航天大学《空气动力学》空气动力学 试卷标准答案

合集下载

北航空气动力学选择题

北航空气动力学选择题

2号1、下列说法不正确的是:CA、气体的动力粘性系数随温度的升高而升高。

B、液的动力粘性系数随温度的升高而降低。

C、有黏静止流体的压强为三个互相垂直方向的法向应力的平均值。

D、有黏运动流体的压强为三个互相垂直方向的法向应力的平均值。

2、下列说法不正确的是:DA、欧拉法认为引起流体质点速度变化的原因有流场的不均匀性和非定常性。

B、迁移加速度中的任何一项都是速度分量与同一方向的导数的乘积。

C、随体导数可用于P,T,V。

D、流体质点的迹线表示同一质点不同时刻的轨迹线,流线在同一时刻由不同流体质点组成,两者一定不重合。

3、下列说法正确的是:AA、对于密度不变的不可压流,速度的散度必为0。

B、对于密度不变的不可压流,速度的旋度必为0。

C、对于密度不变的不可压流,一定有位函数。

D、对于无旋流,速度的散度必为0。

4、下列说法正确的是:BA、连续方程只适用于理想流体。

B、伯努利方程只适用于理想流体的定常流动。

C、欧拉运动微分方程只适用于无旋流体。

D、雷诺运输方程只适用于理想流体的定常流动。

5、下列说法不正确的是:CA、流体的粘性是指流体抵抗剪切变形的能力。

B、流体的粘性剪应力是指由流体质点相对运动而产生的应力。

C、粘性静止流体具有抵抗剪切变形的能力。

D、粘性运动流体具有抵抗剪切变形的能力。

3号1、流体的易流动性是指 cA、在任何情况下流体不能承受剪力B、在直匀流中流体不能承受剪力C、在静止状态下流体不能承受剪力D、在运动状态下流体不能承受剪力2、下列关于流体压强的各向同性描述不正确的是 dA、静止状态下的粘性流体内压强是各向同性的B、静止状态下的理想流体内压强是各向同性的C、运动状态下的理想流体内压强是各向同性的D、运动状态系的粘性流体内压强是各向同性的3、下列关于流向的描述不正确的是 dA、流线上某点的切线与该点的微团速度指向一致B、在定常流动中,流体质点的迹线与流线重合C、在定常流动中,流线是流体不可跨越的曲线D、在同一时刻,一点处不可能通过两条流线4、下列关于不可压流体的表述正确的是 cA、不可压流体的密度一定处处相等B、密度在空间上处处均匀一定是不可压流体C、ρ=c 的流体必然是不可压流体D、如果流线是一系列平行线,一定是不可压流体5、下列表述正确的是 dA、理想流体的流动是无旋流动B、理想不可压缩流体的流动是无旋流动C、流体质点的变形速率为零的运动是无旋流动D、理想不可压缩流体无旋流动的势函数满足拉普拉斯方程4号1.下列选项中说法正确的是( D )A.流体质点是微观上组成流体的最小单元(应该是宏观上组成流体的最小单元)B.连续介质的适用条件是研究对象的宏观尺寸和物质结构的微观尺寸量级相当的情况(研究对象的宏观尺寸和物质结构的微观尺寸量级相当这种情况连续介质模型将不适用,因为这种情况分子运动的微观行为对宏观运动有着直接的影响)C.空气动力学关注的是个别分子的微观特征而不是宏观特征(关注的是宏观特征而不是个别分子的微观特征)D.流体的弹性模量E都较大,通常可视为不可压缩流体;但是气体的弹性模量E都较小,且与热力学过程有关,故气体具有压缩性2.下列选项中说法错误的是( A )A.流体无论在静止状态还是运动状态都可以承受剪切力(在静止状态下流体不能承受剪力,但是在运动状态下,流体可以承受剪力)B.在均匀的速度场中,两层相邻流体的分子由于热运动而相互交换位置,不会产生动量的运输C.对于流体的粘性,层间的抵抗力一般为摩擦力或剪切力D.牛顿粘性应力公式表明,粘性剪切应力与速度梯度有关,与物性有关3.下列选项中说法错误的是( B )A.空间点法是着眼于个别空间位置,观测不同时刻不同流体质点所通过时的流体质点运动行为B.欧拉法研究流程时,仅仅只有离散的数据点是不能描绘出流场的(错在即使没有解析表达式,只要有离散的数据点就可以描绘出流场)C.欧拉法描述流体加速度时,全加速度包括局部加速度和迁移加速度D.欧拉法表示的流场速度和加速度实质是指瞬时恰好通过该点的流体质点所具有的速度和加速度4.下列选项中说法正确的是( C )A.流线是同一流体质点走过的轨迹(流线是某瞬时,空间曲线的切线和该点的微团速度指向一致的线)B.迹线是对横向的间隔空间点按等时间间隔进行染色形成的染色线(迹线是同一流体质点走过的轨迹)C.染色线是对同一空间点连续染色后形成的染色线D.流动会穿越过流面(流面是流动不会穿越的一个面)5.下列选项中说法错误的是( A )A.位函数是无论无旋流还是有旋流都有的(无旋才有位(势)函数)B.相对体积膨胀率是指单位体积在单位时间内的增长量C.不可压缩流体的密度并不一定处处都是常数D.在系统的边界上没有质量的交换,在控制面上可以发生质量交换5号1. 下列说法中正确的是()A.流体在无限小的剪切力作用下将不会发生变形B.只有不可压缩流体在任意小的剪切力作用下发生连续变形C.剪切力消失,流体变形不会立刻停止D.流体的角变形量与剪切力τ的大小和持续时间有关2. 下列说法中正确的是()A. 密度一定时,气体的弹性与声速成正比B. 流体在运动状态下不可以承受剪力C. 流体中的外法向应力为压强pD. 理想流体的内部应力只有压强3. 下列说法中正确的是()A.迹线等同于流线B.速度的随体导数等于当地加速度+迁移加速度C.在非定常流动中,迹线与流线重合D.定常流动中,流线可穿越4. 下列说法中正确的是()A.平面微团的旋转角速度等于2倍rotVB.流体速度分解定理对整个刚体都成立C.不可压表示流体各质点密度相同D.只有密度同时满足不可压与均值才能等于常数5. 下列说法中正确的是()A.在彻体力有势的条件下,单位体积的流体微团沿特定曲线的势能、压能及动能之和为常数B.v=∂ψ/∂xC.只有理想无旋的流体才有流函数D.Cp=(p∞-p)/0.5ρV∞²6号下面有“流体的粘性”说法正确的是:(多选)AC河里的流水,靠岸处的水流速度小于河中心的水流速度,是因为水的粘性。

空气动力学与热学基础试题三及答案

空气动力学与热学基础试题三及答案

试题三一、填空题(每空1分,共20分)1、热力循环中体系对外界所做的功⎰=dw。

2、飞机机翼的迎角是指,在时为正,时为负。

3、通用气体常数(μR)≈(J/mol·K)。

4、平衡状态必须满足的三个条件是、和。

5、一个标准大气压= ㎜Hg ≈ Pa,一个工程大气压= ㎜O≈ Pa 。

H26、马赫数的定义为,它是气流的衡量指标。

飞机飞行马赫数的定义为。

7、空速管是应用方程的原理制成的。

8、完全气体是指的气体。

9、后掠机翼由于后掠角的存在会产生效应和效应,其主要原因是。

10、在三角翼上产生的升力有和两部分,其中的变化与迎角成非线性关系。

11、飞机保持平飞所必须满足的两个运动方程是和。

12、在保持其它条件不变时,螺旋桨的拉力随飞机飞行速度的增大而,随发动机转速增大而。

13、飞机的机动性一般可以分为、和三种。

二、判断题(每小题1分,共10分)1、两个温度相同的物体热量必平衡。

()2、各种完全气体在同温同压下的体积相等。

()3、等温过程中没有内能和焓的变化。

()4、飞机重心位于焦点之后,飞机具有迎角稳定性。

()5、变截面管流中,气流在管道面积小的地方流速快,而在管道面积大的地方流速慢。

()6、气流的滞止参数就是气流速度为零的参数。

()7、拉伐尔管的最小截面就是临界截面。

()8、飞机的升力随着飞行速度的增大而增大。

()9、在一定的高度和一定的迎角时,飞机只能以一定飞行速度平飞。

()10、飞机具有速度稳定性的条件是:飞行速度增大时,升力增大,飞行速度减小时,升力减小。

()三、简答题(每小题5分,共30分)1、请写出飞机极线图中A、B、C三点所对应的迎角及其定义。

2、写出升力计算公式,说明升力产生的原理和影响升力大小的因素。

3、音速的定义是什么?写出音速的两种形式的计算公式,并分析影响音速大小的因素。

4、激波形成的条件是什么?它按形状可以分为哪几种?它们的强度哪个最强?画出各自的示意图。

5、什么叫做飞机的临界马赫数?其大小表示了什么?并写出后掠机翼的临界马赫数与平直机翼的临界马赫数关系表达式。

M8空气动力学题库-392道

M8空气动力学题库-392道

空气动力学习题集1 空气的组成为: 答案:CA.78%氮,20%氢和2%其他气体B.90%氧,6%氮和4%其他气体C.78%氮,21%氧和1%其他气体D.21%氮,78%氧和1%其他气体2 在大气层内,大气密度:答案:CA在同温层内随高度增加保持不变。

B随高度增加而增加。

C随高度增加而减小。

D随高度增加可能增加,也可能减小。

3 对于空气密度如下说法正确的是:答案:BA空气密度正比于压力和绝对温度B“空气密度正比于压力,反比于绝对温度”C“空气密度反比于压力,正比于绝对温度” D空气密度反比于压力和绝对温度4 绝对温度的零度是: 答案:CA-273F B-273K C-273C D32F5 大气层内,大气压强:答案:BA随高度增加而增加。

B随高度增加而减小。

C在同温层内随高度增加保持不变。

D随高度增加也可能增加,也可能减小。

6 “一定体积的容器中,空气压力”答案:DA与空气密度和空气温度乘积成正比 B与空气密度和空气温度乘积成反比C与空气密度和空气绝对温度乘积成反比D与空气密度和空气绝对温度积成正比7“一定体积的容器中,空气压力”答案:DA与空气密度和摄氏温度乘积成正比 B与空气密度和华氏温度乘积成反比C与空气密度和空气摄氏温度乘积成反比D与空气密度和空气绝对温度乘积成正比8流体的粘性系数与温度之间的关系是:答案:BA液体的粘性系数随温度的升高而增大。

B气体的粘性系数随温度的升高而增大。

C液体的粘性系数与温度无关。

D气体的粘性系数随温度的升高而降低。

9.对于具有静稳定性的飞机向左侧滑行时机头会( B)A不变 B左转 C右转 B不定10假设其他条件不变,空气湿度大:答案:BA空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长C空气密度大,起飞滑跑距离短 D空气密度小,起飞滑跑距离短11增加垂直安定面的面积产生的影响:答案:BA增加升力 B增加侧向稳定性 C增加纵向稳定性 D增加纵向操纵性。

12“对于音速,如下说法正确的是”答案:CA“只要空气密度大,音速就大” B“只要空气压力大,音速就大”C“只要空气温度高,音速就大” D“只要空气密度小,音速就大”13从地球表面到外层空间,大气层依次是:答案:AA对流层、平流层、中间层、电离层和散逸层 B对流层、平流层、电离层、中间层和散逸层C对流层、中间层、平流层、电离层和散逸层 D对流层、平流层、中间层、散逸层和电离层14对流层的高度,在地球中纬度地区约为:答案:DA 8公里。

空气动力学:2 习题答案

空气动力学:2 习题答案

2-1考虑形状任意的物体。

如果沿着物体表面的压力分布为常值,是证明压力在物面上的合力为零。

解:因沿着形状任意的物体表面的压力分布为常值,故流场中压力分布均匀,即0p ∇= 由高斯公式得:压力在物体表面的合力为()0iSVVP ndS PdV pe dV =∇=∇=⎰⎰⎰⎰⎰⎰⎰⎰2-2 考虑如下速度场,其x ,y 向的速度分量分别为,其中c 为常数。

