八年级下学期期末数学复习试题一

合集下载

人教版数学八年级下学期《期末测试题》含答案

人教版数学八年级下学期《期末测试题》含答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________一、单选题1.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OP A的面积为S.当S=12时,则点P的坐标为()A.(6,2)B.(4,4)C.(2,6)D.(12,﹣4)2.下列4个命题:①对角线相等且互相平分的四边形是正方形;②有三个角是直角的四边形是矩形;③对角线互相垂直的平行四边形是菱形;④一组对边平行,另一组对边相等的四边形是平行四边形其中正确的是()A.②③B.②C.①②④D.③④3.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.2454.如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为( )A.1 B.112C.3 D.2125.如图所示,在平行直角坐标系中,▱OMNP的顶点P坐标是(3,4),顶点M坐标是(4,0)、则顶点N 的坐标是()A.N(7,4)B.N(8,4)C.N(7,3)D.N(8,3)6.下面哪个点在函数y=2x+4的图象上()A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)7.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.5,12,13 D.1,2,38.如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD 上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+42,其中正确的结论个数有()A.2个B.4个C.3个D.5个9.若函数y=x m+1+1是一次函数,则常数m的值是()A.0 B.1 C.﹣1 D.﹣210.下列各式中,能用完全平方公式分解的个数为()①21025x x -+;②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+. A .1个B .2个C .3个D .4个二、填空题 11.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是______.12.已知不等式20x a -<的正整数解为1,2,3,则的取值范围是 _____________13.已知直线L :y=3x+2,现有下列命题:①过点P (-1,1)与直线L 平行的直线是y=3x+4;②若直线L 与x 轴、y 轴分别交于A 、B 两点,则AB=2103;③若点M (-13,1),N (a ,b )都在直线L 上,且a>-13,则b>1; ④若点Q 到两坐标轴的距离相等,且Q 在L 上,则点Q 在第一或第二象限.其中正确的命题是_________.14.已知:如图,菱形ABCD 中,对角线AC 与BD 相交于点O,OE ∥DC 交BC 于点E,AC=6,BD=8,则OE 的长为_________15.如图,四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此进行下去……记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……a 2019, 则a 2019=___________16.若、、是△ABC 的三边的长,且满足,则S △ABC =______;17.若最简二次根式2+125x 2-17x x=_________.18.如图,点E 为正方形ABCD 边CB 延长线上一点,点F 为AB 上一点,连接AE ,CF ,AC ,若BE=BF ,∠E=70°,则∠ACF=_____.三、解答题19.解不等式2(1)x -≥5x -,并写出它的所有负整数解.20.综合与实践动手操作:用矩形下的折叠会出现等腰三角形,快速求BF 的长.(1)如图,在矩形ABCD 中,AB =3,AD =9,将此矩形折叠,使点D 与点B 重合,折痕为EF ,则等腰三角形是 ;(2)利用勾股定理建立方程,求出BF 的长是多少?(3)拓展:将此矩形折叠,使点B 与DC 的中点E 重合,请你利用添加辅助线的方法,求AM 的长; 21.已知:如图,等边三角形ABC 中,D 、E 分别是BC 、AC 上的点,且AE=CD ,(1)求证:AD=BE(2)求:∠BFD 的度数.22.已知,如图,在平行四边形ABCD 中,∠A=135°,AB=5cm ,BC=9 cm ,求∠B ,∠C 的大小及AD ,CD 的长.23.已知:矩形ABCD中,AB=10,AD=8,点E是BC边上一个动点,将△ABE沿AE折叠得到△AB′E. (1)如图(1),点G和点H分别是AD和AB′的中点,若点B′在边DC上.①求GH的长;②求证:△AGH≌△B′CE;(2)如图(2),若点F是AE的中点,连接B′F,B′F∥AD,交DC于I.①求证:四边形BEB′F是菱形;②求B′F的长.24.某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x 箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;(2)求总利润w关于x的函数解析式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润. 饮料果汁饮料碳酸饮料进价(元/箱)40 25售价(元/箱)52 3225.某景区的门票销售分两类:一类为散客门票,价格为40元/张;另一类为团体门票(一次性购买门票10张以上),每张门票价格在散客门票价格的基础上打8折,某班部分同学要去该景点旅游,设参加旅游x人,购买门票需要y元(1)如果每人分别买票,求y与x之间的函数关系式:(2)如果购买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;(3)请根据人数变化设计一种比较省钱的购票方式.26.(1)如图,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC.(2)如图,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,作FE⊥PC,垂足为E,交CG于点N,连接DN,求∠NDC的度数.参考答案一、单选题(共36分)1.(本题3分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60°D.AB=AF【答案】B【分析】由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,故四边形BEDF是菱形.【详解】由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF,∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选B.【点评】考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定.2.(本题3分)如图,▱ABCD中,AB=4,BC=3,∠DCB=30°,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数图象用图象表示正确的是()A.B.C.D.【答案】D【详解】当点E在BC上运动时,三角形的面积不断增大,最大面积1134 3. 22=⨯⨯⨯=当点E在DC上运动时,三角形的面积为定值3.当点E 在AD 上运动时三角形的面不断减小,当点E 与点A 重合时,面积为0.故选:D .3.(本题3分)已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣1【答案】A【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a <1,所以,2||(1)1a a a a +-=+-=1,选A .【点评】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小4.(本题3分)如图,在矩形ABCD 中,AB =2,AD =3,BE =1,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是A .B .C .D .【答案】B【分析】求出BE 的长,然后分①点P 在AD 上时,利用三角形的面积公式列式得到y 与x 的关系式;②点P 在CD 上时,根据S △DPE =S 梯形DEBC -S △DCP -S △BEP 列式整理得到y 与x 的关系式;③点P 在CE 上时,利用三角形的面积公式列式得到y 与x 的函数关系.进而可判断函数的图像.【详解】由题意可知,当0≤x≤3时,y=12AP ⋅AB=12×2x=x ; 当3<x≤5时,y=S 矩形ABCD −S ΔABE −S ΔADP −S ΔEPC=2×3−12×1×2−12×3(x −3)−12×2(5−x)=−12x+92; 当5<x≤7时,y=12AB ⋅EP=12×2×(7−x)=7−x , ∵x=3时,y=3;x=5时,y=2,∴结合函数解析式,可知选项B 正确.故选B .【点评】本题考查了动点问题函数图象,读懂题目信息,根据点P 的位置的不同分三段列式求出y 与x 的关系式是解题的关键.5.(本题3分)已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D .【答案】D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .6.(本题3分)函数y=2x ﹣5的图象经过( )A .第一、三、四象限B .第一、二、四象限C .第二、三、四象限D .第一、二、三象限【答案】A【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y 轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.=,BE的垂直平分线MN恰好过点C,7.(本题3分)如图,在矩形ABCD中,点E是AD中点,且AE2则矩形的一边AB的长度为( )A.2 B.8C.12D.4【答案】C【解析】【分析】连接CE,根据线段中点的定义求出DE、AD,根据矩形的对边相等可得BC=AD,根据线段垂直平分线上的点到两端点的距离相等可得CE=BC,再利用勾股定理列式求出CD,然后根据矩形的对边相等可得AB=CD.