干货分享锂电池电化学测量方法

合集下载

锂离子检测方法

锂离子检测方法

锂离子检测方法哎呀,锂离子检测这事儿,说起来可真是个技术活儿,但咱们今天就用大白话聊聊,不整那些高大上的词儿,就跟你唠唠嗑。

记得那是一个阳光明媚的下午,我正坐在实验室里,手里拿着个电池,心里想着:“这玩意儿里面到底有多少锂离子啊?”你可别小看这个问题,这锂离子的含量,对于电池的性能和安全可是至关重要的。

首先,我得跟你说说,锂离子电池,就是那种手机、笔记本电脑里头用的那种,它们的能量密度高,体积小,重量轻,用起来挺方便。

但是,你也知道,这玩意儿要是检测不好,那可是会出大问题的。

我那天用的是一种叫做电化学分析的方法,听起来挺复杂的,其实就是通过测量电池两端的电压变化,来推算锂离子的浓度。

我得说,这活儿可不轻松,得小心翼翼地操作,生怕弄错了数据。

我先准备了个电解液,就是那种透明的液体,看起来跟水差不多,但是可别喝啊,那玩意儿有毒。

然后我把电池的正负极分别浸在电解液里,接上电表,开始测量电压。

你别说,这电压的变化还真是微妙,一开始,电压“嗖”的一下就上去了,然后慢慢地降下来,这个过程得持续好几个小时。

我就坐在那儿,眼睛盯着电表,手里拿着个笔记本,记录下每一个变化。

时间一分一秒地过去,我的眼睛都快看花了,但是还得坚持,因为这关系到电池的“健康”。

终于,电压稳定了,我赶紧记录下这个数值,然后对照着标准曲线,计算出锂离子的浓度。

这整个过程,虽然听起来挺枯燥的,但是对我来说,就像是在解一个谜题。

你知道,当你解开一个难题,那种成就感,真是无法用言语表达。

最后,当我把结果写在报告上,那种满足感,就像是自己亲手种的菜终于长出来了一样。

锂离子检测,虽然听起来高大上,但其实就跟咱们日常生活中的点点滴滴一样,需要耐心,需要细心,更需要一份对科学的热爱。

所以,下次当你拿起手机,或者打开电脑,别忘了,这里面的锂离子,可是经过了我们这些“侦探”的严格检测的。

咱们虽然不是超人,但也算是在为科技的发展,默默地贡献着自己的一份力量吧。

锂电池检测方法

锂电池检测方法

锂电池检测方法
首先,我们需要了解锂电池的基本结构和工作原理。

锂电池由正极、负极、隔
膜和电解质组成,其中正极和负极之间通过电解质和隔膜相隔开来。

在充放电过程中,锂离子在正负极之间来回迁移,完成电能的存储和释放。

了解锂电池的基本结构和工作原理,有助于我们更好地理解其检测方法。

其次,常用的锂电池检测方法包括外观检查、电压测试、内阻测试、循环寿命
测试等。

外观检查主要是通过目测和显微镜观察锂电池外壳是否有变形、渗漏、破损等情况,以及端子是否存在腐蚀、氧化等现象。

电压测试是通过测量锂电池的开路电压和闭路电压来判断其电荷状态和健康状况。

内阻测试则是通过测量锂电池的内部电阻来评估其性能和安全性能。