试求流线方程。

解:流线的控制方程为dy v ydx u x==,积分得:y Cx = 2-3考虑如下速度场,其x ,y 向的速度分量分别为,其中c 为常数。

试求流线方程。

解:流线的控制方程为dy v xdx u y==-,积分得:22x y C += 2-4 考虑如下流场,其x ,y 向的速度分量分别为,其中c 为常数。

试求流线方程。

解:流线的控制方程为dy v ydx u x==-,积分得:xy C = 2-5 习题2-2中的流场被称为点源。

对于点源,试计算:(a ) 单位体积的微元其体积随时间的变化率; (b ) 流场的旋度。

解:速度柱坐标系下表达式为:cos sin cos sin 0r c V u v r V v u θθθθθ⎧=+=⎪⎨⎪=-=⎩利用极坐标系下散度公式:10r r V V V V r r θθ∂∂⎛⎫∇=++= ⎪∂∂⎝⎭v u V k x y ⎛⎫∂∂∇⨯=-= ⎪∂∂⎝⎭或利用柱坐标系下旋度公式:11[()][][()]0z r z r r z VVV V V rV e e rV e r z z r r r θθθθθ∂∂∂∂∂∂∇⨯=-+-+-=∂∂∂∂∂∂ 2-6 习题2-3中的流场被称为点涡,试对点涡计算:(a ) 单位体积的微元其体积随时间的变化率; (b ) 流场的旋度。

提示:2-5、2-6两题在极坐标下求解更方便。

解:速度极坐标系下表达式为:cos sin 0cos sin r V u v V v u cθθθθθ=+=⎧⎨=-=⎩利用极坐标系下散度公式:10r r V V V V r r θθ∂∂⎛⎫∇=++= ⎪∂∂⎝⎭v u V k x y ⎛⎫∂∂∇⨯=-= ⎪∂∂⎝⎭或利用柱坐标系下旋度公式:11[()][][()]0zr z r r z VV V V V rV e e rV e r z z r r r θθθθθ∂∂∂∂∂∂∇⨯=-+-+-=∂∂∂∂∂∂ 2-7已知一速度场为,试问这一运动是否是刚体运动?解:0x u x θ∂==∂,0y vyθ∂==∂,0z w z θ∂==∂,无线变形。