【详解】如图,连接CE,∵点E是AD中点,∴DE=AE=2,AD=2AE=2×2=4,∴BC=AD=4,∵BE 的垂直平分线MN 恰好过点C,∴CE=BC=4,在Rt△CDE中,由勾股定理得,2222-CE DE=4-2=23∴AB=CD=23.故选C.【点评】本题考查了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,难点在于作辅助线构造出直角三角形.8.(本题3分)如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5 C.7 D.3【答案】A【解析】【分析】根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是5,得出BC的值,再利用勾股定理即可解答.【详解】由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB=.故选:A.【点评】此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.9.(本题3分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=2,则△ABF的周长为()A.4B.8C.6+D.6+2【答案】D【解析】【分析】先利用直角三角形斜边中线性质求出AB,再利用30角所对的直角边等于斜边的一半,求出AF 即可解决问题.【详解】∵AF⊥BC,点D是边AB的中点,∴AB=2DF=4,∵点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠B=∠ADE=30°,∴AF=AB=2,由勾股定理得,BF=,则△ABF的周长=AB+AF+BF=4+2+2=6+2,故选:D.【点评】此题考查三角形中位线定理,含30度角的直角三角形,直角三角形斜边上的中线,解题关键在于利用30角所对的直角边等于斜边的一半求解.10.(本题3分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于不等式x+1≥mx+n的解集是()A.x≥m B.x≥2C.x≥1D.x≥﹣1【答案】C【解析】【分析】首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的下方,据此求解.【详解】依题意,得:122 aam n+=⎧⎨+=⎩,解得:a=1,由图象知:于不等式x+1≥mx+n的解集是x≥1【点评】此题考查一次函数与一元一次不等式,解题关键在于求得a的值11.(本题3分)如图,是一张平行四边形纸片ABCD(AB<BC),要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确【答案】A【分析】首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【详解】甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,EAO BCA AO COAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AOE ≌△COF (ASA ),∴AE=CF ,又∵AE ∥CF ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形;乙的作法正确;∵AD ∥BC ,∴∠1=∠2,∠6=∠7,∵BF 平分∠ABC ,AE 平分∠BAD ,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF ,AB=BE ,∴AF=BE∵AF ∥BE ,且AF=BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴平行四边形ABEF 是菱形;故选:A .【点评】此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).12.(本题3分)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t(小时)之间的函数关系的图象是()A.B.C.D.【答案】B【分析】根据油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式,得出图象.【详解】由题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40-5t(0≤t≤8),结合解析式可得出图象:故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.二、填空题(共18分)13.(本题3分)188=_____.2【分析】先化简二次根式,再合并同类二次根式即可.188=3222=22【点评】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.14.(本题3分)用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设___________【答案】一个三角形中有两个角是直角.【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可.【详解】用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角.故答案为一个三角形中有两个角是直角.【点评】此题考查反证法,解题关键在于掌握其证明过程.15.(本题3分)如图,将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则AD =__________.【答案】3【分析】由矩形的性质可得AB=CD=6,再由折叠的性质可得AE=AB=6, 在Rt △ADE 中,根据勾股定理求得AD 的长即可.【详解】∵纸片ABCD 为矩形,∴AB=CD=6,∵矩形纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF ,∴AE=AB=6,∵E 为DC 的中点,∴DE=3,在Rt △ADE 中,AE=6,DE=3,由勾股定理可得,22226333AE DE -=-= 故答案为33【点评】本题考查了矩形的性质、折叠的性质及勾股定理,正确求得AE=6、DE=3是解决问题的关键. 16.(本题3分)将直线2y x =向下平移1个单位长度后得到的图像的函数解析式是______.【答案】y=2x-1.【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1. 考点:一次函数的图象与几何变换17.(本题3分)矩形ABCD 中,对角线AC 、BD 交于点O ,AE BD ⊥于E ,若13OE DE =::,3AE =,则BD =____.【答案】4或855【详解】试题解析:如图(一)所示,AB 是矩形较短边时,∵矩形ABCD ,∴OA=OD=12BD ; ∵OE :ED=1:3,∴可设OE=x ,ED=3x ,则OD=2x∵AE ⊥BD ,AE=3,∴在Rt △OEA 中,x 2+(3)2=(2x )2,∴x=1∴BD=4.当AB 是矩形较长边时,如图(二)所示,∵OE:ED=1:3,∴设OE=x,则ED=3x,∵OA=OD,∴OA=4x,在Rt△AOE中,x2+(3)2=(4x)2,∴x=5,∴BD=8x=8×5=85.综上,BD的长为4或85 5.18.(本题3分)如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.【答案】26 2【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】根据勾股定理,221+5=26223+3=32222222+=∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=12AB=12×26=262.故答案为26.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.三、解答题(共66分)19.(本题8分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.【答案】(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.20.(本题8分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.(1)求直线AO的解析式;(2)求直线CD的解析式;(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.【答案】(1)y=2x ; (2)6y x =-+;(3)点M 的坐标为(83,0). 【分析】(1)先求出点A 的坐标,然后设直线AO 的解析式为y=kx ,用待定系数法求解即可; (2)由面积法求出BD 的长,从而求出点D 的坐标,然后带入y =-x +b 求解即可;(3)先求出点C 的坐标,作点C 关于x 轴的对称点E ,此时M 到A 、C 的距离之和最小,求出直线AE 的解析式,即可求出点M 的坐标.【详解】(1)OB=4,AB=8,∠ABO=90°,∴A 点坐标为(4,8),设直线AO 的解析式为y=kx ,则4k=8 ,解得k=2,即直线AO 的解析式为y=2x ;(2)OB=4,∠ABO=90°,BOD S =4,∴DB=2,∴D 点的坐标为(4,2),把D (4,2)代入y x b =-+得:b =6,∴直线CD 的解析式为6y x =-+;(3)由直线2y x =与直线6y x =-+组成方程组为26y x y x =⎧⎨=-+⎩, 解得:24x y =⎧⎨=⎩,∴点C 的坐标为(2,4)如图,设点M 使得MC+MA 最小,作点C 关于x 轴的对称点E ,可得点E 的坐标为(2,-4),连结MC 、ME 、AE ,可知MC=ME ,所以M 到A 、C 的距离之和MA+MC=MA+ME ,又MA+ME 大于等于AE ,所以当MA+ME=AE 时,M 到A 、C 的距离之和最小,此时A 、M 、E 成一条直线,M 点是直线AE 与在x 轴的交点.