飞行控制系统大作业
飞行器的飞行控制系统设计与开发

飞行器的飞行控制系统设计与开发飞行器的飞行控制系统是飞行器运行的核心部分,它负责控制和管理飞行器的飞行姿态、导航和飞行指令执行等功能。
本文将讨论飞行器飞行控制系统的设计与开发,着重介绍系统的组成、控制算法和开发流程。
一、飞行控制系统的组成飞行控制系统由传感器、执行器、控制算法和数据处理等模块组成。
传感器负责采集飞行器的运行状态信息,包括姿态角、加速度、角速度、位置等。
执行器通过控制信号实施飞行器的姿态调整和舵面操作。
控制算法根据传感器采集的数据和飞行任务要求,计算出相应的控制指令。
数据处理模块负责处理传感器数据、执行器信号和控制指令等信息。
二、飞行控制系统的控制算法飞行控制系统的核心是控制算法,它确定飞行器的运行轨迹和姿态调整方式。
常用的控制算法包括PID控制、模糊控制和自适应控制等。
PID控制通过比较控制目标与实际输出之间的差异,调整控制信号,实现控制目标的稳定和精确控制。
模糊控制基于模糊逻辑推理,根据输入变量和一组规则,计算出相应的控制信号。
自适应控制能够根据环境的变化和飞行器的动态特性,自动调整控制参数,提高控制的性能和鲁棒性。
三、飞行控制系统的开发流程飞行控制系统的开发流程主要包括需求分析、系统设计、软硬件开发、测试验证和上线部署等步骤。
需求分析阶段确定系统的功能和性能要求,明确控制算法和硬件平台选择。
系统设计阶段根据需求分析的结果,设计系统的硬件架构和软件结构,并进行模块划分和接口定义。
软硬件开发阶段分别完成系统的软件编码和硬件电路设计,保证飞行控制系统能够准确计算和执行控制指令。
测试验证阶段对系统进行全面的功能验证和性能测试,确保系统满足设计要求。
上线部署阶段将飞行控制系统安装到飞行器中,并进行实际飞行测试,最终投入实际运行。
总结:飞行器的飞行控制系统是飞行器飞行过程中不可或缺的重要组成部分。
通过合理的系统设计、优秀的控制算法和严谨的开发流程,可以实现飞行器的稳定、精确和安全控制。
不断的技术创新和系统优化,将进一步提升飞行器的性能和应用范围,为航空事业的发展做出贡献。
飞行控制系统设计

飞行控制系统设计飞行控制系统是保障飞机正常飞行的核心系统。
它通过感知环境、收集数据、分析信息,并采取相应的控制措施,确保飞机在各种飞行阶段和飞行任务中保持安全、平稳和可靠。
本文将从飞行控制系统的组成部分、设计原则和优化策略等方面来讨论飞行控制系统的设计。
一、飞行控制系统的组成部分飞行控制系统主要包括飞行引导、航向控制、姿态控制和自动驾驶等几个主要功能模块。
1. 飞行引导:飞行引导是飞行控制系统的基础部分,负责获取飞机的位置、速度、姿态等基本信息,并根据这些数据提供相应的引导指令,保证飞机在指定的航线上飞行。
2. 航向控制:航向控制是确保飞机在水平面上维持所需的航向的功能。
它通过调整飞机的方向舵和副翼等控制面,实现对飞机航向的控制。
3. 姿态控制:姿态控制是确保飞机在各种飞行动作中能够保持合适的姿态,如升降、俯仰和滚转等。
它通过调整飞机的副翼、方向舵和升降舵等控制面,实现对飞机姿态的控制。
4. 自动驾驶:自动驾驶是飞行控制系统的高级功能之一,它能够根据设定的飞行计划和任务要求,实现自主导航、自主飞行和自主着陆等操作。
自动驾驶的实现需要依赖精密的惯性导航系统、电子航图以及先进的控制算法。
二、飞行控制系统设计原则在设计飞行控制系统时,需要考虑以下几个原则:1. 安全可靠性原则:飞行控制系统是飞机的核心系统,设计时必须确保其安全性和可靠性。
系统需要具备故障检测与容错能力,能够在出现故障时及时切换到备用控制模式,保证飞机飞行的安全。
2. 稳定性原则:飞行控制系统设计应保证飞机在各种飞行阶段和飞行任务中保持稳定。
系统需要具备良好的控制性能,能够对飞机的姿态和航向进行精确的控制,确保飞机飞行平稳。
