有时也被称为剪切磨削(Shere Mode Grindins)。
由此磨削后表面没有微裂级形成,也没有脆必剥落时元规则凹凸不平,表面呈有规则纹理。
塑性磨削机理至今不十分清楚切屑形成由脆断向逆性剪切转变为塑断,这一切削深度被称为临界切削深度,它与工件材料特性磨粒几何形状有关。
一般来说,临界切削深度100μm以下,因而这种磨削方法也被称为纳米磨削(Nanogrinding)。
精密磨削和超精密磨削
五、超硬磨料砂轮的平衡
静平衡 力矩平衡,用于窄砂轮的平衡,是在一个平面上的平衡。 (1)机外静平衡架上平衡 (2)机上动态平衡 (3)机外动态平衡
动平衡
力偶平衡,用于宽砂轮和多砂轮轴的平衡,是在一个有一 定长度的体上进行力偶平衡。 一般在动平衡机上进行。
2016/6/6
超精密磨削
一、超精密磨削和镜面磨削
开式砂带磨削
闭式砂带削
砂带磨削分类: 按砂带与工件接触形式 分为接触轮式、支承板 (轮)式、自由浮动接 触式和自由接触式。 按加工表面类型分为外 圆、内圆、平面、成形 表面等磨削方式。
开式砂带磨削
一、砂带磨削方式、特点和应用
砂带磨削特点
1)砂带与工件是柔性接触,磨粒载荷小而均匀,砂带磨削 工件表面质量高,表 面粗糙度可达Ra 0.05~0.01μm,砂带磨削又称“弹性”磨削。 2)砂带制作时,用静电植砂法易于使磨粒有方向性,力、热作用小,有较好的 切削性,有效地减小了工件变形和表面烧伤。工件的尺寸精度可达5~0.5μm, 平面度可达1μm。砂带磨削又有“冷态” 磨削之称。 3)砂带磨削效率高,无需修整,有“高效”磨削之称。 4)砂带制作简单方便,无烧结、动平衡等问题,价格也便 宜,砂带磨削设备结 构简单,有“廉价”磨削之称。 5)砂带磨削有广阔的工艺性和应用范围、很强的适应性,有“万能”磨削之称。
磨削效率高。
综合成本低。
二、超硬磨料砂轮修整(修整过程)
整形
对砂轮进行微量切削,使砂轮达到所要求 的几何形状精度,并使磨料尖端细微破碎, 形成锋利的磨削刃。
修锐
去除磨粒间的结合剂,使磨粒间有一定的容 屑空间,并使磨刃突出于结合剂之外(一般 是磨粒尺寸的1/3左右),形成切削刃。
二、超硬磨料砂轮修整(修整方法) 车削法 磨削法