所以设直线AE 的解析式为y kx b =+,把A (4,8)和E (2,-4)代入y kx b =+得:4824k b k b +=⎧⎨+=-⎩, 解得:616k b =⎧⎨=-⎩, 所以直线AE 的解析式为616y x =-,令0y =得83x =, 所以点M 的坐标为(83,0). 【点评】本题考查了待定系数法求函数解析式,一次函数的交点等面积法求线段的长及轴对称最短问题,熟练掌握待定系数法是解答本题的关键.21.(本题8分)“岳池米粉”是四川岳池的传统特色小吃之一,距今有三百多年的历史,为了将本地传统小吃推广出去,县领导组织20辆汽车装运A ,B ,C 三种不同品种的米粉42 t 到外地销售,按规定每辆车只装同一品种米粉,且必须装满,每种米粉不少于2车.(1)设用x 辆车装运A 种米粉,用y 辆车装运B 种米粉,根据上表提供的信息,求y 与x 的函数关系式,并求x 的取值范围;(2)设此次外售活动的利润为w 元,求w 与x 的函数关系式以及最大利润,并安排相应的车辆分配方案.【答案】(1) y=20-2x ,x 的取值范围为2,3,4,5,6,7,8,9;(2)用2辆车装运A 种米粉,用16辆车装运B 种米粉,用2辆车装运C 种米粉.【分析】(1)根据有20辆汽车装运A 、B 、C 三种米粉,可以表示出有20-x-y 辆车装运C 种米粉,从而得出答案;(2)从而根据米粉总吨数为42,再根据(1)中运费与车辆数即可表示出w ,利用一次函数的性质即可求出其最大利润以及相对应的分配方案.【详解】(1)设用x 辆车装运A 种米粉,用y 辆车装运B 种米粉,则用(20-x-y )辆车装运C 种米粉,由题意得:2.2x+2.1y+2(20-x-y)=42,化简得:y=20-2x,∵2 2022 xx≥⎧⎨-≥⎩∴x的取值范围是:2≤x≤9.∵x是整数,∴x的取值为2,3,4,5,6,7,8,9;(2)由题意得:W=600×2.2x+800×2.1(-2x+20)+500×2(20-x-y)=-1 040x+33 600,∵k=-1040<0,且2≤x≤9∴当x=2时,W有最大值,w最大=-1040×2+33600=315200(元)∴用2辆车装运A种米粉,用16辆车装运B种米粉,则用2辆车装运C种米粉.【点评】本题主要考查了一次函数的应用,得出y与x的关系式,以及利用一次函数增减性求最值是解决问题的关键.22.(本题8分)如图,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.【答案】36.【解析】试题分析:由AB=4,BC=3,∠B=90°可得AC=5.可求得S△ABC;再由AC=5,AD=13,CD=12,可得△ACD为直角三角形,进而求得S△ACD,可求S四边形ABCD=S△ABC+S△ACD.解:在Rt△ABC中,AB=4,BC=3,则有AC==5.∴S△ABC=AB•BC=×4×3=6.在△ACD中,AC=5,AD=13,CD=12.∵AC2+CD2=52+122=169,AD2=132=169.∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,∴S △ACD =AC•CD=×5×12=30. ∴S 四边形ABCD =S △ABC +S △ACD =6+30=36.考点:勾股定理;勾股定理的逆定理.23.(本题8分)如图,在△ABC 中,点D 为边BC 的中点,点E 在△ABC 内,AE 平分∠BAC ,CE ⊥AE 点F 在AB 上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论【答案】(1)见解析;(2)1()2BF AB AC =-,理由见解析 【分析】(1)延长CE 交AB 于点G ,证明AEG ∆≅AEC ∆,得E 为中点,通过中位线证明DE //AB ,结合BF=DE ,证明BDEF 是平行四边形(2)通过BDEF 为平行四边形,证得BF=DE=12BG ,再根据AEG ∆≅AEC ∆,得AC=AG ,用AB-AG=BG ,可证1()2BF AB AC =- 【详解】(1)证明:延长CE 交AB 于点G∵AE ⊥CE∴90AEG AEC ︒∠=∠=在AEG ∆和AEC ∆GAE CAE AE AEAEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEG ∆≅AEC ∆∴GE=EC∵BD=CD∴DE 为CGB ∆的中位线∴DE //AB∵DE=BF∴四边形BDEF 是平行四边形(2)1()2BF AB AC =- 理由如下:∵四边形BDEF 是平行四边形∴BF=DE∵D ,E 分别是BC ,GC 的中点∴BF=DE=12BG ∵AEG ∆≅AEC ∆∴AG=AC BF=12(AB-AG )=12(AB-AC ). 【点评】本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.24.(本题8分)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?【答案】西北或东南【分析】根据路程=速度×时间分别求得PQ 、PR 的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.【详解】如图,根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北或东南方向航行.【点评】此题考查勾股定理逆定理的应用,主要是能够根据勾股定理的逆定理得到直角三角形.25.(本题8分)小华思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠P AQ=∠B,求证:AP=AQ.(1)小华进行探索,若将点P,Q的位置特殊化:把∠P AQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F 分别在边BC、CD上,如图2.此时她证明了AE=AF,请你证明;(2)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值.【答案】(1)见解析;(2)见解析;(3)434.【解析】∠=∠,【分析】(1)根据四边形ABCD是菱形,首先证明∠B=∠D,AB=AD,再结合题意证明AEB AFD进而证明△AEB≌△AFD,即可证明AE=AF.(2)根据(1)的证明,再证明△AEP≌△AFQ(ASA),进而证明AP=AQ.(3)根据题意连接AC,则可证明△ABC为等边三角形,再计算AE的长度,则可计算长APCQ的周长的最小值.【详解】(1)证明:如图2,∵四边形ABCD 是菱形,∴∠B +∠C =180°,∠B =∠D ,AB =AD ,∵∠EAF =∠B ,∴∠EAF +∠C =180°,∴∠AEC +∠AFC =180°,∵AE ⊥BC ,∴AF ⊥CD ,在△AEB 和△AFD 中,AEB AFD B D AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△AFD (AAS ),∴AE =AF ;(2)证明:如图3,由(1)得,∠P AQ =∠EAF =∠B ,AE =AF ,∴∠EAP =∠F AQ ,在△AEP 和△AFQ 中,90AEP AFQ AE AF EAP FAQ ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴△AEP ≌△AFQ (ASA ),∴AP =AQ ;(3)解:如图4,连接AC ,∵∠ABC =60°,BA =BC =4,∴△ABC 为等边三角形,∵AE ⊥BC ,∴BE =EC =2,同理,CF =FD =2,∴AE =,∴四边形APCQ 的周长=AP +PC +CQ +AQ =2AP +CP +CF +FQ =2AP +2CF ,∵CF 是定值,当AP 最小时,四边形APCQ 的周长最小,∴当AP =AE 时,四边形APCQ 的周长最小,此时四边形APCQ 的周长的最小值=2×=. 【点评】本题主要考查菱形的性质,关键在于第三问中的最小值的计算,要使周长最小,当AP =AE 时,四边形APCQ 的周长最小.26.(本题10分)为了落实党的“精准扶贫”政策,A ,B 两城决定向C ,D 两乡运送肥料以支持农村生产.已知A ,B 两城分别有肥料210吨和290吨,从A 城往C ,D 两乡运肥料的费用分别为20元/吨和25元/吨;从B 城往C ,D 两乡运肥料的费用分别为15元/吨和24元/吨.现C 乡需要肥料240吨,D 乡需要肥料260吨. (1)设从A 城运往C 乡肥料x 吨.①用含x 的代数式完成下表:②设总运费为y 元,写出y 与x 的函数关系式,并求出最少总运费;(2)由于更换车型,使从A 城往C 乡运肥料的费用每吨减少a (06a <<)元,这时从A 城往C 乡运肥料多少吨时总运费最少?【答案】(1)①210,x -240,x -50x +;② y =410050(0210)x x +≤≤,最少运费是10050元;(2)当04a <<时,0吨;当46a <<时,210吨;当4a =时,不管A 城运往C 乡多少吨(不超过210吨),运费都是10050【分析】(1)①由从A 城运往C 乡肥料x 吨,根据题意,直接写出答案即可;②根据题意,写出y 与x 的函数关系式,根据一次函数的增减性,即可求解;(2)根据A 城往C 乡的运肥料费用每吨减少(06)a a <<元,列出y 与x 的函数关系式,再分三种情况讨论:当04a <<时,当46a <<时, 当4a =时,分别求解,即可.【详解】(1)①由从A 城运往C 乡肥料x 吨,可得从A 城运往D 乡的肥料为(210)x -吨;从B 城运往C 乡的肥料为(240)x -吨,从B 城运往D 乡的肥料为(50)x +吨;故答案为:210,x -240,x -50x +.②2025(210)15(240)24(50)y x x x x =+-+-++=410050(0210)x x +≤≤,∵410050y x =+是一次函数,且40k =>,∴y 随x 的增大而增大.∵0x ≥,∴当0x =时,运费最少,最少运费是10050元.(2)从A 城往C 乡运肥料x 吨,由于A 城往C 乡的运肥料费用每吨减少(06)a a <<元,∴(20)25(210)15(240)24(50)y a x x x x =-+-+-++(4)10050a x =-+.当04a <<时,40a ->, y 随x 的增大而增大.∴当0x =时,运费最少,最少是10050元;当46a <<时,40a -<,y 随x 的增大而减小,∴当210x =时,运费最少;当4a =时,不管A 城运往C 乡多少吨(不超过210吨),运费都是10050元.【点评】本题主要考查一次函数的实际应用,掌握一次函数的性质,是解题的关键.。