3. 灵活性原则:飞行控制系统应具备一定的灵活性,能够适应不同飞行任务的需求。
系统需要具备可调节参数和可编程控制算法等功能,能够在不同的飞行条件下进行自适应控制。
4. 性能优化原则:飞行控制系统的设计需要尽可能优化系统的性能。
03第3章 自动飞行控制系统

AP有三套控制回路即通道(Channel):
控制升降舵的回路,称为俯仰通道; 控制副翼的回路,称为横滚通道; 控制方向舵的回路,称为航向通道。
有的飞机上AP只控制副翼和升降舵,而方向舵由偏航阻 尼器控制。
2.AP的工作原理
自动驾驶仪
测量元 件 信号处理 元件 放大元 件 执行元 件 升降舵
2018年03月
第3章 自动飞行控制系统
自动飞行控制系统
中国民航大学 空管学院
一、概述
现代运输飞机安装自动飞行控制(AFCS)的目的:为了减轻 驾驶员的体力和精力,提高飞机飞行精度,保证飞行安全, 高质量地完成各项任务。 自动飞行控制系统 可在飞机除起飞外的离 场、爬升、巡航、下降 和进近着陆的整个飞行 阶段中使用。
三 第十六章 自动飞行控制系统
4.A/T的工作方式
(1)推力方式(EPR/N1/THR) TMC根据人工选择的推力或自动飞行时FMC(或FCC)计算的推力 和发动机的实际推力相比较,计算出他们的差值,再根据飞机 当前的高度、速度、大气温度、姿态等,计算出要维持选择的 N1(EPR)值所需油门位置的信号。 当需要推力来保持飞机 的飞行剖面或者飞行速 度时,自动油门处在推 力方式
3.自动推力的接通与断开
(1)自动推力的接通
油门杆处于A/THR 工作范围内(包括慢车位)时,按压FCU
上的A/THR 按钮,就可以起动自动推力。
油门杆位置决定可由A/T系统指令的最大推力。
(2)自动推力的断开
* 标准断开
-按下油门杆上的自然断开按钮,或
-两个油门杆放在慢车卡位。 * 非标准断开
二、自动驾驶(AP)
1.自动驾驶仪的基本功能
在飞行中代替飞行员控制飞机舵面,以使飞机稳定在某一状态 或操纵飞机从一种状态进入另一种状态。可实现飞机的: (1)自动保持飞机沿三个轴的稳定; (2)接收驾驶员的输入指令,操纵飞机以达到希望的俯仰角、 航向、空速或升降速度等; (3)接收驾驶员的设定,控制飞机按预定高度、预定航向飞 行; (4)与飞行管理计算机耦合,实现按预定飞行轨迹飞行; (5)与仪表着陆系统(ILS)耦合,实现飞机的自动着陆
无人机飞控实训报告书

一、实训背景随着无人机技术的飞速发展,无人机应用领域日益广泛,无人机飞控技术的研究与实训也变得尤为重要。
本实训旨在通过实际操作,使学员掌握无人机飞控系统的基本原理、操作方法和故障排除技巧,提高无人机操控水平,为我国无人机产业发展贡献力量。
二、实训目的1. 熟悉无人机飞控系统的组成及工作原理;2. 掌握无人机的基本操控方法和技巧;3. 学会无人机故障排除和应急处理;4. 培养团队合作精神,提高无人机操控技能。
三、实训内容1. 无人机飞控系统概述(1)无人机飞控系统组成:无人机飞控系统主要包括飞行控制器、传感器、执行器、电源等部分。
(2)无人机飞控系统工作原理:通过传感器获取飞行数据,飞行控制器根据预设算法进行计算,控制执行器调整无人机的飞行姿态和速度。
2. 无人机基本操控(1)起飞:将无人机置于起飞平台,打开电源,调整飞行姿态,缓慢起飞。
(2)飞行:根据任务需求,调整飞行速度、高度和姿态。
(3)降落:调整飞行速度和高度,缓慢降落至指定区域。
3. 无人机故障排除与应急处理(1)故障现象:无人机飞行过程中出现异常情况,如失控、倾斜、失控等。
(2)故障原因分析:根据故障现象,分析故障原因,如传感器故障、执行器故障、电源故障等。
(3)故障排除:针对故障原因,采取相应措施进行排除,如更换传感器、调整参数、检查电源等。