循环寿命测试是通过模拟锂电池的充放电循环过程,来评估其使用寿命和稳定性能。

除了以上常用的检测方法外,还有一些先进的锂电池检测技术,如红外热成像、X射线探测、核磁共振等。

这些技术能够更准确地检测锂电池的内部结构和性能,帮助我们更全面地评估锂电池的安全性能。

需要注意的是,锂电池检测需要专业的设备和技术支持,因此建议在专业人员
的指导下进行。

另外,锂电池检测过程中需要注意安全防护措施,避免发生意外事故。

综上所述,锂电池的安全性能对于我们的生活和工作具有重要意义,因此我们
需要掌握一些常用的锂电池检测方法,以确保其安全可靠地使用。

希望本文能够帮助您更好地了解和掌握锂电池的检测技术,确保锂电池的安全使用。

锂电池必备干货丨充放电测试方法

锂电池必备干货丨充放电测试方法

锂电池必备干货丨充放电测试方法扣式电池的充放电模式包括恒流充电、恒压充电、恒流放电、恒阻放电、混合式充放电以及阶跃式等不同模式充放电。

实验室中常采用恒流充电(CC)、恒流-恒压充电(CC-CV)、恒压充电(CV)、恒流放电(DC)对电池充放电行为进行测试分析,而阶跃式充放电模式则多用于直流内阻、极化和扩散阻抗性能的测试。

考虑到活性材料的含量以及极片尺寸对测试电流的影响,恒流充电中常以电流密度形式出现,如mA/g(单位活性物质质量的电流)、mA/cm2(单位极片面积的电流)。

充放电电流的大小常采用充放电倍率来表示,即:充放电倍率(C)=充放电电流(mA)/额定容量(mA·h),如额定容量为1000 mA·h的电池以500 mA的电流充放电,则充放电倍率为0.5 C。

目前电动汽车用锂离子电池已发布使用的行业标准QCT/743—2006中指出锂离子通用的充放电电流为C/3,因此含C/3 的充放电行为测试也常出现在实验室锂离子电池充放电测试中。

倍率性能测试有3 种形式,包括采用相同倍率恒流恒压充电,并以不同倍率恒流放电测试,表征和评估锂离子电池在不同放电倍率时的性能;或者采用相同的倍率进行恒流放电,并以不同倍率恒流充电测试,表征电池在不同倍率下的充电性能;以及充放电采用相同倍率进行充放电测试。

常采用的充放电倍率有0.02 C,0.05 C,0.1 C,C/3,0.5 C,1 C,2 C,3 C,5 C 和10 C 等。

对电池的循环性能进行测试时,主要需确定电池的充放电模式,周期性循环至电池容量下降到某一规定值时(通常为额定容量的80%),电池所经历的充放电次数,或者对比循环相同周次后电池剩余容量,以此表征测试电池循环性能。

此外,电池的测试环境对其充放电性能有一定的影响。

下文将详细介绍充放电测试所用的仪器和方法。

1 实验仪器介绍锂电池的充放电测试一般采用恒流-恒压充电、恒流放电模式,记录该过程中的测试时间、电压和电流等数据,通过分析该过程中数据的变化来表征电池或材料的容量、库仑效率、充放电平台以及电池内部参数变化等电化学性能参数。