人教版数学八年级下学期《期末考试卷》附答案

人教版数学八年级下学期《期末考试卷》附答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟,一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+12.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°4.在下列各式中,化简正确的是()A.√53=3√15B.√12=±12√2C.√a4b=a2√b D.√x3−x2=−x√x−15.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表:周作业时量/小时 4 6 8 10 12 人数 2 23 21 3 1 则这次调查中的众数、中位数是()A.6,8 B.6,7 C.8,7 D.8,86.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.1009.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥211.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.1212.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为cm.15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试90 95面试85 8016.观察计算结果:①3=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103=17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.知识竞赛演讲比赛版面创作项目班次甲85 91 8887乙90 8422.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长23.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.24.在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是千米/时,B,C两地的路程为千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.25.如图,矩形OABC的顶点与坐标原点O重合,将△OAB沿对角线OB所在的直线翻折,点A落在点D处,OD 与BC相交于点E,已知OA=8,AB=4(1)求证:△OBE是等腰三角形;(2)求E点的坐标;(3)坐标平面内是否存在一点F,使得以B,D,E,P为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.26.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+1【分析】根据二次根式中的被开方数是非负数进行分析即可.【解析】A、当x=1时,√x2−5无意义,故此选项错误;B、当x=1时,√−x−5无意义,故此选项错误;C、当x<0时,√x无意义,故此选项错误;D、无论x取什么值,√x2+1都有意义,故此选项正确;故选:D.2.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象不经过哪个象限.【解析】∵一次函数y=7x﹣6,k=7,b=﹣6,∴该函数经过第一、三、四象限,不经过第二象限,故选:B.3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°【分析】直接利用菱形的性质得出DC∥AB,∠DAC=∠1,进而结合平行四边形的性质得出答案.【解析】∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=12∠DAB=25°.4.在下列各式中,化简正确的是( ) A .√53=3√15 B .√12=±12√2C .√a 4b =a 2√bD .√x 3−x 2=−x √x −1【分析】根据二次根式的性质求出每个式子的值,再根据求出的结果进行判断即可. 【解析】A 、结果是13√15,故本选项错误;B 、结果是12√2,故本选项错误;C 、√a 4b =a 2√b ,故本选项正确;D 、当x ≥1时,√x 3−x 2=√x 2(x −1)=|x |√x −1=x √x −1,故本选项错误; 故选:C .5.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表: 周作业时量/小时4 6 8 10 12 人数2232131则这次调查中的众数、中位数是( ) A .6,8B .6,7C .8,7D .8,8【分析】根据众数、中位数的定义求解即可.【解析】由统计表可知,学生平均每周课后作业时量为6小时的有23人,人数最多,故众数是6; 因表格中数据是按从小到大的顺序排列的,一共50个人,中位数为第25位和第26位的平均数,它们分别是6,8,故中位数是6+82=7.故选:B .6.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是( ) A .甲B .乙C .丙D .丁【分析】平均数相同,比较方差,谁的方差最小,谁发挥的就最稳定. 【解析】∵四个人的平均成绩都是10.3秒,而0.019<0.020<0.021<0.022, ∴乙发挥最稳定,7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【分析】根据平行四边形、菱形、矩形、正方形的判定分别进行分析即可.【解析】A、一组对边平行且相等的四边形是平行四边形,说法正确;B、四条边都相等的四边形是菱形,说法正确;C、对角线互相垂直的平行四边形是正方形,说法错误;D、四个角都相等的四边形是矩形,说法正确;故选:C.8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.100【分析】由正方形的面积公式可知S1=AB2,S2=AC2,S3=BC2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即S1+S2=S3,由此可求S3.【解析】∵在Rt△ABC中,AC2+AB2=BC2,又由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∴S3=S1+S2=36+64=100.故选:D.9.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC【分析】根据同角的余角相等判断A;根据题意判断B;根据等腰三角形的性质判断C;根据三角形的外角性质判断D.【解析】∵∠C=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵AD=CD,∴∠A=∠ACD,∴∠B=∠BCD,A选项结论正确,不符合题意;BC与BD不一定相等,B选项结论错误,符合题意;∵∠B=∠BCD,∴BD=CD,∵AD=CD,∴AD=BD,C选项结论正确,不符合题意;∵∠A=∠ACD,∴∠BDC=∠A+∠ACD=2∠ACD,∴∠ACD=12∠BDC,D选项结论正确,不符合题意;故选:B.10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥2【分析】关于x的不等式kx+b≤−12x+52的解集,直线y=kx+b的图象在y=−12x+52的图象的下边的部分,对应的自变量x的取值范围.【解析】把A(m,2)代入y=−12x+52,得2=−12m+52.解得m=1.则A(1,2).根据图象可得关于x的不等式kx+b≤−12x+52的解集是x≤1.故选:C.11.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.12【分析】首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.【解析】如图所示:设x小时后,就进入台风影响区,根据题意得出:CE=40x千米,BB′=20x千米,∵BC=500km,AB=300km,∴AC=400(km),∴AE=400﹣40x,AB′=300﹣20x,∴AE2+AB′2=EB′2,即(400﹣40x)2+(300﹣20x)2=2002,解得:x1=15,x2=7,∴轮船经7小时就进入台风影响区.故选:B.12.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S △DOP求得答案.【解析】连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC=√AB2+BC2=10,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式y =﹣x+2(答案不唯一).【分析】设该一次函数的解析式为y=kx+b(k<0),再把(﹣1,3)代入即可得出k+b的值,写出符合条件的函数解析式即可.【解析】该一次函数的解析式为y=kx+b(k<0),∵一次函数的图象经过点(﹣1,3),∴﹣k+b=3,∴当k=﹣1时,b=2,∴符合条件的函数关系式可以是:y=﹣x+2(答案不唯一).14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为(2+2√2)cm.【分析】由等腰直角三角形的性质求出斜边长和直角边长,即可得出答案.【解析】∵等腰直角三角形斜边上的高为1cm,也是斜边上的中线,∴等腰直角三角形的斜边长=2cm,∴等腰直角三角形的直角边长=√22×2=√2(cm),∴这个等腰直角三角形的周长为2+2√2(cm),故答案为:(2+2√2).15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么李老师 (填“李老师”或“王老师”)将被录用.测试项目测试成绩 李老师王老师 笔试90 95 面试 85 80【分析】利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【解析】李老师总成绩为:90×25+85×35=87,王老师的成绩为:95×25+80×35=86, ∵87>86,∴李老师成绩较好,故答案为:李老师.16.观察计算结果:①√13=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103= 55【分析】根据前四个式子得到规律,根据规律计算得到答案.【解析】√13=1;√13+23=3=1+2;√13+23+33=6=1+2+3;√13+23+33+43=10=1+2+3+4;则√13+23+33+⋯+103=1+2+3+4+5+6+7+8+9+10=55,故答案为:55.17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 1或73 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【分析】由已知以点P ,Q ,E ,D 为顶点的四边形是平行四边形有两种情况,(1)当Q 运动到E 和B 之间,(2)当Q 运动到E 和C 之间,根据平行四边形的判定,由AD ∥BC ,所以当PD =QE 时为平行四边形.根据此设运动时间为t ,列出关于t 的方程求解.