北航空气动力学课后题答案

北航空气动力学课后题答案

本答案适用于钱翼德版1.1解:)(k s m 84.259m k R 22328315∙===-RT p ρ=36m kg 63.5063032.5984105RT P =⨯⨯==ρ 气瓶中氧气的重量为354.938.915.0506.63G =⨯⨯==vg ρ 1.2解:建立坐标系根据两圆盘之间的液体速度分布量呈线性分布 则离圆盘中心r ,距底面为h 处的速度为0u kn u +=当n=0时 u=0推出0u 0= 当n=h 时 u=wr 推出hwr k = 则摩擦应力τ为hwr u dn du u==τ 上圆盘半径为r 处的微元对中心的转矩为θθτdrd hwr u r rdrd h wr u r dA d 3=⋅=⋅=T则⎰⎰==T 2D332032D u drd hr uωπθωπ1.4解:在高为10000米处T=288.15-0.0065⨯10000=288.15-65=223.15压强为⎪⎭⎫ ⎝⎛=Ta T Pa P 5.2588MKN43.26Ta T pa p 2588.5=⎪⎭⎫ ⎝⎛=密度为2588.5Ta T a ⎪⎭⎫⎝⎛=ρρmkg4127.0Ta T a 2588.5=⎪⎭⎫⎝⎛=∴ρρ1-7解:2M KG 24.464RTPRT p ==∴=ρρ空气的质量为kg 98.662v m ==ρ 2-3解:将y 2+2xy=常数两边微分2ydy+2xdx+2ydx=0整理得ydx+(x+y )dy=0 (1) 将曲线的微分方程yx V dyV dy =代入上式得 yVx+(x+y )V y =0 由22y 2xy 2x V ++=得V x 2+V y 2=x 2+2xy+y 2 ((2)由(1)(2)得()y v y x v y x =+±=, 习题二2-2解流线的微分方程为yx v dyv dx =将v x 和v y 的表达式代入得ydy x dx yx 2dyx y 2dx 22==, 将上式积分得y 2-x 2=c ,将(1,7)点代入得c=7 因此过点(1,7)的流线方程为y 2-x 2=482-5解:直角坐标系与柱坐标系的转换关系如图所示 速度之间的转换关系为{θθθθθθcos v sin v v sin v cos v v r y r x +=-=由θθθθθθcos r1y v sin yrsin r 1xv cos x rrsin y rcos x =∂∂=∂∂⎪⎩⎪⎨⎧-=∂∂=∂∂⇒⎭⎬⎫==()()⎪⎭⎫⎝⎛--∂∂+-∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθsin r 1sin V cos V cos sin V cos V r x v v x r r v x v r r x x xθθθθθθθθθθθθθs i n c o s V s i n V s i n V c o s V r 1c o s s i n r V c o s r V r r r ⎪⎭⎫ ⎝⎛-∂∂--∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂=θθθθθθθθθθθθθθc o s s i n V r1s i n V r 1s i n V r 1c o s s i n V r 1c o s s i n r V c o s r V 22r r 2r +∂∂++∂∂-∂∂-∂∂=()()θθθθθθθθθcos r1cos V sin V sin cos V sin V r y v v V y r V V V V r r y x y x y+∂∂++∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθθcos r1sin V cos V cos V sin V sin cos r V sin r V r r r ⎪⎭⎫ ⎝⎛-∂∂++∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂=θθθθθθθθθθθθθcos sin V r1cos V r 1cos V r 1cos sin v V r 1cos sin r V sin r V 22r r 2r -∂∂++∂∂+∂∂+∂∂=zV V V r 1r V z V y V x V div z r r z y x ∂∂+⎪⎭⎫ ⎝⎛∂∂++∂∂=∂∂+∂∂+∂∂=∴θυθ 2-6解:(1)siny x 3x V 2x -=∂∂ s i n y x 3y V 2y =∂∂ 0yV x V y x =∂∂+∂∂∴此流动满足质量守恒定律(2)siny x 3x V 2x =∂∂ s i n y x 3y V 2y =∂∂ 0siny x 6yV x V 2yx ≠=∂∂+∂∂ ∴此流动不满足质量守恒定律(3)V x =2rsin rxy2=θ V y =-2rsin 2ry 22-=θ33r y 2x V x =∂∂ 332y r 2y y x 4y V +-=∂∂0ryx 4y V x V 32y x ≠-=∂∂+∂∂∴此流动不满足质量守恒方程(4)对方程x 2+y 2=常数取微分,得xdy dy dx -= 由流线方程yx v dy v dx =(1) 由)(得2r k v v r k v 422y 2x =+= 由(1)(2)得方程3x r ky v ±= 3y rkx v = 25x r kxy3x V =∂∂∴ 25y rkxy 3yV ±∂∂ 0yV x V yx =∂∂+∂∂∴此流动满足质量守恒方程2—7解:0x Vz V 0r yz 23r yz 23z V y V z x 2727y z =∂∂-∂∂=⋅+⋅-=∂∂-∂∂同样 0yV x V x y =∂∂-∂∂ ∴该流场无旋()()()2322222223222z y x zy x z y x d 21z y x z d z y d y x d x dz v dy v dx v d ++++⋅=++++=++=Φ c zy x 1222+++-=Φ∴2—8解:(1)a x V x x =∂∂=θ a yV y y =∂∂=θ a z Vz z -=∂∂=θ021v ;021v ;021v z y x =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y V x V x V z V z V y V x x z x y z(2)0y V x V 210x V z V 210z V y V 21x y z z x y y z x =⎪⎪⎭⎫ ⎝⎛∂∂-∂∂==⎪⎭⎫ ⎝⎛∂∂-∂∂==⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=ωωω;; 位该流线无旋,存在速度∴ (3)azdz 2aydy ax dx dz v dy v dx v d z y x -+=++=ϕc az ay 21ax 21222+-+=∴ϕ2—9解:曲线x 2y=-4,()04y x y x f 2=+=,切向单位向量22422422y2x 2y2x yx 4x x y 2i yx 4x x j f f fx i f f fy t +-+=+-+=t t v v v t ⋅∇=⋅=∇=ϕϕ切向速度分量 把x=2,y=-1代入得()()j y 2x i y x 2x j yi x v 2+-+--=∂∂+∂∂=∇=ϕϕϕ j 21i 21j y x 4x 2xyi y x 4x x t 2242242+=⎪⎪⎭⎫ ⎝⎛+-+= 23t v v t -=⋅= j 23i 23j 21i 2123t v v t t --=⎪⎭⎫⎝⎛+-== 2—14解:v=180h km =50sm根据伯努利方程22V 21V 21p ρρ+=+∞∞p pa p =∞ 驻点处v=0,表示为1531.25pa 501.22521V 21pa p 22=⨯⨯==-∞ρ相对流速为60sm 处得表示为75.63760225.12125.1531V 21V 21pa p 222-=⨯⨯-=-=-∞ρρ 习题三3—1解:根据叠加原理,流动的流函数为()xyarctg 2Q y V y x πϕ+=∞, 速度分量是22y 22x y x y2Q x V y x x 2Q V y V +⋅=∂∂-=+⋅+=∂∂=∞πϕπϕ; 驻点A 的位置由V AX =0 V Ay =0求得 0y V 2Qx A A =-=∞;π 过驻点的流线方程为2x y arctg 2y x y arctg 2y y Q V Q V A A A =+=+∞πθπθθππθππsin 2r x y arctg 2y -⋅=⎪⎭⎫ ⎝⎛-=∞∞V V Q 或即 在半无限体上,垂直方向的速度为θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q线面求极值()0-sin v -cos sin v 2d dv 22y=+=∞∞θπθθπθθθ 当0sin =θ 0v v miny y ==2-tg -=θπθmax y y v v =用迭代法求解2-tg -=θπθ得 取最小值时,y 1v 2183.1139760315.1 ==θ 取最大值时,y 2v 7817.2463071538.4 ==θ由θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q θπθθθππ-cos sin v r cos 2v y x x 2v v 22x +=+=++=∞∞∞Q Q 可计算出当∞∞===v 6891574.0v v 724611.0v x y 1,时,θθ6891514.0v v 724611.0v x y 2=-==∞,时,θθ合速度∞=+=v v v 2y 2x V3—3解:设点源强度为Q ,根据叠加原理,流动的函数为 xa 3-y a r c t g 2a x y a r c t g 2a x y a r c t g 2πθπθπθϕ+++-=两个速度分量为()()()⎥⎥⎦⎤⎢⎢⎣⎡+++++++--=222222a 3-y x xy a x a x y a x a x 2x πθ()()()⎥⎥⎦⎤⎢⎢⎣⎡++++++-=222222y a 3-y x a3-y y a x y y a x y 2v πθ对于驻点,0v v y x ==,解得a 33y 0x ==A A , 3—4解:设点源的强度为Q ,点涡的强度为T ,根据叠加原理得合成流动的位函数为Q ππθϕ2l n r 2Γ+=πθϕπθϕθ2r 1r 12r 1r r Γ=∂∂==∂∂=V V ;速度与极半径的夹角为Qarctg arctgr Γ==V V θθ 3—5根据叠加原理得合成流动的流函数为⎪⎪⎭⎫ ⎝⎛+--+=∞y a y yaarctg a y y aarctgV ϕ 两个速度分量为()()()()⎥⎦⎤⎢⎣⎡++---+++=∂∂=∞1y v 2222x y a x a x a y a x a x a V ϕ ()()⎥⎦⎤⎢⎣⎡+--++=∂∂-=∞2222y y v y a x yy a x y a V ϕ 由驻点()0a 30,得驻点位置为±==y x v v 零流线方程为0ay yaarctg a y y x aarctgy =--++∞∞V V 对上式进行改变,得⎪⎭⎫ ⎝⎛-=-+a y tan ay2a y x 222当0x =时,数值求解得a 03065.1y ±= 3—9解:根据叠加原理,得合成流动的流函数为a y y a r c t g 2a y y a r c t g 2y v -++-=∞ππϕQ Q速度分量为()()2222x y a x ax 2y a x a x 2y v v +-+++++-=∞ππQ Q()()2222y ya x ax 2y a x a x 2v +-+++++-=ππQ Q 由0v v y x ==得驻点位置为⎪⎪⎭⎫ ⎝⎛+±∞0v a a 2,πQ 过驻点的流线方程为ay yarctg 2a y y arctg 2y v =-++--∞ππQ Q 上面的流线方程可改写为ay yarctg a y y arctg y v 2--+=∞Q π 222a y x ay2a y y arctg a y y arctg tan y v 2tan -+=⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛∴∞Qπ 容易看出y=0满足上面方程当0y ≠时,包含驻点的流线方程可写为⎪⎭⎫⎝⎛-=-+∞Q y v 2tan ay2a y x 222π当12v a ===∞πQ 时,包含驻点的流线方程为tany y21y x 22--=-+ 3—10解:偶极子位于原点,正指向和负x 轴夹角为α,其流函数为 22yx xs i n y c o s 2+--=ααπϕM 当45=α时22yx xy 222+--=πϕM 3—11解:圆柱表面上的速度为a2sin v 2v πθΓ--=∞ 222222a 4a 2s i n v 4v ππθΓ+Γ=∞ 222222v a 4av 2sin 4sin 4v v ∞∞∞Γ+Γ+=⎪⎪⎭⎫ ⎝⎛ππθθ 压强分布函数为222p v asin 41sin 41v v 1⎪⎪⎭⎫ ⎝⎛Γ+-=⎪⎪⎭⎫ ⎝⎛-=∞∞θπθC习题四4—1解:查表得标准大气的粘性系数为nkg1078.1u 5-⨯=65el 1023876.11078.16.030225.1u⨯=⨯⨯⨯==-∞LV R ρ 平板上下两面所受的总得摩擦阻力为N S V L R F 789.021e 664.0222=⨯⨯=∞ρ 4—2解:沿边阶层的外边界,伯努利方程成立 代表逆压梯度代表顺压梯度,时;当时当0m 0m 00m 00m m v v v 21p 12201002〈〉∴〉∂∂〈〈∂∂〉-=-=∂∂-=∂∂=+--xpx p x v x v x v xx p c m m m ρρρρδδδ 4—4解:(a )将2x y 21y 23v v ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=δδδ带入(4—90)中的第二式得δδδδδ28039dy vv 1v v 0x x =⎪⎪⎭⎫ ⎝⎛-=⎰** 由牛顿粘性定律δτδuu 23y v u 0y xw =⎪⎪⎭⎫⎝⎛∂∂==下面求动量积分关系式,因为是平板附面层 0dx dv =∴δ积分关系式可表示为dxd v 2w **=δρτδ将上述关系式代入积分关系式,得δρδδv dx u d 14013=边界条件为x=0时,0=δ 积分上式,得平板边界层的厚度沿板长的变化规律()64.428039646.0x x x64.4ll ⨯==∴=**R R δδ(b )()74.164.483x x 83dy v v 1lx =⨯=∴=⎪⎪⎭⎫ ⎝⎛-=*∞*⎰R δδδδ(c )由(a )知()64.4x x l =R δ(d )646.0x x646.0v 21324xx 64.4u23l f l 2wf l w =∴====R C R C R δρτδδδτ)得—由(; (e )单面平板的摩擦阻力为()292.1x x 292.1s v 21b bdx v 21l f l 2f l02f=∴===⎰R C R X C C X F F δδρρ摩阻系数为假设版宽为 4—6解:全部为层流时的附面层流厚度由式(4—92)得()01918.048.5L e ==LR Lδ 全部为湍流时的附面层流厚度由式(4—10)得()0817.037.0L 51e ==-LLR δ第五章5—3证明(1)将r (θ)表示为下列三角级数()⎪⎭⎫⎝⎛+=∑∞=∞1n 0n s i n n s i n c o s v 2r θθθθA A 将其代入(5—35)得()∑∞==+-1n f 10dx dy n ncos θαA A 可得⎰⎰=-=ππθθπθπα011fn 01f 0d c o s n dxdy 2d dx dy 1A A ; 对于平板,0dx dy f =,故有α=0A ,()θθαθsin cos v 2r 0n 21∞=∴===A A A 当πθ→时,()0r ≠π,不满足后缘条件(2)将()⎪⎭⎫⎝⎛++=∑∞=∞1n 0nsins sin cos 1v 2r θθθθA A 将其带入(5—35)积分得()αθθθθθθθθθπππ-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-⎰⎰∑∞=∞dxdy d cos cos sin nsinn cos cos d cos 1v 1f 0021n 2A ()∑∞==+-1n 1f10s i ndy n ncos θθαA A⎰-=1f 0d dx dy 1θπαA ⎰=πθθπ011fn d c o s n dx dy 2A对于平板0dxdyf =,0n 210====∴A A A A ;α()θθαθsin cos 1v 2r +=∴∞ 当πθ→时,()0r =θ,满足后缘条件5—2解:设在41弦线处布涡的强度为Γ,则该涡在43弦线处产生的诱导速度为c2c 2v y i ππΓ=Γ=若取43弦点为控制点,在改点满足边界条件⎪⎭⎫⎝⎛-=Γ∴⎪⎭⎫ ⎝⎛-=Γ∞∞απαπdx dy cv dx dy v c f f 因此开力为⎪⎭⎫ ⎝⎛-=Γ-=∞∞dx dy cv v f 2αρπρL开力系数为⎪⎭⎫ ⎝⎛-==∞dx dy 2c v 21f 2απρLC L 对于平板0dx dy f =ππαα22==∴L L C C ;5—4解对于薄翼型,πα2=LC 对于2412翼型,()()1x 4.0x 28.00555.0dxdy 4.0x 0x 28.081dx dy ff ≤≤-=≤≤-=;;令()1cos 121x θ-=,则当x=0.4时,2.0arccos 1=θ ()()π≤≤-=≤≤-=x 2.0a r c c o s 0.28.00555.0dxdy 2.0arccos x 00.28.081dx dy ff ;;()()()112.0a r c co s 01101f 0d c o s 12.0c o s 811d c o s 1dx dy 1θθθπθθπαπ--=-=∴⎰⎰()()112.0a r c c o s1d c o s 12.0c o s 0555.01θθθππ--+⎰101fn d c o s n dxdy 2θθππ⎰=A ()()()()⎥⎦⎤⎢⎣⎡--+--=⎰⎰12.0a r c c o s 1112.0a r c c o s 011c o s 12.0c o s 0555.02d c o s 12.0c o s 812θθπθθθππA ()()⎥⎦⎤⎢⎣⎡-+-=⎰⎰πθθθθθθπ2.0arccos 111112.0arccos 012d cos22.0cos 0555.0d cos22.0cos 812A ()214mp 4A A C -=π5—5解:根据余弦定理9924.0c 9849.0abcosc 2b a c 222=∴=-+=9962.0cbcosca ac 2b abcosc 2b a a 2ac b c a cos 2222222=-=--++=-+=B 059878.4==∠∴B折算后的迎角为010,()()1x 32170tan dx dy 32x 05tan dx dy d cos 1dxdy 120f 0f 101f00≤≤=≤≤=-=-=⎰;;;θθπαααππL C令()弧度时当9106.131arccos 32x cos 121x 11=⎪⎭⎫⎝⎛-==-=θθ ()()119106.1019106.10100d cos 1tan1701d cos 15tan 1θθπθθπαπ-+-=∴⎰⎰()()⎰⎰-=-+-=9106.10119106.101101253.0d cos 1tan170d cos 15tan θθπθθπ()8837.11253.018010220=⎥⎦⎤⎢⎣⎡+⨯=-=∴ππααπL C5—7解:()()()x 2x 3x k 2x 1-x kx y 23f +-=-=()2x 6x 3k dx dy 2f +-= 令0dxdyf =得()正号舍去331±=x ()6x 6k dx y d 2f 2-=将331-=x 代入,得0dx y d 2f2〈因此f y 在331-=x 处取得极大值,2f =% 将331-=x 代入f y 得k=0.052 令()1cos 121x θ-=代入(1)得k 41cos 23cos 43dx dy 112f ⎪⎭⎫ ⎝⎛-+=θθ ()110f 0d cos 1dxdy 1θθπαπ-=∴⎰ ()()0235.11105.00524.0220=-=-=∴πααπL C07794.0d cos dxdy 2110f 1==⎰θθππA 04587.0d dx dy 110f 0=-=⎰θπαπA 0186.0d cos2dx dy 2110f 2=⎪⎭⎫ ⎝⎛=⎰θθππA ()533.0210=+=πA A C L ()1798.041412-=--=L L C A A C π 6—5解:根据开力线理论()()ζζδζπδd d d 41v 22y i Γ-=⎰-L L 已知()2122021202112d d 21⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-Γ-=Γ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-Γ=ΓL L L ζζζζδ; ()11122220y i d sin 2d cos 2cos 2d 213v 21θθζθζθζζζδζζπδL L L L L L L =-=-=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-Γ=∴⎰-;;;令 则⎪⎭⎫ ⎝⎛-Γ-=-Γ-=⎰θθθθθθθππsin 3sin 183d cos cos cos sin 3v 010111220yi L L 当L L L L 43v 283v 3240y i 0y i Γ-===Γ-===,时,时πθζπθζ 6—6解(1)有叠加原理可知,a 处的下洗速度为 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+Γ-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+Γ-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛Γ-=a a 21a 2a 1242a 22a 22a 4v 22222222y i L L L L L L L L πππa 处的下洗角α为L V V L C L LV V L ∞∞∞∞Γ==⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+Γ=-=λρπα221a a 21v 222y i ; 因此a 2L V C L ∞=Γ代入下洗角中得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=a a 21222L C L πλα (2)对于椭圆翼()()00222121ααλπλπλππααπλαα-+=+=-+=∞∞L L L C C C ()02222i 1a a 2211a a 22d ααλπλ-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛=L L C L ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛+=∴1a a 221d dd 22i L λα当4.0a 8==,λ时 26.0d dd i =α6—9解:1268.41;274.0s 21-∞∞∞=+===rad C C C V LC L L L L αααρ 00013.22.1354.3;354.3=-===-ααααLL C C 00385.02==πλLDi C C6—11解:()09985.01;846.0s 2122=+===∞δπλρL Di L C C V LC71.41017N;s 212===∞Lx V C x i Dii ρ% 第七章 7—1解状态方程RT ρ=p3212312123121321300v v w v v 21a25.1019a 62.506a 62.506T T K T KP P KP P KP P ;;;;;;;;========ρρρρρ(1)由状态1等压膨胀到2的过程中,根据质量守恒方程 12v 2v =所以1221ρρ= 等压变化K T T T T T T 600221221122211====∴=;ρρρρ 由32→等容变化,根据质量方程23ρρ= 等容变化2323223322T T T T T P T P ==∴=; (2)介质只在21→过程中膨胀做功KJ 53.21v p w =∇=(3)()996.182m v p =+=T C T C Q δ(4)161.466KJ pdv -q du pdv du q ==∴+=δδ (5)k kj 298.0ln s r 2112v =∆∴⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=δρρδP P C 7—3解根据质量守恒小截面与2A 截面的流量相等即()()()()25.0388.0q q q c q c 2211220201010=∴==∴=λλλλλA A T A P T A P7—4解:气流从Ma=1加速到Ma1=1.5需要的外折角度为091.11='δ总的外折角度0091.2615=+'=δδ 查表得Ma2=2.02456.010********=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⋅=P P P P P P P P P P 7—5解:经过正激波时绝热,总温度0T 不变 根据总静温之比1r 2a 21r 1020+=*∴-+=T T M T T 1r r 2r 1r 200+=*=+=*∴*RT RT C T T ;波后的速度系数为1r r 2v v 0222+==*RT C λ 根据波前波后的速度关系121=λλ 1r r 2v 1021+=∴RT λ 根据马赫数与速度系数的关系,得得波德马赫数2121211r 1r 11r 2a λλ+--+=M 总压损失系数δ为()()1r 121211r 1212a 1r a 1r 1r 1r a 1r r 2---⎥⎦⎤⎢⎣⎡+-+⎪⎭⎫⎝⎛+--+=M M M δ。

