超精密切削加工技术的历史
精密和超精密加工的机床设备

高精度、高效率、高表面质量、 低误差、低能耗等。
应用领域
01
02
03
04
航空航天
制造飞机发动机叶片、涡轮盘 等关键部件。
汽车制造
加工发动机缸体、曲轴等精密 零部件。
能源领域
制造核聚变反应堆中的超导线 圈、太阳能电池板等。
医疗器械
制造人工关节、牙科种植体等 医疗器件。
发展历程与趋势
发展历程
从20世纪50年代开始,精密和超精密加工技术经历了从简单磨削 到复杂切削,再到超精密切削的发展过程。
航空航天领域的应用案例
案例一
某航空发动机制造企业使用超精密加 工机床,对涡轮叶片进行高精度磨削 和抛光,提高了发动机性能和可靠性 。
案例二
某飞机制造企业采用精密加工机床, 对机身结构件进行高精度切割和加工 ,确保飞机整体装配精度和质量。
汽车工业领域的应用案例
案例一
某汽车零部件制造企业使用精密加工 机床,对发动机缸体进行高精度加工, 提高缸体质量和性能,降低发动机故 障率。
柔性化
为了满足多品种、小批量生产的需求,未来精密和超精密加工机床将采用模块化设计、可 重构制造系统等技术,提高机床的加工范围和适应能力。
新材料、新工艺的应用
新材料
随着新材料技术的发展,未来精密和超精密加工机床将采用新型高强度、高硬 度、轻质材料,提高加工效率和加工质量。
ห้องสมุดไป่ตู้新工艺
为了满足复杂形状和特殊材料的加工需求,未来精密和超精密加工机床将采用 新的切削工艺、光整加工工艺和复合加工工艺等,提高加工精度和表面质量。
伺服驱动技术
采用先进的伺服驱动技术, 实现高精度的位置控制和 速度控制。
插补算法
先进制造工艺--高速切削技术

第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。
例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。
60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。
高速切削最早在飞机制造业和模具制造l受到很大的重视。
为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。
但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。
高速切削是克服这方面问题的最好解决方案。
汽车工业中,模具制造是产品更新换代的关键。
新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。
所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。
图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。
国外超精密数控机床概述

国外超精密数控机床概述20世纪50年代后期,美国首先开始进行超精密加工机床方面的研究,当时因开发激光核聚变实验装置和红外线实验装置需要大型金属反射镜,急需反射镜的超精密加工技术和超精密加工机床。
人们通过使用当时精度较高的精密机床,采用单点金刚石车刀对铝合金和无氧化铜进行镜面切削,以此为起点,超精密加工作为一种崭新的机械加工工艺得到了迅速发展。
1962年,Union Carbide公司首先开发出的利用多孔质石墨空气轴承的超精密半球面车床,成功地实现了超精密镜面车削,尺寸精度达到士0.6 um,表面粗糙度为Ra0.025um,从而迈出了亚微米加工的第一步。
但是,金刚石超精密车削比较适合一些较软的金属材料,而在航空航天、天文、军事等应用领域的卫星摄像头方面,最为常用的却是如玻璃、陶瓷等脆性材料的非金属器件。
用金刚石刀具对这些材料进行切削加工,则会使己加工表面产生裂纹。
而超精密磨削则更有利于脆性材料的加工。
Union Carbide公司的另一代表性产品是其在1972年研制成功的R-0方式的非球面创成加工机床。
这是一台具有位置反馈的双坐标数控车床,可实时改变刀座导轨的转角0和半径R,实现非球面的镜面加工。
加工直径达380mm,工件的形状精度为士0.63um,表面粗糙度为Ra0.025 um。
摩尔公司(Mood Special Tool)于1968年研制出带空气主轴的Moori型超精密镜面车床,但为了实现脆性材料的超精密加工,该公司又于1980年在世界上首次开发出三坐标控制的M-18AG型超精密非球面金刚石刀具车削、金刚石砂轮磨削机床。
该机床采用空气主轴,回转精度径向为0.075pm;采用Allen-Braley 7320数控系统;X,Z 轴行程分别为410mm和230mm,其导轨的平直度在全长行程范围内均在0.5um以内,B轴的定位精度在3600范围内是0.38um;采用金刚石砂轮可加工最大直径为356mm的各种非球面的金属反射镜。
超精密切削加工技术介绍