4. 无人机操控技巧(1)飞行稳定性:保持无人机飞行过程中的稳定性,避免失控。
(2)操控精度:提高操控精度,使无人机按照预定轨迹飞行。
(3)应急处理:学会应对突发情况,如飞行过程中遇到障碍物、突然降落的应急处理。
四、实训过程1. 理论学习:学员通过查阅资料、观看教学视频等方式,了解无人机飞控系统的基本原理和操作方法。
2. 实操训练:在专业教师的指导下,学员进行无人机起飞、飞行、降落等基本操作训练。
3. 故障排除训练:学员在飞行过程中,遇到故障现象,通过分析原因,进行故障排除训练。
4. 操控技巧训练:学员在飞行过程中,通过不断尝试,提高操控技巧。
飞行控制系统典型飞行控制系统工作原理ppt幻灯片

因为飞机的角运动通常可以分解为绕三 轴的角运动,因而阻尼器也有俯仰阻尼器、 倾斜阻尼器及偏航阻尼器 。
❖组成:
阻尼器由角速率陀螺,放大器和舵回路 组成。舵回路中包括串联副舵机,反馈元 件,总和元件
q 速率陀螺
放大器
舵回路 阻尼器
助力器 e
阻尼系统:
❖ 阻尼器与飞机(不是飞控)构成回路(如 下图)如同是阻尼比改善了的新飞机,称 为飞机—阻尼系统,简称阻尼系统。
,称为拉平阶段
当
根轨迹进入s右半平面,系统不稳定。
,且航迹倾斜角 减小,使飞机沿曲线拉起
等效系统法(参见书p272-P273) 当
,即无一阶微分信号
❖ 侧向波束导引系统原理与下滑波束导引系统相似,不再作介绍。
都增大了,而绕纵轴的
类似高度控制系统,即俯仰角自控系统为内回路,增加空速传感器,当空速传感器换为M传感器时,就是M数自控系统
2)考虑助力器及舵回路惯性时阻尼器控制律
助力器传递函数为一阶惯性环节:
Ge (S)
1 s
1
1
舵回路传递函数为二阶环节:
G (S)
( s )2
1
2
s
1
阻尼器控制律为:
e Ge (S ) G (S ) L
LK T S 1
S
1
1
S
2
2
S
1
Td2S 2
2dTd S
1
❖ 惯频比性率环特c节 性与的大系G影3统e 响~s5截取倍止决以及频于上振率这,荡些助环环力c节节器的的,关G连舵系 接回。s频路若率惯对性1系只、1统给及 系统带来一些相移,不影响系统稳定性。
0m,提高 ,使空速向量与地平面平行―是保持段,然后减小 角,G>L,飞机飘落,滑跑。
飞行控制系统设计与性能分析

飞行控制系统设计与性能分析随着现代科技信息的发展,飞行控制系统已经成为飞机的核心部分之一,它能够准确地控制飞机的飞行和姿态,使得飞行员能够轻松地操纵飞机。
因此,飞行控制系统是现代民用和军用飞机中的重要组成部分,而其性能分析、设计和开发已成为一个热点话题。
本文将从飞行控制系统的基本工作原理、性能分析和设计的角度,探讨飞行控制系统的设计与性能分析。
一、飞行控制系统的工作原理在深入了解飞行控制系统的性能分析和设计之前,为了更好地理解本文的主题,我们首先需要简要地了解一下飞行控制系统的基本工作原理。
在传统的飞行控制系统中,飞行控制系统的基本工作原理是通过一系列的传感器和控制系统来控制飞机的运动和姿态,并控制其高度和速度。
通常,一个完整的飞行控制系统包括了以下几个部分:1.传感器和执行器——这部分为飞行控制系统提供必要的测量数据,并控制飞机的动作。
2.飞行控制计算器——飞行控制计算器是整个飞行控制系统的心脏,通过输入的传感器数据计算出精确的姿态和速度,再根据这些数据来控制执行器。
3.作动器和伺服控制——由于执行器负责控制飞机的各个部分,因此它们必须具备极高的精度和可靠性。
作动器负责将电子命令转化为机械运动,并确保飞机能够及时地响应这些命令。
根据不同平台的需要,上述部分可以进一步的细分。
但是总的来说,传感器和执行器、飞行控制计算器以及作动器和伺服控制等部分组成了一个完整的飞行控制系统。