空气动力学课后答案(北航)

空气动力学课后答案(北航)

钱第一章 1.1解:)(k s m 84.259m k R 22328315•===-RT p ρ=36m kg 63.5063032.5984105RT P =⨯⨯==ρ 气瓶中氧气的重量为354.938.915.0506.63G =⨯⨯==vg ρ1.2解:建立坐标系根据两圆盘之间的液体速度分布量呈线性分布 则离圆盘中心r ,距底面为h 处的速度为0u kn u +=当n=0时 u=0推出0u 0= 当n=h 时 u=wr 推出hwr k =则摩擦应力τ为hwr u dn du u ==τ上圆盘半径为r 处的微元对中心的转矩为θθτdrd hwr u r rdrd h wr u r dA d 3=⋅=⋅=T则⎰⎰==T 2D 0332032D u drd hr uωπθωπ1.4解:在高为10000米处T=288.15-0.0065⨯10000=288.15-65=223.15压强为⎪⎭⎫ ⎝⎛=T a T Pa P 5.2588MKN43.26Ta T pa p 2588.5=⎪⎭⎫ ⎝⎛=密度为2588.5T a T a ⎪⎭⎫⎝⎛=ρρmkg4127.0Ta T a 2588.5=⎪⎭⎫⎝⎛=∴ρρ1-7解:2M KG 24.464RTPRT p ==∴=ρρ空气的质量为kg 98.662v m ==ρ第二章2-2解流线的微分方程为yx v dyv dx =将v x 和v y 的表达式代入得ydy xdx yx 2dyxy 2dx 22==, 将上式积分得y 2-x 2=c ,将(1,7)点代入得c=7 因此过点(1,7)的流线方程为y 2-x 2=482-3解:将y 2+2xy=常数两边微分 2ydy+2xdx+2ydx=0整理得ydx+(x+y )dy=0 (1) 将曲线的微分方程yx V dy V dy =代入上式得 yVx+(x+y )V y =0 由22y 2xy 2x V ++=得 V x 2+V y 2=x 2+2xy+y 2 ((2)由(1)(2)得()y v y x v y x =+±=,2-5解:直角坐标系与柱坐标系的转换关系如图所示 速度之间的转换关系为{θθθθθθcos v sin v v sin v cos v v r y r x +=-=由θθθθθθcos r1y v sin yrsin r 1xvcos x rrsin y rcos x =∂∂=∂∂⎪⎩⎪⎨⎧-=∂∂=∂∂⇒⎭⎬⎫==()()⎪⎭⎫⎝⎛--∂∂+-∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθsin r 1sin V cos V cos sin V cos V r x v v x r r v x v r r x x xθθθθθθθθθθθθθsin cos V sin V sin V cos V r 1cos sin r V cos r V r r r ⎪⎭⎫ ⎝⎛-∂∂--∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂=θθθθθθθθθθθθθθcos sin V r1sin V r 1sin V r 1cos sin V r 1cos sin r V cos r V 22r r 2r +∂∂++∂∂-∂∂-∂∂=()()θθθθθθθθθcos r1cos V sin V sin cos V sin V r y v v V y r V V V V r r y x y xy +∂∂++∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθθcos r1sin V cos V cos V sin V sin cos r V sin r V r r r ⎪⎭⎫ ⎝⎛-∂∂++∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂=θθθθθθθθθθθθθcos sin V r1cos V r 1cos V r 1cos sin v V r 1cos sin r V sin r V 22r r 2r -∂∂++∂∂+∂∂+∂∂=zV V V r 1r V z V y V x V div z r r z y x ∂∂+⎪⎭⎫ ⎝⎛∂∂++∂∂=∂∂+∂∂+∂∂=∴θυθ2-6解:(1)siny x 3x V 2x -=∂∂ siny x 3y V 2y =∂∂ 0yV x V yx =∂∂+∂∂ ∴此流动满足质量守恒定律(2)siny x 3x V 2x =∂∂ siny x 3y V 2y =∂∂ 0siny x 6y V x V 2y x ≠=∂∂+∂∂ ∴此流动不满足质量守恒定律(3)V x =2rsin rxy2=θ V y =-2rsin 2ry 22-=θ33ry 2x Vx =∂∂332yr 2y y x 4y V +-=∂∂0ryx 4y V x V 32y x ≠-=∂∂+∂∂ ∴此流动不满足质量守恒方程(4)对方程x 2+y 2=常数取微分,得xdy dy dx -= 由流线方程yx v dy v dx =(1) 由)(得2r k v v r k v 422y 2x =+=由(1)(2)得方程3x r ky v ±= 3yr kxv = 25x r kxy3x V =∂∂∴25y rkxy 3yV ±∂∂0yV x V yx =∂∂+∂∂ ∴此流动满足质量守恒方程2—7解:0xVz V 0r yz 23r yz 23z V y V z x 2727y z =∂∂-∂∂=⋅+⋅-=∂∂-∂∂同样 0y V x V x y =∂∂-∂∂ ∴该流场无旋()()()2322222223222z y x z y x z y x d 21zy xzdzydy xdx dz v dy v dx v d ++++⋅=++++=++=Φ c zy x 1222+++-=Φ∴2—8解:(1)a x V x x =∂∂=θ a yV y y =∂∂=θ a z Vz z -=∂∂=θ 021v ;021v ;021v z y x =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y V x V x V z V z V x V x x z x y z (2)0y V x V 210x V z V 210z V y V 21x y z z x y y z x =⎪⎪⎭⎫⎝⎛∂∂-∂∂==⎪⎭⎫ ⎝⎛∂∂-∂∂==⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=ωωω;; 位该流线无旋,存在速度∴ (3)azdz 2aydy axdx dz v dy v dx v d z y x -+=++=ϕc az ay 21ax 21222+-+=∴ϕ2—9解:曲线x 2y=-4,()04y x y x f 2=+=, 切向单位向量22422422y2x 2y2x yx 4x xy 2i yx 4x x j f f fx i f f fy t +-+=+-+=t t v v v t ⋅∇=⋅=∇=ϕϕ切向速度分量 把x=2,y=-1代入得()()j x 2x i y x 2x j yi x v 2+-+--=∂∂+∂∂=∇=ϕϕϕj 21i 21j y x 4x 2xy i y x 4x x t 2242242+=⎪⎪⎭⎫ ⎝⎛+-+= 23t v v t -=⋅= j 23i 23j 21i 2123t v v t t --=⎪⎭⎫⎝⎛+-==2—14解:v=180h km =50s m根据伯努利方程22V 21V 21p ρρρ+=+∞∞ pa p =∞ 驻点处v=0,表示为1531.25pa 501.22521V 21pa p 22=⨯⨯==-∞ρ相对流速为60s m 处得表 示为75.63760225.12125.1531V 21V 21pa p 222-=⨯⨯-=-=-∞ρρ第三章3—1解:根据叠加原理,流动的流函数为()xy arctg 2Q y V y x πϕ+=∞, 速度分量是22y 22x yx y2Q x V y x x 2Q V y V +⋅=∂∂-=+⋅+=∂∂=∞πϕπϕ; 驻点A 的位置由V AX =0 V Ay =0求得 0y V 2Qx A A =-=∞;π 过驻点的流线方程为2x y arctg 2y x y arctg 2y y Q V Q V A A A =+=+∞πθπ θθππθππsin 2r x y arctg 2y -⋅=⎪⎭⎫ ⎝⎛-=∞∞V V Q 或即 在半无限体上,垂直方向的速度为θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q 线面求极值()0-sin v -cos sin v 2d dv 22y=+=∞∞θπθθπθθθ 当0sin =θ 0v v min y y == 2-tg -=θπθmaxyy v v =用迭代法求解2-tg -=θπθ得 取最小值时,y 1v 2183.1139760315.1==θ取最大值时,y 2v 7817.2463071538.4==θ由θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q θπθθθππ-cos sin v r cos 2v y x x 2v v 22x +=+=++=∞∞∞Q Q 可计算出当∞∞===v 6891574.0v v 724611.0v x y 1,时,θθ 6891514.0v v 724611.0v x y 2=-==∞,时,θθ 合速度∞=+=v v v 2y 2x V3—3解:设点源强度为Q ,根据叠加原理,流动的函数为 xa3-y arctg2a x y arctg 2a x y arctg 2πθπθπθϕ+++-=两个速度分量为()()()⎥⎥⎦⎤⎢⎢⎣⎡+++++++--=222222a 3-y x xy a x a x y a x a x 2x πθ()()()⎥⎥⎦⎤⎢⎢⎣⎡++++++-=222222y a 3-y x a3-y y a x y y a x y 2v πθ 对于驻点,0v v y x ==,解得a 33y 0x ==A A ,3—4解:设点源的强度为Q ,点涡的强度为T ,根据叠加原理得合成流动的位函数为Q ππθϕ2lnr 2Γ+= πθϕπθϕθ2r 1r 12r 1r r Γ=∂∂==∂∂=V V ; 速度与极半径的夹角为Qarctg arctg r Γ==V V θθ3—5根据叠加原理得合成流动的流函数为⎪⎪⎭⎫ ⎝⎛+--+=∞y a y yaarctg a y y aarctg V ϕ 两个速度分量为()()()()⎥⎦⎤⎢⎣⎡++---+++=∂∂=∞1y v 2222x y a x a x a y a x a x a V ϕ()()⎥⎦⎤⎢⎣⎡+--++=∂∂-=∞2222y y v y a x yy a x y a V ϕ 由驻点()0a 30,得驻点位置为±==y x v v零流线方程为0ay yaarctg a y y xaarctg y =--++∞∞V V对上式进行改变,得⎪⎭⎫ ⎝⎛-=-+a y tan ay2a y x 222当0x =时,数值求解得a 03065.1y ±=3—9解:根据叠加原理,得合成流动的流函数为a y y arctg 2a y y arctg 2y v -++-=∞ππϕQ Q速度分量为()()2222x ya x ax 2y a x a x 2y v v +-+++++-=∞ππQ Q ()()2222y y a x ax 2y a x a x 2v +-+++++-=ππQ Q 由0v v y x ==得驻点位置为⎪⎪⎭⎫ ⎝⎛+±∞0v a a 2,πQ 过驻点的流线方程为ay yarctg 2a y y arctg 2y v =-++--∞ππQ Q 上面的流线方程可改写为ay yarctg a y y arctg y v 2--+=∞Q π 222a y x ay2a y y arctg a y y arctg tan y v 2tan -+=⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛∴∞Qπ 容易看出y=0满足上面方程当0y ≠时,包含驻点的流线方程可写为⎪⎭⎫ ⎝⎛-=-+∞Q y v 2tan ay2a y x 222π当12v a ===∞πQ 时,包含驻点的流线方程为tanyy21y x 22--=-+3—10解:偶极子位于原点,正指向和负x 轴夹角为α,其流函数为 22yx xsin ycos 2+--=ααπϕM 当45=α时 22yx xy 222+--=πϕM3—11解:圆柱表面上的速度为a2sin v 2v πθΓ--=∞ 222222a4a 2sin v 4v ππθΓ+Γ=∞ 222222v a 4av 2sin 4sin 4v v ∞∞∞Γ+Γ+=⎪⎪⎭⎫ ⎝⎛ππθθ压强分布函数为222p v asin 41sin 41v v 1⎪⎪⎭⎫ ⎝⎛Γ+-=⎪⎪⎭⎫ ⎝⎛-=∞∞θπθC第四章4—1解:查表得标准大气的粘性系数为nkg 1078.1u 5-⨯=65el 1023876.11078.16.030225.1u ⨯=⨯⨯⨯==-∞L V R ρ 平板上下两面所受的总得摩擦阻力为N S V L R F 789.021e 664.0222=⨯⨯=∞ρ 4—2解:沿边阶层的外边界,伯努利方程成立代表逆压梯度代表顺压梯度,时;当时当0m 0m 00m 00m m v v v 21p 12201002〈〉∴〉∂∂〈〈∂∂〉-=-=∂∂-=∂∂=+--xpx p x v x v x v xx p c m m m ρρρρδδδ4—4解:(a )将2x y 21y 23v v ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=δδδ带入(4—90)中的第二式得δδδδδ28039dy vv 1v v 0x x =⎪⎪⎭⎫ ⎝⎛-=⎰**由牛顿粘性定律δτδu u 23y v u 0y x w =⎪⎪⎭⎫ ⎝⎛∂∂==下面求动量积分关系式,因为是平板附面层0dx dv =∴δ积分关系式可表示为dxd v 2w **=δρτδ 将上述关系式代入积分关系式,得δρδδv dxud 14013=边界条件为x=0时,0=δ 积分上式,得平板边界层的厚度沿板长的变化规律()64.428039646.0x x x64.4ll ⨯==∴=**R R δδ(b )()74.164.483x x 83dy v v 1lx =⨯=∴=⎪⎪⎭⎫ ⎝⎛-=*∞*⎰R δδδδ(c )由(a )知()64.4x x l =R δ(d )646.0x x646.0v 21324xx 64.4u23l f l 2wf l w =∴====R C R C R δρτδδδτ)得—由(; (e )单面平板的摩擦阻力为()292.1x x 292.1s v 21b bdx v 21l f l 2f l02f=∴===⎰R C R X C C X F F δδρρ摩阻系数为假设版宽为4—6解:全部为层流时的附面层流厚度由式(4—92)得()01918.048.5L e ==LR Lδ 全部为湍流时的附面层流厚度由式(4—10)得()0817.037.0L 51e ==-LLR δ第五章5-1 一架低速飞机的平直机翼采用NACA2415翼型,问此翼型的f ,f x 和c 各是多少?解:此翼型的最大弯度f =2% 最大弯度位置f x =40% 最大厚度c =15%5-2 有一个小α下的平板翼型,作为近似,将其上的涡集中在41弦点上,见图。