【解析】由已知梯形,当Q 运动到E 和B 之间,设运动时间为t ,则得:2t −82=3﹣t ,解得:t =73,当Q 运动到E 和C 之间,设运动时间为t ,则得:82−2t =3﹣t , 解得:t =1,故当运动时间t 为1或73秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 故答案为:1或73. 18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 (√2)n .【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n 个等腰直角三角形的斜边长.【解析】第一个斜边AB =√2,第二个斜边A 1B 1=(√2)2,所以第n 个等腰直角三角形的斜边长为:(√2)n ,故答案为:(√2)n .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.【分析】(1)根据算术平方根、零指数幂、负整数指数幂和绝对值可以解答本题;(2)根据二次根式的乘法和完全平方公式可以解答本题.【解析】(1)√12−(π+√2)0+(12)﹣1+|1−√3| =2√3−1+2+√3−1=3√3;(2)8√12−√6×2√3+(√2+1)2 =4√2−6√2+2+2√2+1=3.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?【分析】连接AC ,在Rt △ACD 中利用勾股定理计算出AC 长,再利用勾股定理逆定理证明∠ACB =90°,再利用S △ACD ﹣S △ABC 可得空地面积,然后再计算花费即可.【解析】连接AC ,在Rt △ABC 中,AB =3米,BC =4米,∵AC 2=AB 2+BC 2=32+42=25,∴AC =5,∵AC 2+AD 2=52+122=169,CD 2=132=169,∴AC 2+AD 2=CD 2,∴∠DAC =90°,该区域面积=S △ACD ﹣S △ABC =30﹣6=24(平方米),铺满这块空地共需花费=24×500=12000(元).答:用该盆景铺满这块空地共需花费12000元.21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛 演讲比赛 版面创作甲85 91 88 乙 90 84 87【分析】(1)根据加权平均数的计算公式列出算式,再进行计算即可得出答案.(2)将甲、乙两人的总成绩按比例求出最后成绩,再进行比较,即可得出结果.【解析】(1)甲班的平均成绩是:13(85+91+88)=88(分), 乙班的平均成绩是:13(90+84+87)=87(分), ∵87<88,∴甲班将获胜.(2)甲班的平均成绩是85×5+91×3+88×25+3+2=87.4(分), 乙班的平均成绩是90×5+84×3+87×25+3+2=87.6(分),∵87.6>87.4,∴乙班将获胜.22.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理解答即可.【解答】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;解:(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠EBD=30°.由(1)知,平行四边形BFDE是菱形,则EF⊥BD,BO=OD=6.∴EO=12BE.由勾股定理得到:BE 2=62+EO 2,即4EO 2=62+EO 2.解得:EO =2√3.所以EF =4√3.23.如图,在平面直角坐标系中,过点B (4,0)的直线AB 与直线OA 相交于点A (3,1),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式;(2)直线AB 交y 轴于点C ,求△OAC 的面积;(3)当△OAC 的面积是△OMC 面积的3倍时,求出这时点M 的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OAC 的面积是△OMC 面积的3倍时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.【解析】(1)设直线AB 的解析式是y =kx +b ,根据题意得:{4k +b =03k +b =1, 解得:{k =−1b =4, 则直线的解析式是:y =﹣x +4;(2)在y =﹣x +4中,令x =0,解得:y =4,S △OAC =12×4×3=6;(3)当M 在线段OA 时,设OA 的解析式是y =mx ,把A (3,1)代入得:3m =1,解得:m =13,则直线的解析式是:y =13x ,∵△OAC 的面积是△OMC 面积的3倍时, ∴当M 的横坐标是13×3=1,在y =13x 中,当x =1时,y =13, 则M 的坐标是(1,13);当M 在射线AC 上时, 在y =﹣x +4中,x =1时, 则y =3,则M 的坐标是(1,3); 当M 的横坐标是﹣1时,在y =﹣x +4中,当x =﹣1时,y =5, 则M 的坐标是(﹣1,5);综上所述:M 的坐标是:M 1(1,13)或M 2(1,3)或M 3(﹣1,5).24.在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题: (1)甲车行驶速度是 60 千米/时,B ,C 两地的路程为 360 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【分析】(1)根据F 点坐标可求出甲车速度,根据M 纵坐标可得B ,C 两地之间距离;(2)根据甲车比乙车晚1.5小时到达C 地得出点E 坐标,再求出点N 坐标,利用待定系数法求解即可; (3)根据运动过程,分3种情况讨论,由路程=速度×时间,可求解. 【解析】(1)由题意可得: F (10,600),∴甲车的行驶速度是:600÷10=60千米/时, M 的纵坐标为360,∴B ,C 两地之间的距离为360千米, 故答案为:60;360;(2)∵甲车比乙车晚1.5小时到达C 地, ∴点E (8.5,0),乙的速度为360×2÷(10﹣0.5﹣1.5)=90千米/小时, 则360÷90=4,∴M (4,360),N (4.5,360),设NE 表达式为y =kx +b ,将N 和E 代入, {0=8.5k +b 360=4.5k +b ,解得:{k =−90b =765, ∴y (千米)与x (小时)之间的函数关系式为:y =﹣90x +765; (3)设出发x 小时,行驶中的两车之间的路程是15千米, ①在乙车到B 地之前时,600﹣S 甲﹣S 乙=15,即600﹣60x ﹣90x =15, 解得:x =3910,②当乙车从B 地开始往回走,追上甲车之前,15÷(90﹣60)+4.5=5小时; ③当乙车追上甲车并超过15km 时, (30+15)÷(90﹣60)+4.5=6小时;④乙到达B 地停留时,15÷60+4=174(小时)(不符合题意行驶中舍弃,) ⑤乙到达C 地时,(600﹣15)÷60=394小时(不符合题意行驶中舍弃) 综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或5小时或6小时.25.如图,矩形OABC 的顶点与坐标原点O 重合,将△OAB 沿对角线OB 所在的直线翻折,点A 落在点D 处,OD 与BC 相交于点E ,已知OA =8,AB =4 (1)求证:△OBE 是等腰三角形; (2)求E 点的坐标;(3)坐标平面内是否存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.【分析】(1)由矩形的性质得出OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC ,得出B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8,得出∠OBC =∠DOB ,证出OE =BE 即可; (2)设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得出方程,解方程即可; (3)作DF ⊥y 轴于F ,则DF ∥BC ,由平行线得出△ODF ∽△OEC ,得出DF CE=OF OC=ODOE,求出DF =245,OF =325,得出D (245,325);分三种情况,由平行四边形的性质即可得出结果. 【解答】(1)证明:∵四边形OABC 是矩形, ∴OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC , ∴B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8, ∴∠OBC =∠DOB ,∴OE =BE ,∴△OBE 是等腰三角形;(2)解:设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得:42+(8﹣x )2=x 2, 解得:x =5,∴OE =5,CE =8﹣x =3, ∵OC =4,∴E 点的坐标为(3,4);(3)解:坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形;理由如下: 作DF ⊥y 轴于F ,如图所示: 则DF ∥BC , ∴△ODF ∽△OEC , ∴DF CE=OF OC=OD OE,即DF 3=OF 4=85,解得:DF =245,OF =325, ∴D (245,325);当BE 为平行四边形的对角线时,点P 的坐标为(315,85); 当BD 为平行四边形的对角线时,点P 的坐标为(495,325);当DE 为平行四边形的对角线时,点P 的坐标为(−15,325);综上所述,坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形,P 点坐标为(315,85)或(495,325)或(−15,325).26.如图,已知四边形ABCD 是正方形,对角线AC 、BD 相交于O .(1)如图1,设E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.【分析】(1)首先证明△EOA ≌△FOB ,推出AE =BF ,从而得出结论;(2)在BC 上取一点H ,使得BH =AE .由△OAE ≌△OBH ,推出AE =BH ,∠AOE =∠BOH ,OE =OH ,由△FOE ≌△FOH ,推出EF =FH ,由∠FBH =90°,推出FH 2=BF 2+BH 2,由此即可解答. 【解析】(1)EF 2=AF 2+BF 2. 理由:如图1,∵四边形ABCD 是正方形, ∴OA =OB ,∠OAE =∠OBF =45°,AC ⊥BD , ∴∠EOF =∠AOB =90°, ∴∠EOA =∠FOB , 在△EOA 和△FOB 中, {∠EOA =∠FOBOA =OB ∠OAE =∠OBF, ∴△EOA ≌△FOB (ASA ), ∴AE =BF ,在Rt △EAF 中,EF 2=AE 2+AF 2=AF 2+BF 2; (2)在BC 上取一点H ,使得BH =AE .∵四边形ABCD 是正方形,∴OA =OB ,∠OAE =∠OBH ,∠AOB =90°, 在△OAE 和△OBH 中,{OA =OB∠OAE =∠OBH AE =BH∴△OAE ≌△OBH (SAS ),∴AE =BH ,∠AOE =∠BOH ,OE =OH , ∵∠EOF =45°, ∴∠AOE +∠BOF =45°, ∴∠BOF +∠BOH =45°, ∴∠FOE =∠FOH =45°, 在△FOE 和△FOH 中•, {OF =OF∠FOE =∠FOH OE =OH, ∴△FOE ≌△FOH (SAS ), ∴EF =FH , ∵∠FBH =90°, ∴FH 2=BF 2+BH 2, ∴EF 2=BF 2+AE 2,。