超精密切削加工技术介绍
超精密加工技术是适应现代高科技的需要而发展起来的先进制造技术, 是高科技尖端产品开发中不可或缺的关键技术, 是一个国家制造业水平重要标志, 是先进制造技术基础和关键, 也是装备现代化不可缺少的关键技术之一, 在军用和民用工业中有着十分广阔的应用前景。
金刚石超精密切削技术, 是超精密加工技术发展最早的、应用最为广泛的技术之一。
超精密切削加工技术
1、超精密切削的历史
60年代初,由于宇航用的陀螺,计算机用的磁鼓、磁盘,光学扫描用的多面棱镜,大功率激光核聚变装置用的大直径非圆曲面镜,以及各种复杂形状的红外光用的立体镜等等,各种反射镜和多面棱镜精度要求极高,使用磨削、研磨、抛光等方法进行加工,不但加工成本很高,而且很难满足精度和表面粗糙度的要求。
为此,研究、开发了使用高精度、高刚度的机床和金刚石刀具进行切削加工的方法加工。
2、超精密切削加工的应用
(1)平面镜的切削
平面度
金刚石刀具
1、金刚石刀具特点
金刚石刀具拥有很高的高温强度和硬度,而且材质细密,经过精细研磨,切削刃可磨得极为锋利,表面粗糙度值很小,因此可进行镜面切削。
金刚石刀具超精密切削主要用于加工铜、铝等有色金属,如高密度硬磁盘的铝合金基片、激光器的反射镜、复印机的硒鼓、光学平面镜,凹凸镜、抛物面镜等。
超精切削刀具材料有天然金刚石,人造单晶金刚石。
金刚石刀具磨损的常见形式为机械磨损和破损。
机械磨损——机械摩擦、非常微小;破损。
超精密加工

一 超精密加工的概念
起源:1962年,美国Union Carbide公司研制成功首台超精密车床。 定义:在一定的发展时期,加工精度和加工表面质量达到最高水平 的各种加工方法的总称。 超精密加工的概念及其与一般加工和精密加工的精度界限是相对的。 目前,在工业发达国家,一般加工是指加工精度不高于1m的加工技 术,与此相应,精密加工是指加工精度为1~0.1m、表面粗糙度小于 Ra0.1~0.02m的加工技术,超精密加工是指加工精度高于0.1m、表 面粗糙度小于0.01m的加工技术。
(美国)光学金刚石超精水平的重要标志之一。 在尖端科技产品和现代化武器的制造中占有重要地位。
作为测量标准的所谓“原器”( “标准球”、“光学平 晶”),卫星的姿态轴承,大规模集成电路的硅片,计 算机磁盘,复印机磁鼓和激光打印机的多面镜等都需要 进行超精密加工。 现代机械工业之所以要致力于提高加工精度,主要原因 在于提高制造精度后:
飞机发动机转子叶片:加工精度由60m提高到12m, 表面粗糙度Ra由0.5m减小到0.2m,则发动机的压缩 效率将从89%提高到94%。
三 超精密加工的特点、应用范围及分类
1. 超精密加工的特点
1) 遵循精度“进化”原则 2) 属于微量切削(极薄切削) 3) 影响因素众多,是一个系
统工程 4) 与自动化技术关系密切 5) 综合应用各种加工方法 6) 加工和检测一体化
图5-19 (美)光学金刚石超精 密车床
2. 超精密加工的分类和应用范围
1) 超精密切削加工,如金刚石刀具 超精密车削,微孔钻削等;
2) 超精密磨料加工,如超精密磨削, 超精密研磨等;
3) 超精密特种加工,如电子束加工,
离子束加工及光刻加工等;
先进制造技术 第2章 高速切削技术2-1

萨洛蒙在l924一1931年间,进行了一系列的高速切削实验: 在非黑色金属材料,如铝、铜和青铜上,用特大直径的刀 盘进行锯切,最高实验的切削速度曾达到14000m/min, 在各种进给速度下,使用了多达20齿的螺旋铣刀。l931年 申请了“超极限速度”专利,随后卖给了“Krupp钢与工 具制造厂”。 萨洛蒙和他的研究室实际上完成了大部分有色金属的切削 试验研究,并且推断出铸铁材料和钢材的相关曲线。 萨洛蒙理论提出了一个描述切削条件的区域或者是范围, 在这个区域内是不能进行切削的。萨洛蒙没有提出可靠的 理论解释,而且他的许多实验细节也没有人知道。
刀具磨损曲线
三、高速切削切屑形成
高速切削试验表明,工件材料及 性能对切屑形态 有决定性影响。
低硬度和高热物理性能的工件材料(铝合金、低碳钢、未 淬硬钢等)易形成连续带状切屑。 高硬度和低热物理性能的工件材料(钛合金钢、未淬硬钢 等)易形成锯齿状切屑。
切削速度对切屑形态有重要影响。对钛合金,在 (1.5~4800)m/min的切削速度范围内形成锯齿状 切屑,随切削速度的增加,锯齿程度(锯齿的齿 距)在增加,直至成为分离的单元切屑。
不同切削速度下车削45钢件的切削形态。
一方面,切削速度增加,应变速度加大,导致脆 性增加,易于形成锯齿状切屑;另一方面,切削 速度增加,切屑温度增加,导致脆性降低,不易 形成锯齿状切屑;
绝热剪切理论(Adiabatic Shear Theory) 周期脆性断裂理论(Periodic brittle fracture theoty)
萨洛蒙(Salomon)曲线
1600
切削温度/℃
钢
1200
青铜
铸铁 硬质合金980℃ Stelite合金850℃ 高速钢650℃ 碳素工具钢450℃
超精密加工技术的理论和应用研究