(完整)中国民航大学 简明空气动力学

一、 填空题(每空0.5分)1. 绝热指数k (或γ)与气体 种类 有关,也和气体 温度 有关。

2. 静止的真实流体,作用在其上的表面力有 法向力 ,运动的理想流体,作用在其上的表面力有 法向力 ;运动的真实流体,表面力有 法向力和切向力 。

3. 低速定常理想流体的贝努利方程(沿流线)为 const V p =+221ρ ,式中 P 称为静压, 221V ρ 称为动压。

速度为0的点称为 驻点 。

4. 马赫角φ的计算公式为SIN φ= a/V 或1/M ,M 越大,马赫锥越 细长 。

5. 翼弦和无穷远来流速度的夹角称为 攻角或迎角 。

6. 在相同攻角下,增加翼型的弯度,升力系数 增大 ,因为弯度增大,上翼面流速 加快 ,压强 减小 ,使升力 增加 。

7. 三维机翼在产生升力时伴随产生的阻力叫 诱导阻力 ,升力越大,它越 大 ,展弦比越大,它越小 .8. 飞机作俯仰操纵时使用 升降舵 来实现,飞机作滚转操纵时使用 副翼 来实现。

9. 飞机以等表速爬升时,随着高度的增加,真空速将 不断增大 .10. QNH 是为使高度表在跑道道面指示机场 标高 的高度表的零点拨正值 。

11. 理想的绝热过程是指一定量的气体在状态变化时和外界 无传热 ,气体内部 互不传热 的状态变化过程.12. 音速是 微弱扰动 的传播速度。

13. 超音速气流流过内折壁面时,经过多次折转偏转θ角要比一次偏转θ角 好 ,熵增加得 少 ,总压损失 小 。

14. 研究飞机的侧向动稳定性时,扰动消失后飞机的运动模态分为 滚转模态 、 飘摆模态 和 盘旋下降模态 。

15. 在理想绕流时,作用在翼型上的气动力的合力垂直于 无穷远来流速度 ,翼型只产生 升力 而不产生阻力 ,而粘性流体流经翼型表面时,不仅产生 升力 ,而且产生 阻力 .16. 飞机的展弦比λ越大,升力线斜率L C α 越大 ,在相同迎角下的升力系数 越大 。