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案八年级下册数学期末压轴题1.在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.1) 证明四边形ABCD是平行四边形;2) 若AB=3cm,BC=5cm,AE=1/3 AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,使△BEP为等腰三角形?2.△XXX的XXX在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与XXX重合,且DF=EF.1) 观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;2) 将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△XXX能否通过旋转重合?请证明你的猜想.3.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.1) 观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;2) 当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;3) 当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)4.图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.1) 操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连结AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;2) 操作:若将图1中的△C′DE绕点C按顺时针方向任意旋转一个角度,连结AD,BE,如图3;在图3中,线段BE 与AD之间具有怎样的大小关系?证明你的结论;3) 根据上面的操作过程,请你猜想当为多少度时,线段AD的长度最大?是多少?当为多少度时,线段AD的长度最小?是多少?(不要求证明)之间的数量关系,并说明理由;2)证明你所得到的猜想;3)若平行四边形ABCD的周长为20且a+b+c+d=10求平行四边形ABCD的面积.5、在△ACB和△AED中,已知AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE。

杭州市第二中学初中数学八年级下期末经典复习题(含答案解析)

杭州市第二中学初中数学八年级下期末经典复习题(含答案解析)

一、选择题1.(0分)[ID:10215]已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15D.∠C=∠A﹣∠B2.(0分)[ID:10206]下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形3.(0分)[ID:10202]如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.724.(0分)[ID:10137]下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)5.(0分)[ID:10195]如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为()A.2√3cm B.3cm C.4√3cm D.3√3cm6.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=2,那么 AC 的长等于()A.12B.16C.43D.827.(0分)[ID:10192]如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD8.(0分)[ID:10190]下列计算中正确的是()A325=B321=C.3333+=D 33 4=9.(0分)[ID:10189]为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米10.(0分)[ID:10183]下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个11.(0分)[ID:10182]“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .312.(0分)[ID :10175]函数y =x√x+3的自变量取值范围是( ) A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠013.(0分)[ID :10165]如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .14.(0分)[ID :10156]如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④15.(0分)[ID :10153]正方形具有而菱形不一定具有的性质是( ) A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等二、填空题16.(0分)[ID :10315]182______.17.(0分)[ID :10314]一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.18.(0分)[ID :10307]如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.19.(0分)[ID :10287]已知函数y =2x +m -1是正比例函数,则m =___________. 20.(0分)[ID :10283]如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.21.(0分)[ID :10275]计算:1822-=__________. 22.(0分)[ID :10269]已知0,0a b <>,化简2()a b -=________23.(0分)[ID :10261]如图,直线y =kx +b (k >0)与x 轴的交点为(﹣2,0),则关于x 的不等式kx +b <0的解集是_____.24.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.25.(0分)[ID :10256]已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.三、解答题26.(0分)[ID:10422]2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由参赛者推荐语读书心得读书讲座甲878595乙94888827.(0分)[ID:10399]如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.28.(0分)[ID:10365]如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC 上的点,AE=CF,并且∠AED=∠CF D.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.29.(0分)[ID:10360]求证:三角形的一条中位线与第三边上的中线互相平分.和它的一条中位线DE,在给出的图形上,请用尺规作出BC边要求:(1)根据给出的ABC上的中线AF,交DE于点O.不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.30.(0分)[ID:10358]如图,在正方形网格中,小正方形的边长为1,A,B,C为格点()1判断ABC的形状,并说明理由.()2求BC边上的高.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.D4.D5.D6.B7.B8.D9.D10.C11.D12.B13.A14.C15.D二、填空题16.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法17.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解18.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=19.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义20.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=3021.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成22.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式23.x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大当x<﹣2时y <0即可求出答案【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣20)∴y随x 的增大而增大当x<﹣2时y<0即24.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点25.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D 是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;B、∵32+42=52,∴△ABC为直角三角形;C、∵∠A:∠B:∠C=9:12:15,151807591215C︒︒∠=⨯=++,故不能判定△ABC是直角三角形;D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.2.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.3.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.4.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.5.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD 是菱形,∴AB =AD =BC =CD =2cm ,∠B =∠D ,∵E 、F 分别是BC 、CD 的中点,∴BE =DF ,在△ABE 和△ADF 中,{AB =AD∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴AE =AF ,∠BAE =∠DAF .连接AC ,∵∠B =∠D =60°,∴△ABC 与△ACD 是等边三角形,∴AE ⊥BC ,AF ⊥CD ,∴∠BAE =∠DAF =30°,∴∠EAF =60°,BE=12AB=1cm , ∴△AEF 是等边三角形,AE =√AB 2−BE 2=√22−12=√3,∴周长是3√3cm .故选:D .【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.6.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO , ∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.7.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC 、BD 互相垂直,则需添加条件:AC 、BD 互相平分故选:B8.D解析:D【解析】分析:根据二次根式的加减法则对各选项进行逐一计算即可.详解:A 23B 23不是同类项,不能合并,故本选项错误;C 、33不是同类项,不能合并,故本选项错误;D 故选:D .点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.9.D解析:D【解析】【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念10.C解析:C【解析】【分析】根据勾股定理可得①中第三条边长为5∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确.【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.故选C .【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.11.D解析:D【解析】【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=每一个直角三角形的面积为:, 214ab a b 252(),∴⨯+-= 2a b 25169∴-=-=(),a b 3∴-=,故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.12.B解析:B【解析】【分析】【详解】由题意得:x +3>0,解得:x >-3.故选B .13.A解析:A【解析】【分析】先分析题意,把各个时间段内y 与x 之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系具体可描述为:当火车开始进入时y 逐渐变大,火车完全进入后一段时间内y 不变,当火车开始出来时y 逐渐变小,反映到图象上应选A .故选:A .【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y 与x 之间的函数关系.14.C解析:C【解析】【分析】易证Rt ABE Rt ADF ≌,从而得到BE DF =,求得15BAE DAF ∠=∠=︒;进而得到CE CF =,判断出AC 是线段EF 的垂直平分线,在Rt AGF 中,利用正切函数证得②正确;观察得到BE GE ≠,判断出③错误;设BE x =,CE y =,在Rt ABE 中,运用勾股定理就可得到2222x xy y +=,从而可以求出CEF 与ABE 的面积比.【详解】∵四边形ABCD 是正方形,AEF 是等边三角形,∴90B BCD D AB BC DC AD AE AF EF ∠=∠=∠=︒=====,,.在Rt ABE 和Rt ADF 中, AB AD AE AF⎧⎨⎩==∴()Rt ABE Rt ADF HL ≌. ∴BE DF =,∠BAE =∠DAF ∴()()1190601522BAE DAF BAD EAF ∠=∠=∠-∠=︒-︒=︒ 故①正确;∵BE DF BC DC ==,,∴CE BC BE DC DF CF =-=-=,∵AE AF =,CE CF =,∴AC 是线段EF 的垂直平分线,∵90ECF ∠=︒,∴GC GE GF ==,在Rt AGF 中,∵tan tan 60AG AG AFG GF GC ∠=︒===∴AG =,故②正确;∵BE DF GE GF ==,,15BAE ∠=︒,30GAE ∠=︒,90B AGE ∠=∠=︒∴BE GE ≠∴BE DF EF +≠,故③错误;设BE x =,CE y =,则CF CE y ==,AB BC x y AE EF ==+====,. 在Rt ABE 中,∵90B ∠=︒,AB x y BE x AE =+==,,,∴222())x y x ++=.整理得:2222x xy y +=.∴CEF S :ABE S11CE ?CF :AB?BE 22⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()•:?CE CF AB BE ==2y :()x y x ⎡⎤+⎣⎦()()2222:2:1x xy x xy =++=.∴CEF ABE 2S S =,故④正确;综上:①②④正确故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识,而采用整体思想(把2x xy +看成一个整体)是解决本题的关键. 15.D解析:D【解析】【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等;②正方形的四个角是直角,而菱形的四个角不一定是直角.故选D .【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.二、填空题16.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】【分析】先化简二次根式,然后再合并同类二次根式.【详解】2=1(22-【点睛】 本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法.17.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 18.x=2【解析】【分析】依据待定系数法即可得到k 和b 的值进而得出关于x 的方程kx =b 的解【详解】解:∵一次函数y =kx+b 的图象与x 轴相交于点(﹣20)与y 轴相交于点(03)∴解得∴关于x 的方程kx =解析:x=2【解析】【分析】依据待定系数法即可得到k 和b 的值,进而得出关于x 的方程kx =b 的解.【详解】解:∵一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3), ∴0=-2k+b 3=b ⎧⎨⎩, 解得323k b ⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.19.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y=2x+m-1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.20.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30解析:3.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC中,HD=DC·tan∠∵正方形ABCD的边长为3∴HD=DC·tan∠DCH=3×tan30°=3×3试题点评:构建新的三角形,利用已有的条件进行组合.21.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号,再合并同类二次根式即可得到结果.==考点:二次根式的化简点评:本题属于基础应用题,只需学生熟练掌握二次根式的性质,即可完成.22.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式解析:b a-【解析】【分析】根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【详解】∵a<0<b,=|a−b|=b−a.故答案为:b a-.【点睛】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.23.x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大当x<﹣2时y<0即可求出答案【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣20)∴y随x的增大而增大当x<﹣2时y<0即解析:x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故答案为:x<﹣2.【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.24.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点25.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一x解析:2【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.三、解答题26.甲获胜;理由见解析.【解析】【分析】根据加权平均数的计算公式列出算式,进行计算即可.【详解】甲获胜;甲的加权平均成绩为87285395590.4235⨯+⨯+⨯=++(分),乙的加权平均成绩为94288388589.2235⨯+⨯+⨯=++(分),∵90.489.2>,∴甲获胜.【点睛】此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.27.(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.28.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA 证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C .在△AED 与△CFD 中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.29.(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可,见解析;(2) 见解析.【解析】【分析】(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.【详解】解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。