二、飞行控制系统的性能分析在设计和开发飞行控制系统的时候,性能分析是非常重要的一环。
在飞行控制系统性能分析过程中,主要包括3个方面的内容:1.传感器和执行器性能分析——传感器和执行器是飞行控制系统的基础性部件,其性能是整个飞行控制系统的关键之一。
传感器主要将环境信息转换为数字形式,这些信息包括风速、速度、温度、高度等。
因此,传感器的性能主要取决于其响应时间、分辨率、精度以及稳定性等因素。
而执行器则是将飞行控制系统输入的信号转化为飞机的机械动作,它的性能主要取决于其稳定性、速度、精度以及响应时间等因素。
飞机飞行控制课件
添加标题
添加标题
控制过程:通过传感器获取数据, 计算控制量,输出到执行机构,实 现对飞机的控制
飞机飞行控制系统的硬件组成
飞行控制系统的主要硬件设备
飞行控制计算机:负责处 理飞行控制指令和飞行数 据
传感器:包括加速度计、 陀螺仪、高度计等,用于 测量飞机的姿态、速度、 高度等参数
执行机构:包括舵机、电 动机、液压泵等,用于执 行飞行控制指令
飞行控制系统的功能
控制飞机的飞行姿态和速度
确保飞机的安全性和舒适性
添加标题
添加标题
保持飞机的稳定性和操纵性
添加标题
添加标题
提高飞机的飞行效率和性能
飞机飞行控制系统的工作原理
飞行控制系统的基本原理
飞机飞行控制系统主要由传感 器、执行器和控制器组成
传感器负责收集飞机的各种飞 行参数,如速度、高度、姿态 等
环境适应性:设计 适应各种恶劣环境 的硬件,如高温、 低温、振动等
维护与升级:定期 维护和升级硬件, 确保系统始终处于 最佳工作状态
飞机飞行控制系统的软件设计
飞行控制系统软件的功能和特点
飞行控制系统软 件是飞机飞行控 制的核心部分, 负责控制飞机的 飞行姿态、速度 和高度等参数。
飞行控制系统软 件具有高度的可 靠性和稳定性, 能够保证飞机在 各种飞行条件下 的安全飞行。
通信设备:包括无线电、 卫星通信等,用于传输飞 行控制指令和飞行数据
显示设备:包括显示器、 指示灯等,用于显示飞行 状态电力支持
飞行控制系统硬件的连接方式
传感器:用于检测 飞机的飞行状态和 参数
计算机:用于处理 传感器数据,生成 控制指令
飞行控制系统包括自动驾驶仪、飞行控制计算机、传感器、执行机构等 部分。 飞行控制系统的主要功能包括姿态控制、航向控制、高度控制、速度控 制等。 飞行控制系统是飞机安全飞行的重要保障,也是现代飞机的重要标志之 一。
飞行控制系统设计和实现
飞行控制系统设计和实现随着现代化技术的发展,飞行控制系统越来越受到关注。
这个紧张的系统需要不断的改进和优化来确保飞行安全和效率。
本文将探讨飞行控制系统的设计和实现。
1. 什么是飞行控制系统?飞行控制系统是一个复杂的系统,是机床动力系统和飞行器自动控制系统的重要组成部分。
它包括飞行数据采集、飞行姿态控制、导航和通讯等几个部分。
这个系统使飞行器能够实现自动飞行、自动导航和自动登陆等功能。
2. 飞行控制系统设计的步骤飞行控制系统的设计是一个艰巨的任务,需要经验和技能的结合。
以下是设计飞行控制系统的一些步骤。
(1)需求分析首先需要对飞行控制系统的要求进行分析。
这包括飞行器的类型、尺寸、载荷、飞行速度等。
此外,还需要考虑航线和飞行路径、雷达和传感器、通讯要求等。
(2)算法与模型开发飞行控制算法是飞行控制系统的核心。
设计师需要根据飞行器的要求,选择适合的控制算法。
这个算法需要打造数学模型,建立相关的控制系统参数。
(3)软硬件设计飞行控制系统的设计需要软硬件结合。
硬件包括嵌入式芯片、传感器、作动器等。
基于硬件的芯片需要设计软件,以便更好地控制飞行器。
(4)测试与验证最后,需要对飞行控制系统进行测试和验证。
飞行控制系统需要在实际飞行之前进行严格的模拟测试。
测试过程中可能涉及到性能测试、抗干扰测试等。