17. 完全气体指 忽略分子本身体积 及 分子间相互作用力 的气体.18. 作用在流体上的力包括 质量力 和 表面力 。

空气动力学习题答案

1.1解:)(k s m 84.259mk R 22328315∙===-RT p ρ=36m kg 63.5063032.5984105RT P =⨯⨯==ρ气瓶中氧气的重量为354.938.915.0506.63G =⨯⨯==vg ρ 1.2解:建立坐标系根据两圆盘之间的液体速度分布量呈线性分布 则离圆盘中心r ,距底面为h 处的速度为0u kn u +=当n=0时 u=0推出0u 0= 当n=h 时 u=wr 推出hwr k = 则摩擦应力τ为hwr u dn du u==τ 上圆盘半径为r 处的微元对中心的转矩为θθτdrd hwr u r rdrd h wr u r dA d 3=⋅=⋅=T则⎰⎰==T 2D 0332032D u drd hr uωπθωπ1.4 解:在高为10000米处T=288.15-0.0065⨯10000=288.15-65=223.15压强为⎪⎭⎫ ⎝⎛=T a T Pa P 5.2588MKN43.26Ta T pa p 2588.5=⎪⎭⎫ ⎝⎛=密度为2588.5T a T a ⎪⎭⎫⎝⎛=ρρmkg4127.0Ta T a 2588.5=⎪⎭⎫⎝⎛=∴ρρ1-7解:2M KG 24.464RTPRT p ==∴=ρρ空气的质量为kg 98.662v m ==ρ 2-3解:将y 2+2xy=常数两边微分2ydy+2xdx+2ydx=0整理得ydx+(x+y )dy=0 (1) 将曲线的微分方程yx V dyV dy =代入上式得 yVx+(x+y )V y =0 由22y 2xy 2x V ++=得V x 2+V y 2=x 2+2xy+y 2 ((2)由(1)(2)得()y v y x v y x =+±=, 习题二2-2解:流线的微分方程为yx v dyv dx =将v x 和v y 的表达式代入得ydy xdx yx 2dyxy 2dx 22==, 将上式积分得y 2-x 2=c ,将(1,7)点代入得c=7 因此过点(1,7)的流线方程为y 2-x 2=482-5解:直角坐标系与柱坐标系的转换关系如图所示 速度之间的转换关系为{θθθθθθcos v sin v v sin v cos v v r y r x +=-=由θθθθθθcos r1y v sin yrsin r 1xvcos x rrsin y rcos x =∂∂=∂∂⎪⎩⎪⎨⎧-=∂∂=∂∂⇒⎭⎬⎫==()()⎪⎭⎫⎝⎛--∂∂+-∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθsin r 1sin V cos V cos sin V cos V r x v v x r r v x v r r x x xθθθθθθθθθθθθθs i n c o s V s i n V s i n V c o s V r 1c o s s i n r V c o s r V r r r ⎪⎭⎫ ⎝⎛-∂∂--∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂=θθθθθθθθθθθθθθcos sin V r1sin V r 1sin V r 1cos sin V r 1cos sin r V cos r V 22r r 2r +∂∂++∂∂-∂∂-∂∂=()()θθθθθθθθθcos r1cos V sin V sin cos V sin V r y v v V y r V V V V r r y x y xy +∂∂++∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθθcos r1sin V cos V cos V sin V sin cos r V sin r V r r r ⎪⎭⎫ ⎝⎛-∂∂++∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂=θθθθθθθθθθθθθcos sin V r1cos V r 1cos V r 1cos sin v V r 1cos sin r V sin r V 22r r 2r -∂∂++∂∂+∂∂+∂∂=zV V V r 1r V z V y V x V div z r r z y x ∂∂+⎪⎭⎫ ⎝⎛∂∂++∂∂=∂∂+∂∂+∂∂=∴θυθ 2-6解:(1)siny x 3x V 2x -=∂∂ s i n y x 3y V 2y =∂∂ 0yV x V y x =∂∂+∂∂ ∴此流动满足质量守恒定律(2)siny x 3x V 2x =∂∂ s i n y x 3y V 2y =∂∂ 0siny x 6yV x V 2y x ≠=∂∂+∂∂ ∴此流动不满足质量守恒定律(3)V x =2rsin rxy2=θ V y =-2rsin 2ry 22-=θ33ry 2x Vx =∂∂332yr 2y y x 4y V +-=∂∂0ryx 4y V x V 32y x ≠-=∂∂+∂∂∴此流动不满足质量守恒方程(4)对方程x 2+y 2=常数取微分,得xdy dy dx -= 由流线方程yx v dy v dx =(1) 由)(得2r k v v r k v 422y 2x =+= 由(1)(2)得方程3x r ky v ±= 3y rkx v = 25x r kxy3x V =∂∂∴ 25y rkxy 3yV ±∂∂ 0yV x V yx =∂∂+∂∂∴此流动满足质量守恒方程2—7解:0xVz V 0r yz 23r yz 23z V y V z x 2727y z =∂∂-∂∂=⋅+⋅-=∂∂-∂∂同样 0y V x V x y =∂∂-∂∂∴该流场无旋()()()2322222223222z y x z y x z y x d 21zy x z d z y d y x d x dz v dy v dx v d ++++⋅=++++=++=Φ c zy x 1222+++-=Φ∴2—8解:(1)a x V x x =∂∂=θ a yV y y =∂∂=θ a z Vz z -=∂∂=θ 021v ;021v ;021v z y x =⎪⎪⎭⎫⎝⎛∂∂+∂∂==⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y V x V x V z V z V x V x x z x y z (2)0y V x V 210x V z V 210z V y V 21x y z z x y y z x =⎪⎪⎭⎫⎝⎛∂∂-∂∂==⎪⎭⎫ ⎝⎛∂∂-∂∂==⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=ωωω;; 位该流线无旋,存在速度∴ (3)azdz 2aydy axdx dz v dy v dx v d z y x -+=++=ϕc az ay 21ax 21222+-+=∴ϕ 2—9解:曲线x 2y=-4,()04y x y x f 2=+=, 切向单位向量22422422y2x 2y2x yx 4x xy 2i yx 4x x j f f fx i f f fy t +-+=+-+=t t v v v t ⋅∇=⋅=∇=ϕϕ切向速度分量 把x=2,y=-1代入得()()j x 2x i y x 2x j yi x v 2+-+--=∂∂+∂∂=∇=ϕϕϕ j 21i 21j y x 4x 2xy i y x 4x x t 2242242+=⎪⎪⎭⎫ ⎝⎛+-+= 23t v v t -=⋅= j 23i 23j 21i 2123t v v t t --=⎪⎭⎫⎝⎛+-== 2—14解:v=180hkm =50sm根据伯努利方程22V 21V 21p ρρρ+=+∞∞ pa p =∞ 驻点处v=0,表示为1531.25pa 501.22521V 21pa p 22=⨯⨯==-∞ρ相对流速为60sm 处得表示为75.63760225.12125.1531V 21V 21pa p 222-=⨯⨯-=-=-∞ρρ 习题三3—1解:根据叠加原理,流动的流函数为()xyarctg 2Q y V y x πϕ+=∞, 速度分量是22y 22x yx y2Q x V y x x 2Q V y V +⋅=∂∂-=+⋅+=∂∂=∞πϕπϕ; 驻点A 的位置由V AX =0 V Ay =0求得 0y V 2Qx A A =-=∞;π 过驻点的流线方程为2x y arctg 2y x y arctg 2y y Q V Q V A A A =+=+∞πθπ θθππθππsin 2r x y arctg 2y -⋅=⎪⎭⎫ ⎝⎛-=∞∞V V Q 或即 在半无限体上,垂直方向的速度为θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q 线面求极值()0-sin v -cos sin v 2d dv 22y=+=∞∞θπθθπθθθ 当0sin =θ 0v v miny y ==2-tg -=θπθmaxyy v v =用迭代法求解2-tg -=θπθ得 取最小值时,y 1v 2183.1139760315.1==θ 取最大值时,y 2v 7817.2463071538.4 ==θ由θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q θπθθθππ-cos sin v r cos 2v y x x 2v v 22x +=+=++=∞∞∞Q Q 可计算出当∞∞===v 6891574.0v v 724611.0v x y 1,时,θθ 6891514.0v v 724611.0v x y 2=-==∞,时,θθ合速度∞=+=v v v 2y 2x V3—3解:设点源强度为Q ,根据叠加原理,流动的函数为xa3-y a r c t g2a x y a r c t g 2a x y a r c t g 2πθπθπθϕ+++-=两个速度分量为()()()⎥⎥⎦⎤⎢⎢⎣⎡+++++++--=222222a 3-y x xy a x a x y a x a x 2x πθ()()()⎥⎥⎦⎤⎢⎢⎣⎡++++++-=222222y a 3-y x a3-y y a x y y a x y 2v πθ 对于驻点,0v v y x ==,解得a 33y 0x ==A A , 3—4解:设点源的强度为Q ,点涡的强度为T ,根据叠加原理得合成流动的位函数为Q ππθϕ2l n r 2Γ+=πθϕπθϕθ2r 1r 12r 1r r Γ=∂∂==∂∂=V V ; 速度与极半径的夹角为Qarctg arctgr Γ==V V θθ 3—5根据叠加原理得合成流动的流函数为⎪⎪⎭⎫ ⎝⎛+--+=∞y a y yaarctg a y y aarctgV ϕ 两个速度分量为()()()()⎥⎦⎤⎢⎣⎡++---+++=∂∂=∞1y v 2222x y a x a x a y a x a x a V ϕ ()()⎥⎦⎤⎢⎣⎡+--++=∂∂-=∞2222y y v y a x yy a x y a V ϕ 由驻点()0a 30,得驻点位置为±==y x v v 零流线方程为0ay yaarctg a y y xaarctgy =--++∞∞V V 对上式进行改变,得⎪⎭⎫ ⎝⎛-=-+a y tan ay2a y x 222当0x =时,数值求解得a 03065.1y ±= 3—9解:根据叠加原理,得合成流动的流函数为a y y a r c t g 2a y y a r c t g 2y v -++-=∞ππϕQ Q速度分量为()()2222x y a x ax 2y a x a x 2y v v +-+++++-=∞ππQ Q ()()2222y ya x ax 2y a x a x 2v +-+++++-=ππQ Q 由0v v y x ==得驻点位置为⎪⎪⎭⎫ ⎝⎛+±∞0v a a 2,πQ 过驻点的流线方程为ay y arctg 2a y y arctg 2y v =-++--∞ππQ Q 上面的流线方程可改写为ay y arctga y y arctg y v 2--+=∞Q π 222a y x ay2a y y arctg a y y arctg tan y v 2tan -+=⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛∴∞Qπ 容易看出y=0满足上面方程当0y ≠时,包含驻点的流线方程可写为⎪⎭⎫ ⎝⎛-=-+∞Q y v 2tan ay2a y x 222π当12v a ===∞πQ 时,包含驻点的流线方程为tanyy21y x 22--=-+ 3—10解:偶极子位于原点,正指向和负x 轴夹角为α,其流函数为 22yx x s i n y c o s 2+--=ααπϕM 当45=α时22yx xy 222+--=πϕM 3—11解:圆柱表面上的速度为a2sin v 2v πθΓ--=∞ 222222a4a 2s i n v 4v ππθΓ+Γ=∞ 222222v a 4av 2sin 4sin 4v v ∞∞∞Γ+Γ+=⎪⎪⎭⎫ ⎝⎛ππθθ压强分布函数为222p v asin 41sin 41v v 1⎪⎪⎭⎫ ⎝⎛Γ+-=⎪⎪⎭⎫ ⎝⎛-=∞∞θπθC习题四4—1解:查表得标准大气的粘性系数为nkg 1078.1u 5-⨯= 65el 1023876.11078.16.030225.1u⨯=⨯⨯⨯==-∞LV R ρ 平板上下两面所受的总得摩擦阻力为N S V L R F 789.021e 664.0222=⨯⨯=∞ρ 4—2解:沿边阶层的外边界,伯努利方程成立代表逆压梯度代表顺压梯度,时;当时当0m 0m 00m 00m m v v v 21p 12201002〈〉∴〉∂∂〈〈∂∂〉-=-=∂∂-=∂∂=+--xpx p x v x v x v xx p c m m m ρρρρδδδ 4—4解:(a )将2x y 21y 23v v ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=δδδ带入(4—90)中的第二式得δδδδδ28039dy vv 1v v 0x x =⎪⎪⎭⎫ ⎝⎛-=⎰** 由牛顿粘性定律δτδuu 23y v u 0y xw =⎪⎪⎭⎫⎝⎛∂∂==下面求动量积分关系式,因为是平板附面层 0dx dv =∴δ积分关系式可表示为dxd v 2w **=δρτδ 将上述关系式代入积分关系式,得δρδδv dxud 14013=边界条件为x=0时,0=δ 积分上式,得平板边界层的厚度沿板长的变化规律()64.428039646.0x x x64.4ll ⨯==∴=**R R δδ(b )()74.164.483x x 83dy v v 1lx =⨯=∴=⎪⎪⎭⎫ ⎝⎛-=*∞*⎰R δδδδ(c )由(a )知()64.4x x l =R δ(d )646.0x x646.0v 21324xx 64.4u23l f l 2wf l w =∴====R C R C R δρτδδδτ)得—由(; (e )单面平板的摩擦阻力为()292.1x x 292.1s v 21b bdx v 21l f l 2f l02f=∴===⎰R C R X C C X F F δδρρ摩阻系数为假设版宽为4—6解:全部为层流时的附面层流厚度由式(4—92)得 ()01918.048.5L e ==LR Lδ 全部为湍流时的附面层流厚度由式(4—10)得()0817.037.0L 51e ==-LLR δ第五章5—3证明(1)将r (θ)表示为下列三角级数()⎪⎭⎫⎝⎛+=∑∞=∞1n 0n s i n n s i n c o s v 2r θθθθA A 将其代入(5—35)得()∑∞==+-1n f10dxdy n ncos θαA A 可得⎰⎰=-=ππθθπθπα011fn 01f 0d cosn dxdy 2d dx dy 1A A ;对于平板,0dx dy f =,故有α=0A ,()θθαθsin cos v 2r 0n 21∞=∴===A A A 当πθ→时,()0r ≠π,不满足后缘条件(2)将()⎪⎭⎫⎝⎛++=∑∞=∞1n 0nsins sin cos 1v 2r θθθθA A 将其带入(5—35)积分得()αθθθθθθθθθπππ-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-⎰⎰∑∞=∞dxdy d cos cos sin nsinn cos cos d cos 1v 1f 0021n 2A()∑∞==+-1n 1f10s i n dy n ncos θθαA A⎰-=1f 0d dx dy 1θπαA ⎰=πθθπ011fn d c o s n dx dy 2A 对于平板0dxdyf =,0n 210====∴A A A A ;α()θθαθsin cos 1v 2r +=∴∞当πθ→时,()0r =θ,满足后缘条件5—2解:设在41弦线处布涡的强度为Γ,则该涡在43弦线处产生的诱导速度为c2c 2v yi ππΓ=Γ=若取43弦点为控制点,在改点满足边界条件⎪⎭⎫ ⎝⎛-=Γ∴⎪⎭⎫ ⎝⎛-=Γ∞∞απαπdx dy cv dx dy v c f f 因此开力为⎪⎭⎫⎝⎛-=Γ-=∞∞dx dy cv v f 2αρπρL 开力系数为⎪⎭⎫ ⎝⎛-==∞dx dy 2c v 21f 2απρLC L 对于平板0dx dy f =ππαα22==∴L L C C ;5—4解对于薄翼型,πα2=LC 对于2412翼型,()()1x 4.0x 28.00555.0dxdy 4.0x 0x 28.081dx dy ff ≤≤-=≤≤-=;; 令()1cos 121x θ-=,则当x=0.4时,2.0arccos 1=θ ()()π≤≤-=≤≤-=x 2.0a r c c o s 0.28.00555.0dxdy 2.0arccos x 00.28.081dx dy ff ;;()()()112.0a r c c o s1101f 0d c o s 12.0c o s 811d c o s 1dx dy 1θθθπθθπαπ--=-=∴⎰⎰()()112.0a r c c o s1d c o s 12.0c o s 0555.01θθθππ--+⎰101fn d c o s n dxdy 2θθππ⎰=A()()()()⎥⎦⎤⎢⎣⎡--+--=⎰⎰12.0arccos 1112.0arccos 011cos 12.0cos 0555.02d cos 12.0cos 812θθπθθθππA ()()⎥⎦⎤⎢⎣⎡-+-=⎰⎰πθθθθθθπ2.0arccos 111112.0arccos 012d cos22.0cos 0555.0d cos22.0cos 812A ()214mp 4A A C -=π5—5解:根据余弦定理9924.0c 9849.0abcosc 2b a c 222=∴=-+=9962.0cb c o s ca ac 2b abcosc 2b a a 2ac b c a cos 2222222=-=--++=-+=B 059878.4==∠∴B折算后的迎角为010,()()1x 32170tan dx dy 32x 05tan dx dy d cos 1dxdy 120f 0f 101f00≤≤=≤≤=-=-=⎰;;;θθπαααππL C令()弧度时当9106.131arccos 32x cos 121x 11=⎪⎭⎫⎝⎛-==-=θθ ()()119106.1019106.10100d cos 1tan1701d cos 15tan 1θθπθθπαπ-+-=∴⎰⎰()()⎰⎰-=-+-=9106.10119106.101101253.0d cos 1tan170d cos 15tan θθπθθπ()8837.11253.018010220=⎥⎦⎤⎢⎣⎡+⨯=-=∴ππααπL C 5—7解:()()()x 2x 3x k 2x 1-x kx y 23f +-=-=()2x 6x 3k dx dy 2f +-= 令0dx dy f =得()正号舍去331±=x ()6x 6k dx y d 2f 2-=将331-=x 代入,得0dx y d 2f2〈 因此f y 在331-=x 处取得极大值,2f =%将331-=x 代入f y 得k=0.052 令()1cos 121x θ-=代入(1)得k 41cos 23cos 43dx dy 112f ⎪⎭⎫ ⎝⎛-+=θθ ()110f0d cos 1dxdy 1θθπαπ-=∴⎰()()0235.11105.00524.0220=-=-=∴πααπL C 07794.0d cos dx dy 2110f1==⎰θθππA 04587.0d dxdy 110f0=-=⎰θπαπA0186.0d cos2dx dy 2110f 2=⎪⎭⎫⎝⎛=⎰θθππA ()533.0210=+=πA A C L ()1798.041412-=--=L L C A A C π6—5解:根据开力线理论()()ζζδζπδd d d 41v 22yi Γ-=⎰-LL已知()2122021202112d d 21⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-Γ-=Γ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-Γ=ΓL L L ζζζζδ; ()11122220yi d sin 2d cos 2cos 2d 213v 21θθζθζθζζζδζζπδL L L L L L L =-=-=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-Γ=∴⎰-;;;令 则⎪⎭⎫ ⎝⎛-Γ-=-Γ-=⎰θθθθθθθππsin 3sin 183d cos cos cos sin 3v 01011122yi L L当LLL L 43v 283v 3240yi 0yi Γ-===Γ-===,时,时πθζπθζ6—6解(1)有叠加原理可知,a 处的下洗速度为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+Γ-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+Γ-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛Γ-=a a 21a 2a 1242a 22a 22a 4v 22222222yi L L L L L L L L πππa 处的下洗角α为L V V L C L LV V L ∞∞∞∞Γ==⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+Γ=-=λρπα221a a 21v 222yi ; 因此a 2L V C L ∞=Γ代入下洗角中得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=a a 21222L C L πλα (2)对于椭圆翼()()00222121ααλπλπλππααπλαα-+=+=-+=∞∞L L L C C C()02222i 1aa 2211a a 22d ααλπλ-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛=L L C L ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛+=∴1aa 221d dd 22i L λα当4.0a 8==,λ时26.0d dd i=α6—9解:1268.41;274.0s 21-∞∞∞=+===rad C C C V L C L L LL αααρ00013.22.1354.3;354.3=-===-ααααLLC C00385.02==πλLDi C C 6—11解:()09985.01;846.0s 2122=+===∞δπλρLDi L C C V L C71.41017N;s 212===∞Lx V C x i Di i ρ% 第七章7—1解状态方程RT ρ=p3212312123121321300v v w v v 21a 25.1019a 62.506a 62.506T T K T KP P KP P KP P ;;;;;;;;========ρρρρρ(1)由状态1等压膨胀到2的过程中,根据质量守恒方程12v 2v =所以1221ρρ=等压变化K T T T T T T 600221221122211====∴=;ρρρρ 由32→等容变化,根据质量方程23ρρ= 等容变化2323223322T T T T T P T P ==∴=; (2)介质只在21→过程中膨胀做功KJ 53.21v p w =∇= (3)()996.182m v p =+=T C T C Q δ(4)161.466KJ pdv -q du pdv du q ==∴+=δδ(5)k kj 298.0ln s r 2112v =∆∴⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=δρρδP P C 7—3解根据质量守恒小截面与2A 截面的流量相等即()()()()25.0388.0q q q c q c2211220201010=∴==∴=λλλλλA A T A P T A P7—4解:气流从Ma=1加速到Ma1=1.5需要的外折角度为091.11='δ总的外折角度091.2615=+'=δδ 查表得Ma2=2.02456.010********=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⋅=P P P P P P P P P P 7—5解:经过正激波时绝热,总温度0T 不变根据总静温之比1r 2a 21r 1020+=*∴-+=T T M T T 1r r 2r 1r 200+=*=+=*∴*RT RT C T T ;波后的速度系数为1r r 2v v 0222+==*RT C λ根据波前波后的速度关系121=λλ 1r r 2v 1021+=∴RT λ 根据马赫数与速度系数的关系,得得波德马赫数2121211r 1r 11r 2a λλ+--+=M 总压损失系数δ为()()1r 121211r 1212a 1r a 1r 1r 1r a 1r r 2---⎥⎦⎤⎢⎣⎡+-+⎪⎭⎫⎝⎛+--+=M M M δ。