2022—2023年部编版八年级数学(下册)期末考试卷及答案

2022—2023年部编版八年级数学(下册)期末考试卷及答案

2022—2023年部编版八年级数学(下册)期末考试卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.若一个多边形的内角和为1080°,则这个多边形的边数为( )A .6B .7C .8D .94.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,236.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.若n 边形的内角和是它的外角和的2倍,则n =__________.3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D 在同一直线上.若AB=2,则CD=________.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程组:20 346 x yx y+=⎧⎨+=⎩2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.已知11881,2y x x=--22x y x yy x y x+++-.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、B5、B6、C7、B8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、63、如果两条直线平行于同一条直线,那么这两条直线平行.415、206、13 2三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、3.3、14、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)略(2)等腰三角形,理由略6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、13、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、11a-,1.3、(1)略(2)1或24、(1)略;(2)4.5、CD的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

【人教版】数学八年级下册《期末检测试题》含答案

三、作图题(本题满分4分)
17.用圆规和直尺作图,不写作法,保留作图痕迹
已知 及其边 上一点 .在 内部求作点 ,使点 到 两边的距离相等,且到点 , 的距离相等.
四、解答题(本题满分68分,共8道小题)
18.计算:
(1) ;
(2) ;
(3)先化简再求值 ,其中 , .
19.如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为 .小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
23.问题:将边长为 的正三角形的三条边分别 等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
3.下列事件中是必然事件是()
A. 明天太阳从西边升起
B. 篮球队员在罚球线投篮一次,未投中
C. 实心铁球投入水中会沉入水底
D. 抛出一枚硬币,落地后正面向上
【答案】C
【解析】
【分析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.
【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;
A、添加 可利用SAS定理判定 ,故此选项不合题意;
B、添加 可利用AAS定理判定 ,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加 不能判定 ,故此选项符合题意;

2014.4.30北师大版八年级第二学期期末数学复习测试题

北师大版八年级第二学期期末数学试卷4.下列命题是真命题的是( )(A)相等的角是对顶角 (B)两直线被第三条直线所截,内错角相等 (C)若n m n m ==则,22 (D)有一角对应相等的两个菱形相似. 5.若16)3(22+-+x m x 是完全平方式,则m 的值是( )(A)-1 (B)7 (C)7或-1 (D)5或1.8.解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于 ( )(A)-1 (B)-2 (C)1 (D)29.有旅客m 人,如果每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A)n m 1- (B)n m 1+ (C)n m -1 (D)nm +1 10.若m >-1,则多项式123+--m m m 的值为( )(A)正数 (B)负数 (C)非负数 (D)非正数13.若分式23xx-的值为正数,则x 应满足的条件是___________________________. 14.当x=1时,分式nx mx -+2无意义,当x=4分式的值为零, 则n m +=__________.19.已知两个一次函数x y x y -=-=3,4321,若21y y <,则x 的取值范围是:____.20.若4x-3y=0,则yyx +=___________. 23、(1)a a -3; (2)1222-+-y xy x ;(1)1 1.24x x ---≤ (2)3(1)5123x xx x -<-⎧⎪-⎨<⎪⎩并把解集在数轴上表示出来. 25、(8分)先化简,再求值:3116871419422-÷⎪⎭⎫ ⎝⎛+--+⋅--m m m m m m .其中m=5. 26、(8分)解分式方程:.41622222-+-+=+-x x x x x 30、如图,∠MON=90°,点A 、B 分别在射线OM 、ON 上移动,BD 是∠NBA 的平分线,BD 的反向延长线与∠BAO 的平分线相交于点C. 试猜想:∠ACB 的大小是否随A 、B 的移动发生变化?如果保持不变,请给出证明;如果随点A 、B 的移动发生变化,请给出变化范围.1、已知3=b a ,则bb a -=______. 2、分解因式:=+-a ab ab 22___________. 4、若543z y x ==,则=++-+zy x zy x 234 . 5、若不等式(m-2)x>2的解集是x<22-m ,则x 的取值范围是_______.6、化简222210522yx ab b a y x -⋅+的结果为 7、如果x<-2 ,则2)2(+x =_____ _;1、如果b a >,那么下列各式中正确的是 ( )A 、33-<-b aB 、33ba < C 、b a 22-<- D 、b a ->-2、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

山东省济南市天桥区2021年八年级下学期期末数学试题(含答案与解析)

8.如图,矩形纸片ABCD中,AB=6 ,BC=8 .现将其沿AE对折,使得点B落在边AD上的点F处,折痕与边BC交于点E,则CF的长为( )
A.3 B.2 C.8 D.10
【答案】B
【解析】
【分析】先根据折叠性质可证四边形 为正方形, ,然后根据 可得到 的值,最后根据勾股定理即可求出 的长.
【详解】∵ , ,
7.一个正多边形的每个外角都是36°,那么它是()
A. 正六边形B. 正八边形C. 正十边形D. 正十二边形
【答案】C
【解析】
【分析】根据多边形外角和是 以及正多边形每个外角度数一样的性质求解.
【详解】解: ,
是正十边形.
故选:C.
【点睛】本题考查多边形外角和的性质,解题的关键是掌握多边形外角和的性质.
A. B. C. D.
【答案】D
【解析】
【分析】先证明平行四边形 是菱形,再由菱形的性质解得 , , 中,利用余弦定义解得 的长,即可求得 的长.
【详解】解:平行四边形 中,
平行四边形 是菱形,
平行四边形 的周长是 ,
中,

故选:D.
(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
24.新冠肺炎疫情防控期间,学校为做好预防消毒工作,开学初购进A,B两种消毒液,购买A种消毒液花费了2500元,购买B种消毒液花费了2000元,且购买A种消毒液数量是购买B种消毒液数量的2倍,已知购买一桶B种消毒液比购买一桶A种消毒液多花30元.
【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.
5.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是()