超精密加工技术的理论和应用研究超精密加工技术是指在微米和纳米级别下进行的精密加工过程。
随着现代科技的不断发展,超精密加工技术越来越受到重视,并广泛应用于电子、光学、航空航天和生物医疗等领域。
1. 超精密加工技术的发展历程超精密加工技术的发展历程可以追溯到20世纪50年代末期,当时主要应用于金属和陶瓷的球面加工和制造。
随着微电子技术的不断进步,超精密加工技术被广泛运用于微电子制造和微机电系统(MEMS)中,如晶体管、光学元件、压电陶瓷和生物芯片等。
在后来的发展中,超精密加工技术逐渐扩展到玻璃、塑料和石英等非金属材料的加工上。
同时,超精密加工技术还被应用于卫星、航天器和精密仪器的制造和维修中。
2. 超精密加工技术的理论基础超精密加工技术的理论基础主要涉及到两个方面:加工力学和加工控制。
加工力学研究表明,超精密加工过程中的切削作用受到材料本身的特性、切削工具的形状和刃口尺寸、切削速度和切削深度的影响。
因此,了解加工物料的相关特性并选择适当的切削参数,对加工质量和加工效率的提高具有重要意义。
加工控制方面的研究主要涉及到加工路径规划、加工速度和切削深度的控制以及加工设备的精度检测等。
3. 超精密加工技术在电子制造领域中的应用在电子制造领域中,超精密加工技术被广泛应用于半导体器件的制造和加工。
例如,通过超精密加工技术制作的半导体器件可以达到微米甚至纳米级别的精度,从而大大提高了器件的性能和稳定性。
此外,超精密加工技术还可以用于电子元器件的制造,如阻值、电容器和电感器等。
通过超精密加工技术制作的电子元器件具有更好的性能和精度,可以提高电路的稳定性和可靠性。
4. 超精密加工技术在航空航天领域中的应用在航空航天领域中,超精密加工技术主要应用于航空发动机部件的制造和维修。
例如,通过超精密加工技术制造的涡轮叶片具有更好的气动性能和材料特性,可以提高发动机的性能和效率。
同时,超精密加工技术还可以用于航空航天器件的制造和加工,如导航系统和通信设备等。
精密和超精密加工技术的发展

精密和超精密加工技术的发展我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。
但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。
目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。
为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。
下面对国内外精密和超精密加工技术的最新发展情况介绍如下。
精密机床技术的发展精密机床是精密加工的基础。
当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。
瑞士DIXI公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r/min。
瑞士MIKROM公司的高速精密五轴加工中心的主轴最高转速为42000r/min,定位精度达5μm,已达到过去坐标镗床的精度。
从这两台机床的性能可以看出,现在的加工中心与高速切削机床之间已不再有严格的界限划分。
使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件:如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大功率激光系统中的多种零件等:都需要利用金刚石超精密切削来加工。
使用单晶金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。
超精密切削的切削厚度可极小,最小切削厚度可至1nm。
超精密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5,0.01μm。
因刃口半径甚小,过去对刃口的测量极为困难,现在已可用原子力显微镜:AFM:方便地进行测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超精密切削加工技术的历史
超精密加工技术是适应现代高科技的需要而发展起来的先进制造技术, 是高科技尖端产品开发中不可或缺的关键技术, 是一个国家制造业水平重要标志, 是先进制造技术基础和关键, 也是装备现代化不可缺少的关键技术之一, 在军用和民用工业中有着十分广阔的应用前景。
金刚石超精密切削技术, 是超精密加工技术发展最早的、应用最为广泛的技术之一。
超精密切削加工技术
1、超精密切削的历史
60年代初,由于宇航用的陀螺,计算机用的磁鼓、磁盘,光学扫描用的多面棱镜,大功率激光核聚变装置用的大直径非圆曲面镜,以及各种复杂形状的红外光用的立体镜等等,各种反射镜和多面棱镜精度要求极高,使用磨削、研磨、抛光等方法进行加工,不但加工成本很高,而且很难满足精度和表面粗糙度的要求。
为此,研究、开发了使用高精度、高刚度的机床和金刚石刀具进行切削加工的方法加工。
2、超精密切削加工的应用
(1)平面镜的切削
平面度
金刚石刀具
1、金刚石刀具特点
金刚石刀具拥有很高的高温强度和硬度,而且材质细密,经过精细研磨,切削刃可磨得极为锋利,表面粗糙度值很小,因此可进行镜面切削。
金刚石刀具超精密切削主要用于加工铜、铝等有色金属,如高密度硬磁盘的铝合金基片、激光器的反射镜、复印机的硒鼓、光学平面镜,凹凸镜、抛物面镜等。
超精切削刀具材料有天然金刚石,人造单晶金刚石。
金刚石刀具磨损的常见形式为机械磨损和破损。
机械磨损——机械摩擦、非常微小;破损。