空气动力学试题

x y z np p p p ===θd 北京航空航天大学2007~2008第二学期空气动力学期末考试真题(附答案)(问答题与计算题部分)一、问答题1、请结合图描述理想流体微团与粘性流体微团在运动与静止状态下的受力差别。

答:(1)静止状态:理想流体与粘性流体均不能承受切向应力,法向应力即为压强在各个方向上相等。

(2)运动状态:理想流体不能承受切向应力,流体微团受力情况与静止状态下相同。

粘性流体由于存在粘性,可以承受切向应力,而且剪应力与压强无关,与角变形率成正比。

d dudt dyθτμμ==x y z ucxvcy w zθθθ∂==∂∂==-∂∂==∂2、请分别写出流体微团平动速度、旋转角速度、线变形速率与角变形速率的表达式。

答:平动速度: u,v,w旋转角速度: 线变形速率: 角变形速率: 3、试分析产生压差阻力的原因。

答:粘性力阻滞流体质点运动,使流体质点减速失去动能,在一定的逆压梯度下,来流与边界层发生分离,在分离点后出现低压区,大大增加了绕流物体的阻力,这就就是压差阻力。

4、请说明微弱扰动在亚声速流场与超声速流场中传播时的差别。

答:亚声速流场中微小扰动可遍及全流场,气流没有达到扰源之前已经感受到它的扰动,逐渐改变流向与气流参数以适应扰源要求;而在超声速流场中,小扰动不会传到扰源上游。

二、计算题1、有不可压流体做定常运动,其速度场为:,,u cx v cy w cxy ==-= 求:(1)线变形率、角变形率; (2)流场就是否有旋;(3)就是否有速度位函数存在,如果有请写出表达式。

解:(1)线变形率:11221122102x y z w v cxy z u w cy z x v u x y ⎛⎫∂∂=+= ⎪∂∂⎝⎭∂∂⎛⎫=+= ⎪∂∂⎝⎭⎛⎫∂∂=+ ⎪∂∂⎝⎭γγγ1A 1P 2A 2P角变形率:(2)由于 因此,流场有旋。

(3)不存在速度位函数。

2、一维定常不可压缩流体流动,密度不变为ρ,如图所示,管道两端截面积分别为1A 、2A ,压强分别为1P 、2P ,求该管道的体积流量 Q 。

空气动力学课后答案(北航)