3. 飞行控制系统实现的困难飞行控制系统的实现具有一定的困难性。
以下是一些常见的实现挑战。
(1)故障诊断故障诊断是飞行控制系统中的一个重要问题。
当出现故障时,需要快速诊断问题,确定解决方案,并及时修复问题。
(2)环境变化的影响飞行控制系统常常面临着复杂的环境变化,比如气流、飞行高度、天气等。
这将影响控制系统的精准性和稳定性。
(3)系统安全性问题安全问题是飞行控制系统的另一个关键问题。
这个系统需要不断考虑安全问题,比如安全机制设计、网络安全、信息安全等。
4. 飞行控制系统改进的新方法为了克服飞行控制系统实现中的困难,设计师不断寻找新的改进方法。
直升机控制系统实验报告
直升机控制系统课程报告学号:031710426姓名:王瑞时间:2020年4月29日目录直升机控制系统课程报告 (1)一、主旋翼挥舞运动分析 (2)(一)垂直飞行的均匀挥舞 (2)(二)前飞时的周期挥舞 (2)(三)旋翼偏倒原因 (3)二、画出俯仰通道的开环结构 (3)三、开环模态分析 (4)四、直升机增稳系统设计 (6)(一)增稳系统性能指标 (6)(二)增稳系统优化过程 (7)五、实验感想 (10)1.实验中存在的缺陷 (10)2.实验收获 (10)一、主旋翼挥舞运动分析直升机属于旋翼飞行器,其中主旋翼作为一个单独的系统是直升机中最重要的组成部分,它肩负着直升机飞行时的推进、负重和操控三种功能。
直升机主要产生向上的拉力克服重力,产生向前的水平分力使直升机前进,产生其他分力及力矩使直升机保持平衡或做机动飞行,若直升机在空中发生事故停车,可以及时操控旋翼,使其自传产生缓冲升力,保证安全着陆。
旋翼系统主要由桨叶和桨毂组成,桨毂包含水平、垂直和轴向三个铰,水平较、摆振铰以及变距铰使旋翼的关键部件,其中桨叶的挥舞运动主要是由垂直铰控制。
直升机在前飞时,桨叶重心距旋翼轴的距离不断变化,一起周期交变的科里奥利力。
经研究表明,科里奥利力的最大值高达桨叶自重的7倍伊桑,巨大的科里奥利力会造成巨大的交变弯矩。
有了垂直铰,桨叶绕垂直铰摆动一个角度,从而使桨叶根部所受的交变弯矩大大较小。
下面主要分析桨叶的挥舞运动。
(一)垂直飞行的均匀挥舞直升机在悬停或者定长垂直飞行时,桨叶会形成一个倒置的圆锥,圆锥的椎体周与旋转轴重合。
直升机悬停或垂直飞行时作用在桨叶上的力有气动合力jy F ,水平向外的离心力c F ,力图拉平桨叶,还有桨叶重力jy G 。
当浆页上翘挥舞角β时,水平铰受到的力矩之和为0。
又因为直升机在垂直飞行时相对气流是对称的,桨叶旋转过程中,气动力和离心力均不变,此时挥舞角β等于锥角0a ,即均匀挥舞。
(二)前飞时的周期挥舞直升机前飞时,桨叶旋转形成的倒锥体的锥体轴相对于旋翼的旋转轴出现后倒现象。
空运飞行员的航空器的自动飞行控制系统
空运飞行员的航空器的自动飞行控制系统自动飞行控制系统(Autopilot)是空运飞行员的航空器中一项关键的技术,它通过整合电子设备和计算机系统来实现航行过程中的自动化操作。
这一系统能够接收和处理飞机各个方面的信息,包括姿态、导航、引擎控制等,从而实现飞行员的部分或全部飞行任务的自动化。
本文将深入探讨空运飞行员的航空器的自动飞行控制系统的原理、功能以及其在现代航空业中的重要作用。
一、自动飞行控制系统的原理和功能1.1 控制原理自动飞行控制系统基于复杂的电子设备和计算机系统,通过融合传感器、数据链和飞机系统,能够精确获取飞行器所需信息,并对飞机执行各种操作指令。
该系统正常运行时,可自动控制飞机的姿态、高度、速度、导航等参数,以及引擎的工作状态,确保飞行器按照预定航线和方式安全飞行。
1.2 功能和特点自动飞行控制系统具备多项功能和特点,以降低飞行员的工作负荷,提高飞行的精确性和安全性。
1.2.1 姿态和航向控制自动飞行控制系统能够实时检测并调整飞机的姿态和航向,确保航行过程中的稳定性。