成都青羊区四校联考2024届数学八年级第二学期期末复习检测模拟试题含解析

成都青羊区四校联考2024届数学八年级第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ2.如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数8yx,在第二象限的图像经过点E,则正方形AOBC与正方形CDEF的面积之差为()A.6 B.8 C.10 D.123.为了解我市参加中考的15 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D .以上调查是普查4.已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为S 2甲,S 2乙,则S 2甲与S 2乙大小关系为( )A .S 2甲>S 2乙B .S 2甲=S 2乙C .S 2甲<S 2乙D .不能确定5.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为( )A .30°B .40°C .70°D .80°6.如图,△ABC 以点C 为旋转中心,旋转后得到△EDC ,已知AB =1.5,BC =4,AC =5,则DE =( )A .1.5B .3C .4D .57.如图,在平行四边形ABCD 中,F ,G 分别为CD ,AD 的中点,BF=2,BG=3,60FBG ∠=︒,则BC 的长度为( )A 213B .125C .2.5D 21 8.下列说法中,错误的是( )A .平行四边形的对角线互相平分B .对角线互相平分的四边形是平行四边形C .菱形的对角线互相垂直D .对角线互相垂直的四边形是菱形9.如图,四边形ABCD 的对角线AC 和BD 交于点O ,则下列不能判断四边形ABCD 是平行四边形的条件是( )A .OA=OC ,AD ∥BCB .∠ABC=∠ADC ,AD ∥BC C .AB=DC ,AD=BC D .∠ABD=∠ADB ,∠BAO=∠DCO10.若分式32x x +-的值为零,则() A .3x =B .2x =-C .2x =D .3x =-二、填空题(每小题3分,共24分) 11.如图,在中,,点、、分别为、、的中点,若,则_________.12.在平面直角坐标系中,一次函数1y kx =+的图象与y 轴的交点坐标为__________.13.如图,在矩形ABCD 中,点P 在对角线AC 上,过点P 作//EF BC ,分别交AB ,CD 于点E ,F ,连结PB ,PD .若25PB =,6PD =,图中阴影部分的面积为9,则矩形ABCD 的周长为_______.14.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为15.如图1,平行四边形纸片ABCD 的面积为120,20AD =,18AB =.沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是 .16.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.17.关于x 的不等式2x ﹣a ≤﹣1的解集如图所示,则a 的取值范围是___.18.如图 , 在 射 线 OA 、OB 上 分 别 截 取 OA 1、OB 1, 使 OA 1= OB 1;连接 A 1B 1 , 在B 1 A 1、B 1B 上分别截取 B 1 A 2、B 1B 2 ,使 B 1 A 2=B 1B 2 ,连接 A 2 B 2;……依此类推,若∠A 1B 1O =α,则 ∠A 2018 B 2018O =______________________.三、解答题(共66分)19.(10分)正方形ABCD 的对角线相交于点O ,点O 又是正方形111A B C O 的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形111A B C O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的14.20.(6分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB =90°,求证:a 2+b 2=c 2证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF =b -a S 四边形ADCB =21122ADCABCS S b ab +=-+S 四边形ADCB =211()22ADB BCDS Sc a b a +=+- ∴221111()2222b abc a b a +=+-化简得:a 2+b 2=c 2 请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB =90°,求证:a 2+b 2=c 2 21.(6分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下学期期末数学复习试题一
班级 姓名
一.选择题
1.若a

A.a2b1 D.-3a>-3b
2.当2x时,下列分式有意义的是 ( )

A.22xx B.12x C.2232xxx D.2232xxxyy
3. 下列方程是分式方程的是 ( )
A.2513xx B.315226yy

C.212302xx D.81257xx
4.下列两个三角形不一定相似的是 ( )
A.两个等边三角形 B.两个全等三角形
C.两个直角三角形 D.两个顶角为120°的等腰三角形
5.下列语句正确的是 ( )
A.相似图形一定是位似图形,位似图形一定是相似图形;
B.位似图形一定是相似图形,而且位似比等于相似比;
C.利用位似变换只能放大图形,不能缩小图形;
D.利用位似变换只能缩小图形,不能放大图形.

6.有一块多边形草坪,在市政建设设计图纸上的面积为2300cm,其中一条边的长度为5cm.经测量,这条边的实际长度为15m,
则这块草坪的实际面积是 ( )
A.2100m B.2270m C.22700m D.290000m
7.如图,点A是反比例函数图象上的一点,自点A向y轴作垂线,垂足为T,已知4AOTS△,则此函数的表达式为
( )
A.4yx B.8yx

C.16yx D.8yx
8.已知:(21)(26)MN,,,两点,反比例函数kyx与线段MN相交,过反比例函数kyx上任意一点P作y轴的垂线
PGG,
为垂足,O为坐标原点,则OGP△面积S的取值范围是
( )

A.132S≤≤ B.16S≤≤
C.212S≤≤ D.2S≤或12S≥

9.如图,DE是ABC△的中位线,M是DE的中点,CM的延长线交AB于点N,则:DMNCEMSS△△等于
( )
A.1:2 B.1:3

C.1:4 D.1:5
10.如图,在矩形ABCD中,E在AD上,EFBE,交CD于F,连结BF,则图中与ABE△一定相似的三角形是
( )

A.EFB△ B.DEF△


N
D

B
C
E

M

A
B
C

D
E
F

A
T

O
x

y
C.CFB△ D.EFB△和DEF△
11.甲、乙、丙三人参加央视的“幸运52”,幸运的是他们都得到了一件精美的礼物。其过程是这样的:墙上挂着两串礼物(如
图),每次只能从其中一串的最下端取一件,直到礼物取完为止。甲第一个取得礼物,然后乙、丙依次取得第2件、第3件
礼物.事后他们打开这些礼物仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是 ( )
A.甲 B.乙

C.丙 D.无法确定

二.填空题
12.当x 时,分式2233xxx的值为零.
13.若方程51122mxx无解,则______m.
14.计算24111aaaa的结果是___________.
15.为了改善交通环境,交通管理部门在都梁公园路口安装了交通信号灯,小明同学经观察发现红、绿、黄三色灯交错的时间分
别是:红灯25秒,绿灯20秒,黄灯15秒,请你根据王安驰同学得出的数据,计算当你抬头看信号灯时,恰好是黄灯的概率是
_________.
16.写出命题“对顶角相等”的逆命题:__________ .

17.不等式组2425xaxb的解是02x,那么ab的值等于 .

18.若125xyz,3217xyz,则111xyz .
三.解答题
19.先化简代数式:22121111xxxxx,然后选取一个使原式有意义的x的值代入求值.

20.解方程:11262213xx
21.(7分))已知24221xykxyk,且10xy,求k的取值范围。
22.方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的ABC△是格
点三角形.在建立平面直角坐标系后,点B的坐标为(11),.

B
A
C
(1)把ABC△向左平移8格后得到111ABC△,画出111ABC△的图形并写出点1B的坐标;
(2)把ABC△绕点C按顺时针方向旋转90后得到22ABC△,画出22ABC△的图形并写出点2B的坐标;
(3)把ABC△以点A为位似中心放大,使放大前后对应边长的比为1:2,画出33ABC△的图形.

23.在平面直角坐标系xOy中,直线yx绕点O顺时针旋转90得到直线l.直线l与反比例函数kyx的图象的一个交点为
(3)Aa,
,试确定反比例函数的解析式.

24.如图,李华晚上在路灯下散步.已知李华的身高ABh,灯柱的高OPOPl,两灯柱之间的距离OOm.
(1)若李华距灯柱OP的水平距离OAa,求他影子AC的长;
(2)若李华在两路灯之间行走.......,则他前后的两个影子的长度之和(DAAC)
是否是定值?请说明理由;
(3)若李华在点A朝着影子(如图箭头)的方向以1v匀速行走,试求他影子

的顶端在地面上移动的速度2v.

x
y
O
A
B
C

相关链接
1、“定值”可以理解为一个固定不变的值或常
量.
2、成语“形影不离”的原意是指:人的影子
与自己紧密相伴,无法分离,但在灯光下,人
的运动速度和影子的速度却不一样哟!