钱第一章 1.1解:)(k s m 84.259m k R 22328315•===-RT p ρ=36m kg 63.5063032.5984105RT P =⨯⨯==ρ 气瓶中氧气的重量为354.938.915.0506.63G =⨯⨯==vg ρ1.2解:建立坐标系根据两圆盘之间的液体速度分布量呈线性分布 则离圆盘中心r ,距底面为h 处的速度为0u kn u +=当n=0时 u=0推出0u 0= 当n=h 时 u=wr 推出hwr k =则摩擦应力τ为hwr u dn du u ==τ上圆盘半径为r 处的微元对中心的转矩为θθτdrd hwr u r rdrd h wr u r dA d 3=⋅=⋅=T则⎰⎰==T 2D 0332032D u drd hr uωπθωπ1.4解:在高为10000米处T=288.15-0.0065⨯10000=288.15-65=223.15压强为⎪⎭⎫ ⎝⎛=T a T Pa P 5.2588MKN43.26Ta T pa p 2588.5=⎪⎭⎫ ⎝⎛=密度为2588.5T a T a ⎪⎭⎫⎝⎛=ρρmkg4127.0Ta T a 2588.5=⎪⎭⎫⎝⎛=∴ρρ1-7解:2M KG 24.464RTPRT p ==∴=ρρ空气的质量为kg 98.662v m ==ρ第二章2-2解流线的微分方程为yx v dyv dx =将v x 和v y 的表达式代入得ydy xdx yx 2dyxy 2dx 22==, 将上式积分得y 2-x 2=c ,将(1,7)点代入得c=7 因此过点(1,7)的流线方程为y 2-x 2=482-3解:将y 2+2xy=常数两边微分 2ydy+2xdx+2ydx=0整理得ydx+(x+y )dy=0 (1) 将曲线的微分方程yx V dy V dy =代入上式得 yVx+(x+y )V y =0 由22y 2xy 2x V ++=得 V x 2+V y 2=x 2+2xy+y 2 ((2)由(1)(2)得()y v y x v y x =+±=,2-5解:直角坐标系与柱坐标系的转换关系如图所示 速度之间的转换关系为{θθθθθθcos v sin v v sin v cos v v r y r x +=-=由θθθθθθcos r1y v sin yrsin r 1xvcos x rrsin y rcos x =∂∂=∂∂⎪⎩⎪⎨⎧-=∂∂=∂∂⇒⎭⎬⎫==()()⎪⎭⎫⎝⎛--∂∂+-∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθsin r 1sin V cos V cos sin V cos V r x v v x r r v x v r r x x xθθθθθθθθθθθθθsin cos V sin V sin V cos V r 1cos sin r V cos r V r r r ⎪⎭⎫ ⎝⎛-∂∂--∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂=θθθθθθθθθθθθθθcos sin V r1sin V r 1sin V r 1cos sin V r 1cos sin r V cos r V 22r r 2r +∂∂++∂∂-∂∂-∂∂=()()θθθθθθθθθcos r1cos V sin V sin cos V sin V r y v v V y r V V V V r r y x y xy +∂∂++∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθθcos r1sin V cos V cos V sin V sin cos r V sin r V r r r ⎪⎭⎫ ⎝⎛-∂∂++∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂=θθθθθθθθθθθθθcos sin V r1cos V r 1cos V r 1cos sin v V r 1cos sin r V sin r V 22r r 2r -∂∂++∂∂+∂∂+∂∂=zV V V r 1r V z V y V x V div z r r z y x ∂∂+⎪⎭⎫ ⎝⎛∂∂++∂∂=∂∂+∂∂+∂∂=∴θυθ2-6解:(1)siny x 3x V 2x -=∂∂ siny x 3y V 2y =∂∂ 0yV x V yx =∂∂+∂∂ ∴此流动满足质量守恒定律(2)siny x 3x V 2x =∂∂ siny x 3y V 2y =∂∂ 0siny x 6y V x V 2y x ≠=∂∂+∂∂ ∴此流动不满足质量守恒定律(3)V x =2rsin rxy2=θ V y =-2rsin 2ry 22-=θ33ry 2x Vx =∂∂332yr 2y y x 4y V +-=∂∂0ryx 4y V x V 32y x ≠-=∂∂+∂∂ ∴此流动不满足质量守恒方程(4)对方程x 2+y 2=常数取微分,得xdy dy dx -= 由流线方程yx v dy v dx =(1) 由)(得2r k v v r k v 422y 2x =+=由(1)(2)得方程3x r ky v ±= 3yr kxv = 25x r kxy3x V =∂∂∴25y rkxy 3yV ±∂∂0yV x V yx =∂∂+∂∂ ∴此流动满足质量守恒方程2—7解:0xVz V 0r yz 23r yz 23z V y V z x 2727y z =∂∂-∂∂=⋅+⋅-=∂∂-∂∂同样 0y V x V x y =∂∂-∂∂ ∴该流场无旋()()()2322222223222z y x z y x z y x d 21zy xzdzydy xdx dz v dy v dx v d ++++⋅=++++=++=Φ c zy x 1222+++-=Φ∴2—8解:(1)a x V x x =∂∂=θ a yV y y =∂∂=θ a z Vz z -=∂∂=θ 021v ;021v ;021v z y x =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y V x V x V z V z V x V x x z x y z (2)0y V x V 210x V z V 210z V y V 21x y z z x y y z x =⎪⎪⎭⎫⎝⎛∂∂-∂∂==⎪⎭⎫ ⎝⎛∂∂-∂∂==⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=ωωω;; 位该流线无旋,存在速度∴ (3)azdz 2aydy axdx dz v dy v dx v d z y x -+=++=ϕc az ay 21ax 21222+-+=∴ϕ2—9解:曲线x 2y=-4,()04y x y x f 2=+=, 切向单位向量22422422y2x 2y2x yx 4x xy 2i yx 4x x j f f fx i f f fy t +-+=+-+=t t v v v t ⋅∇=⋅=∇=ϕϕ切向速度分量 把x=2,y=-1代入得()()j x 2x i y x 2x j yi x v 2+-+--=∂∂+∂∂=∇=ϕϕϕj 21i 21j y x 4x 2xy i y x 4x x t 2242242+=⎪⎪⎭⎫ ⎝⎛+-+= 23t v v t -=⋅= j 23i 23j 21i 2123t v v t t --=⎪⎭⎫⎝⎛+-==2—14解:v=180h km =50s m根据伯努利方程22V 21V 21p ρρρ+=+∞∞ pa p =∞ 驻点处v=0,表示为1531.25pa 501.22521V 21pa p 22=⨯⨯==-∞ρ相对流速为60s m 处得表 示为75.63760225.12125.1531V 21V 21pa p 222-=⨯⨯-=-=-∞ρρ第三章3—1解:根据叠加原理,流动的流函数为()xy arctg 2Q y V y x πϕ+=∞, 速度分量是22y 22x yx y2Q x V y x x 2Q V y V +⋅=∂∂-=+⋅+=∂∂=∞πϕπϕ; 驻点A 的位置由V AX =0 V Ay =0求得 0y V 2Qx A A =-=∞;π 过驻点的流线方程为2x y arctg 2y x y arctg 2y y Q V Q V A A A =+=+∞πθπ θθππθππsin 2r x y arctg 2y -⋅=⎪⎭⎫ ⎝⎛-=∞∞V V Q 或即 在半无限体上,垂直方向的速度为θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q 线面求极值()0-sin v -cos sin v 2d dv 22y=+=∞∞θπθθπθθθ 当0sin =θ 0v v min y y == 2-tg -=θπθmaxyy v v =用迭代法求解2-tg -=θπθ得 取最小值时,y 1v 2183.1139760315.1==θ取最大值时,y 2v 7817.2463071538.4==θ由θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q θπθθθππ-cos sin v r cos 2v y x x 2v v 22x +=+=++=∞∞∞Q Q 可计算出当∞∞===v 6891574.0v v 724611.0v x y 1,时,θθ 6891514.0v v 724611.0v x y 2=-==∞,时,θθ 合速度∞=+=v v v 2y 2x V3—3解:设点源强度为Q ,根据叠加原理,流动的函数为 xa3-y arctg2a x y arctg 2a x y arctg 2πθπθπθϕ+++-=两个速度分量为()()()⎥⎥⎦⎤⎢⎢⎣⎡+++++++--=222222a 3-y x xy a x a x y a x a x 2x πθ()()()⎥⎥⎦⎤⎢⎢⎣⎡++++++-=222222y a 3-y x a3-y y a x y y a x y 2v πθ 对于驻点,0v v y x ==,解得a 33y 0x ==A A ,3—4解:设点源的强度为Q ,点涡的强度为T ,根据叠加原理得合成流动的位函数为Q ππθϕ2lnr 2Γ+= πθϕπθϕθ2r 1r 12r 1r r Γ=∂∂==∂∂=V V ; 速度与极半径的夹角为Qarctg arctg r Γ==V V θθ3—5根据叠加原理得合成流动的流函数为⎪⎪⎭⎫ ⎝⎛+--+=∞y a y yaarctg a y y aarctg V ϕ 两个速度分量为()()()()⎥⎦⎤⎢⎣⎡++---+++=∂∂=∞1y v 2222x y a x a x a y a x a x a V ϕ()()⎥⎦⎤⎢⎣⎡+--++=∂∂-=∞2222y y v y a x yy a x y a V ϕ 由驻点()0a 30,得驻点位置为±==y x v v零流线方程为0ay yaarctg a y y xaarctg y =--++∞∞V V对上式进行改变,得⎪⎭⎫ ⎝⎛-=-+a y tan ay2a y x 222当0x =时,数值求解得a 03065.1y ±=3—9解:根据叠加原理,得合成流动的流函数为a y y arctg 2a y y arctg 2y v -++-=∞ππϕQ Q速度分量为()()2222x ya x ax 2y a x a x 2y v v +-+++++-=∞ππQ Q ()()2222y y a x ax 2y a x a x 2v +-+++++-=ππQ Q 由0v v y x ==得驻点位置为⎪⎪⎭⎫ ⎝⎛+±∞0v a a 2,πQ 过驻点的流线方程为ay yarctg 2a y y arctg 2y v =-++--∞ππQ Q 上面的流线方程可改写为ay yarctg a y y arctg y v 2--+=∞Q π 222a y x ay2a y y arctg a y y arctg tan y v 2tan -+=⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛∴∞Qπ 容易看出y=0满足上面方程当0y ≠时,包含驻点的流线方程可写为⎪⎭⎫ ⎝⎛-=-+∞Q y v 2tan ay2a y x 222π当12v a ===∞πQ 时,包含驻点的流线方程为tanyy21y x 22--=-+3—10解:偶极子位于原点,正指向和负x 轴夹角为α,其流函数为 22yx xsin ycos 2+--=ααπϕM 当45=α时 22yx xy 222+--=πϕM3—11解:圆柱表面上的速度为a2sin v 2v πθΓ--=∞ 222222a4a 2sin v 4v ππθΓ+Γ=∞ 222222v a 4av 2sin 4sin 4v v ∞∞∞Γ+Γ+=⎪⎪⎭⎫ ⎝⎛ππθθ压强分布函数为222p v asin 41sin 41v v 1⎪⎪⎭⎫ ⎝⎛Γ+-=⎪⎪⎭⎫ ⎝⎛-=∞∞θπθC第四章4—1解:查表得标准大气的粘性系数为nkg 1078.1u 5-⨯=65el 1023876.11078.16.030225.1u ⨯=⨯⨯⨯==-∞L V R ρ 平板上下两面所受的总得摩擦阻力为N S V L R F 789.021e 664.0222=⨯⨯=∞ρ 4—2解:沿边阶层的外边界,伯努利方程成立代表逆压梯度代表顺压梯度,时;当时当0m 0m 00m 00m m v v v 21p 12201002〈〉∴〉∂∂〈〈∂∂〉-=-=∂∂-=∂∂=+--xpx p x v x v x v xx p c m m m ρρρρδδδ4—4解:(a )将2x y 21y 23v v ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=δδδ带入(4—90)中的第二式得δδδδδ28039dy vv 1v v 0x x =⎪⎪⎭⎫ ⎝⎛-=⎰**由牛顿粘性定律δτδu u 23y v u 0y x w =⎪⎪⎭⎫ ⎝⎛∂∂==下面求动量积分关系式,因为是平板附面层0dx dv =∴δ积分关系式可表示为dxd v 2w **=δρτδ 将上述关系式代入积分关系式,得δρδδv dxud 14013=边界条件为x=0时,0=δ 积分上式,得平板边界层的厚度沿板长的变化规律()64.428039646.0x x x64.4ll ⨯==∴=**R R δδ(b )()74.164.483x x 83dy v v 1lx =⨯=∴=⎪⎪⎭⎫ ⎝⎛-=*∞*⎰R δδδδ(c )由(a )知()64.4x x l =R δ(d )646.0x x646.0v 21324xx 64.4u23l f l 2wf l w =∴====R C R C R δρτδδδτ)得—由(; (e )单面平板的摩擦阻力为()292.1x x 292.1s v 21b bdx v 21l f l 2f l02f=∴===⎰R C R X C C X F F δδρρ摩阻系数为假设版宽为4—6解:全部为层流时的附面层流厚度由式(4—92)得()01918.048.5L e ==LR Lδ 全部为湍流时的附面层流厚度由式(4—10)得()0817.037.0L 51e ==-LLR δ第五章5-1 一架低速飞机的平直机翼采用NACA2415翼型,问此翼型的f ,f x 和c 各是多少?解:此翼型的最大弯度f =2% 最大弯度位置f x =40% 最大厚度c =15%5-2 有一个小α下的平板翼型,作为近似,将其上的涡集中在41弦点上,见图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006-2007学年第二学期
空气动力学(A )试卷标准答案
一、 选择题(在所选括号内打,可多选,每小题4分,共16分) 1、c 2、d 3、d 4、abcd
二、 填空题(在括号中填写适当内容,每小题4分,共16分) 1、L V ρ∞=Γ
2、⎰⎰⎰⋅=⋅=ΓS
L
S d s d V
ω2
3、
22V p gz C ρ++=,2
12
V h C += 4、 亚音速 超音速 面积A 减小 减小 速度V 增加 减小 压力P 减小 增加 密度ρ 减小 增加 温度T 减小 增加 马赫数M 增加 减小
三、 简答题(每小题5分,共20分)
1、 用图形说明理想不可压流体无环量和有环量圆柱绕流的特点。

答:
无环量的圆柱绕流,流场上下、左右对称,无阻力和升力。

有环量的圆柱绕流,流场左右对称,上下不对称,无阻力,但有升力。

2、
证明理想不可压缩势流速度势函数满足拉普拉斯方程。

证明:速度势函数(位函数)为
V u v w x y z
φφφφ∂∂∂=∇=
==∂∂∂ 将上式代入不可压缩流体的连续方程中,得到
2222220
0 0V u v w x y z x y z
φφφφ
∇⋅=∇⋅∇=∂∂∂∂∂∂++=++=∂∂∂∂∂∂
3、
说明产生压差阻力的主要原因。

答:压差阻力是由于作用于绕流物体物面上压强分布前后不对称引起的,主要起因于物面边界层分离,造成分离区出现低压区(或负压区),从而导致前后物面上的压强分布存在大的压差。

4、 说明超声速气流通过激波和膨胀波时,波前后气流参数(速度、压强、温度、密度、总温、总压、总密度)的变化趋势是什么,并说明是否为等熵过程。

答:激波前到激波后:速度减小,压强增加,温度升高,密度增加,总温不变,总压下降,熵增加。

膨胀波由前到后,速度增加,压强减小,温度减小,密度减小,总温不变,总压不变,等熵。

四、 计算题(共48分)
1、
解:=,,2x y z u ax u ay u az ==-
(1)
=
,y=,y=-220, 20, 20
y x z y y x x z z z y x u u u
x a a a x y z
u u u u u u x y z x z y
θθθγγγ∂∂∂===∂∂∂∂∂∂∂∂∂=+==+==+=∂∂∂∂∂∂线变形率:
角变形率:
(2)1110,0,0222y y x x z z
x y z u u u u u u y z z x x y ωωω∂∂⎛⎫⎛⎫∂∂∂∂⎛⎫
=
-==-==-= ⎪ ⎪ ⎪
∂∂∂∂∂∂⎝⎭
⎝⎭⎝⎭ 因为各处角速度都为零,所以是无旋流场。

(3)d =d +d +d d +d -2d x y z u x u y u z =ax x ay y az z φ
22211=-22
ax ay az φ+
2、 解:
由不可压缩连续方程可知
2211A V A V =,12
1
2V A A V =
由伯努力方程可得
2222112
1
21V p V p ρρ+=+
对于p 2有
gh p p m a ρ-=2
)
1/()
(222
2111--+=
A A p gh p V a m ρρ
3、 解:
(1)
200V )cos 2V 2V sin 2sin 4V 302V a r r a
a a θφθθ
π
θπθπθπ∞∞∞

ΓΓ
-Γ-Γ=-
=-︒Γ=布置涡(强度-)之后的速度势函数为=(+圆柱面上=-驻点位置又所以
(2)
r 2222
2V =0,V 2V sin 2V V 2V sin 2V Cp 11(2sin )14sin (1)V 2V 4V sin a
a
a a θθθπθπθθππθ
∞∞∞∞∞Γ
-
Γ
=-
ΓΓ
=-=-+=-+柱面上
=-=- (3)圆柱上所受的升力大小
2
L=V 2V a ρπρ∞
∞Γ=
4、
解:
10
20u y
u u 1(1)dy u 2
u u 1(1)dy u u 6δδ
δδ
δ
δδδδδδ==-
==-=⎰⎰
位移厚度
动量损失厚度
w y 0w w 22212u u
(
)y d d dx u dx u d 6dx u δδδδτμτμδ
τδδμρρδ
δμ
δρδδδ=∂==∂===
=
====由牛顿粘性定律得又根据平板情况下的卡门动量积分关系式得所以
2
02
1)Re 1
12
2(
δ
δ
ρδ
μ
τu u x == 5、 解: 已知:
2
0500065.0293105.35.0m A K T Pa p Ma ==⨯==
由能量方程得到
K Ma
T T 05.27905.1293
2
1120==-+=
γ
由等熵流动,得到
Pa p Ma p p 512010866.2,211⨯=⎪⎭
⎫ ⎝⎛-+=-γγ
γ
35/579.305
.27928710866.2m kg RT p =⨯⨯==ρ
s m RT Mac V /43.1675.0===γ
质量流量
s kg AV m /895.343.1670065.0579.3=⨯⨯=='ρ。

相关文档
最新文档