通过控制飞机的副翼、方向舵等舵面,系统可以精确控制飞机的横滚、俯仰和航向,实现稳定的飞行状态。
1.2.2 路径导航和飞行管理自动飞行控制系统配备GPS和惯性导航系统,能够准确获取位置信息和航线规划,实现精确的路径导航和飞行管理。
飞机可以根据预设的航线和航点飞行,并及时调整航向和高度,确保飞行的准确性和效率。
1.2.3 爬升和下降控制自动飞行控制系统能够实现飞机的自动爬升和下降,并根据需求调整爬升率和下降率。
飞机在垂直方向上的自动控制可以提高飞行的平稳性,并确保按计划完成爬升和下降过程。
1.2.4 自动驾驶和目标速度控制自动飞行控制系统具备自动驾驶的功能,能够按照预设的目标速度和航迹飞行。
飞机在巡航阶段可以自动保持目标速度,并根据气象和空中交通管制的需求进行调整。
这一功能可以大幅减轻空运飞行员的工作负荷,提高飞行的效率和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞行控制系统大作业
一、 飞机纵向俯仰角与速度控制系统设计 某飞机的纵向线性小扰动方程为: lon lon x A x B u =+
其中 状态[]T x u q h α
θ
=∆∆∆∆∆,控制量[]T e
T u δδ=∆∆
问题:
1、 分析飞机纵向动力学模态,求飞机的长周期与短周期阻尼与自然频率。
2、 对升降舵及油门单位阶跃输入下的飞机自然特性进行仿真,画出相应的状态曲线。
3、 采用短周期简化方法,求出传递函数()e q
G s δ∆∆。
采用根轨迹方法设计飞机的俯仰角控制系统,并进行仿真。
4、 基于长周期简化方法,求出传递函数()T u
G s δ∆∆,设计飞机的速度控制系统,并进行仿真。
5、 基于纵向线性模型(状态方程),分别对速度控制与俯仰角控制进行仿真。
假设作动器特性为10
10
s +。
要求:给出相应的传递函数,画出相应的结构图根轨迹图及仿真曲线。
二、 飞机侧向滚转角控制系统设计 某飞机的侧向线性小扰动方程为: lat lat x A x B u =+
其中 状态[]T x p r
β
φ
ψ=∆∆∆∆∆,控制量[]T a
r u δδ=∆∆
问题:
1、 求出侧向运动方程的特征根,及对应的模态,求出荷兰滚模态的阻尼及自然频率。
2、 对副翼与方向舵单位阶跃输入下的自然特性进行仿真。
3、 采用简化方法,求出传递函数()a p
G s δ∆∆。
采用根轨迹方法设计飞机的滚转角控制系统,并进行仿真。
4、 设计飞机航向控制系统,并进行仿真。
5、设计飞机方向舵协调控制律,基于侧向线性模型(状态方程),进行航向控制系统的仿真。
假设作动器特性为10
10
s +。
要求:给出相应的传递函数,画出相应的结构图根轨迹图及仿真曲线,提交word 打印稿。
1. 数据文件在文件中,按照学号的最后一位选择相应的数据文件。
如学号最后一位为5,则选择文件作为你设计的数据。
2. 在matlab 中 输入load data5 则可将数据导入, 其中 alon 为纵向系统阵,blon 为纵向控制输入阵
alat 为侧向系统阵,blat 为侧向控制输入阵
控制量的单位为deg ,状态变量的单位为(deg ,deg/s , m ) 3、由状态方程求传递函数用ss2tf ()函数。
4、仿真可以用simulink 搭建仿真图。
5、仿真的输入采用单位阶跃。
6、曲线要标注单位,用plot 画,不能直接copy scope 中的图。
例:
Root Locus
Real Axis
I m a g i n a r y A x i s
图 俯仰角速率回路根轨迹
此时,选择阻尼0.7ξ=,得到0.4q K =。
角速率回路的单位阶跃响应曲线如图所示。
t(s)
q (d e g /s )
图 角速率回路单位阶跃响应曲线。