锂电池电量检测方法

锂电池电量检测方法

锂电池电量检测方法
锂电池电量检测方法有多种, 下面是几种常见的方法:
1. 伏安法:利用电流和电压之间的关系来推测电池的电量。

通过测量电池的开路电压和放电时的电压,可以计算出电池的电量水平。

2. 电流积分法:通过测量电池在放电和充电过程中的电流变化, 然后将电流与时间进行积分计算出电量。

3. 电化学法:通过测量电池中的化学反应来确定电池的电量。

通过测量电池中的电解质浓度、正负极材料的反应速率等指标,来推断电池的电量。

4. 智能芯片法:利用内置的智能芯片和电池管理系统来监测电池的电量。

通过记录电池的使用历史、充电周期等信息,并进行算法计算来得出电池的电量水平。

这些方法可以单独使用,也可以结合起来使用,通过多种检测手段来提高电量检测的准确性。

锂电池容量测量方法

锂电池容量测量方法

锂电池容量测量方法嘿,你问锂电池容量测量方法啊?那咱就来好好说说。

这锂电池容量测量啊,可不是个简单事儿。

首先呢,你得有一些工具。

比如说电压表、电流表、计时器啥的。

这些就像是你的小帮手,能帮你搞清楚锂电池的容量。

然后呢,你可以用恒流放电法来测量。

就是给锂电池加上一个恒定的电流,让它一直放电,直到电压降到一个特定的值。

这时候,你记录下放电的时间,再根据电流和时间就能算出锂电池的容量啦。

就像让锂电池跑一场马拉松,看看它能坚持多久。

还有一种方法是恒阻放电法。

给锂电池接一个固定的电阻,让它放电。

同样记录下放电的时间和电压变化,也能算出容量。

这就像给锂电池背上一个小包袱,看它能走多远。

另外呢,你也可以用充电法来估算容量。

先把锂电池充满电,然后记录下充电的电量。

再根据锂电池的标称电压,就能大概算出容量了。

不过这种方法不是很准确哦,只能做个参考。

在测量的时候,一定要注意安全哇。

锂电池可不能随便乱弄,要是不小心短路了或者爆炸了,那可就危险喽。

就像一个小炸弹一样,会把你吓一跳。

我给你说个我自己的事儿吧。

有一次,我想知道我的电动车锂电池的容量还有多少。

我就用恒流放电法来测量。

我找了一个合适的电流,然后看着电压表和计时器。

等锂电池放电到电压很低的时候,我赶紧记录下时间。

最后一算,发现容量比我想象的要小一些。

从那以后,我就知道该什么时候给锂电池充电了,不然半路没电可就麻烦了。

所以啊,测量锂电池容量有好几种方法,你可以根据自己的情况选择合适的方法。

但是一定要小心谨慎,注意安全。

只要你认真去做,就能搞清楚锂电池的容量,让它更好地为你服务。

锂电池测试方法

锂电池测试方法

锂电池测试方法锂电池是一种常见的电池类型,广泛应用于移动设备、电动工具、电动车辆等领域。

为了确保锂电池的性能和安全性,需要进行一系列的测试。

本文将介绍锂电池测试的方法及注意事项,以帮助读者更好地了解和掌握锂电池测试的技术要点。

首先,我们来介绍一下锂电池的常见测试项目。

锂电池的测试项目主要包括性能测试和安全性测试两大类。

性能测试包括容量测试、循环寿命测试、温度特性测试等;安全性测试包括短路测试、过充电测试、过放电测试等。

这些测试项目可以全面评估锂电池的性能和安全性,为产品的设计和生产提供重要参考依据。

在进行锂电池测试时,需要注意以下几点。

首先是测试环境的选择。

锂电池的测试应在恒温恒湿的环境下进行,以确保测试结果的准确性和可比性。

其次是测试设备的选择。

测试设备应当具备高精度、高稳定性和高可靠性,以保证测试数据的可信度。

此外,还需要严格按照测试标准和测试流程进行测试,确保测试结果的科学性和规范性。

针对不同的测试项目,有不同的测试方法。

以容量测试为例,常见的测试方法包括恒流放电法、恒压充电法和深度放电法等。

这些方法各有特点,可以根据具体的测试要求和条件进行选择。

在进行测试时,需要注意测试参数的设置、数据的采集和分析,以获取准确的测试结果。

除了常规的性能测试,锂电池的安全性测试也至关重要。

安全性测试主要包括短路测试、过充电测试、过放电测试等。

这些测试可以评估锂电池在异常工况下的安全性能,为产品的安全设计和风险评估提供依据。

在进行安全性测试时,需要格外注意测试的安全性和可控性,避免因测试操作而引发安全事故。

总之,锂电池测试是确保锂电池产品性能和安全性的重要手段。

通过本文的介绍,相信读者对锂电池测试的方法和注意事项有了更深入的了解。

在实际的测试工作中,需要严格按照测试标准和测试流程进行,确保测试结果的准确性和可靠性。

同时,也需要不断学习和积累实践经验,提升自身的测试技术水平,为锂电池产品的质量和安全保驾护航。

锂电池测试方法

锂电池性能测试方法锂电池是一个要求高品质、高安全的产品、消费者在使用时往往不清楚电池的性能,导致在使用时电池的工作效率往往达不到理想目标,有时甚至盲目使用还会引起电池爆炸事件的发生,人生安全也会受到损伤,因此了解电池的性能也是至关重要的。

锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等工具/原料测试仪硬质棒钉子方法/步骤方法一、自放电测试镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至1.0V.1C充电80分钟,搁置15分钟,以1C放电至10V,测其放电容量C1,再将电池以1C充电80分钟,搁置24小时后测1C容量C2,C2/C1×100%应小于15%锂电池的自放电测试为:一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至3.0V,恒流恒压1C充电至4.2V,截止电流:10mA,搁置15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至4.2V,截止电流100mA,搁置24小时后测1C容量C2,C2/C1×100%应大于99%.方法二、内阻测量电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值.交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值.方法三、IEC标准循环寿命测试IEC规定镍镉和镍氢电池标准循环寿命测试为:电池以0.2C放至1.0V/支后1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环).2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环).3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环)4.0.1C充电16小时,搁置1小时,0.2C放电至1.0V(第50个循环),对镍氢电池重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时.EC规定锂电池标准循环寿命测试电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁置1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上.方法四、内压测试镍镉和镍氢电池内压测试为:将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸.锂电池内压测试为:(UL标准)模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓.具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA,然后将其放在气压为11.6Kpa,温度为(20±3℃)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液.方法五、跌落测试将电池组充满电后从三个不同方向于1m高处跌落于硬质橡胶板上,每个方向做2次,电池组电性能应正常,外包装无破损.方法六、振动实验测试镍镉和镍氢电池振动实验方法为:电池以0.2C放电至1.0V后,0.1C充电16小时,搁置24小时后按下述条件振动:振幅:4mm频率:1000次,分XYZ三个方向各振动30分钟.振动后电池电压变化应在±0.02V之间,内阻变化在±5m以内锂电池振动实验方法为:电池以0.2C放电至3.0V后1C充电恒流恒压充电到4.2V,截止电流10mA,搁置24小时后按下述条件振动:振幅0.8mm使电池在10HZ-55HZ之间振动,每分钟以1HZ的震动速率递增或递减.振动后电池电压变化应在±0.02V之间,内阻变化在5m以内.方法七、撞击实验电池充满电后,将一个15.8mm直径的硬质棒横放于电池上,用一个20磅的重物从610mm的高度掉下来砸在硬质棒上,电池不应爆炸起火或漏液.方法八、穿刺实验电池充满电后,用一个直径为2.0mm~25mm的钉子穿过电池的中心,并把钉子留在电池内,电池不应该爆炸起火.方法九、高温高湿测试镍镉和镍氢电池高温高湿测试为:电池以0.2C放电至1.0V后,1C充电75分钟后将其置与温度66℃,85%湿度条件下储存192小时(8天),于常温常湿下搁置2小时,电池不应变形或漏液,容量恢复应在标称容量的80%以上.锂电池高温高湿测试为:(国家标准)将电池1C恒流恒压充电到4.2V,截止电流10mA,然后放入(40±2℃),相对湿度为90%-95%的恒温恒湿箱中搁置48h后,将电池取出在(20±5℃)的条件下搁置2h,观测电池外观应该无异常现象,再以1C恒流放电到2.75V,然后在(20±5℃)的条件下,进行1C充电,1C放电循环直至放电容量不少于初始容量的85%,但循环次数不多于3次.注意事项测试时间搁置24小时测试安全措施要做好循环测试不多余三次。

锂电池的检测方法

锂电池的检测方法
锂电池的检测方法主要有电学特性检测、内阻检测、容量检测等。

一、电学特性检测:可检测锂电池的内阻、绝缘电阻、断开电压、短路电流、满量池电压、充放电特性等,并让电芯处于多种工况下进行校准;
二、内阻检测:通过电阻变化实时系统可以测量单体电压及模块电压,从电路上了解每一个电池单元的状态,以检测电池的内阻等性能;
三、容量检测:容量检测可通过放电实验测试获得容量值,对锂电池的性能可以作出直观判断,更方便了查找缺损和改善;
四、其它检测:还可以使用X射线实现远程检测,能捕捉出集装箱内锂电池中发生的短路、绝缘损耗、内阻增高等情形,从而发现隐藏性缺损。

锂电池正极材料各元素的测试方法

锂电池正极材料各元素的测试方法化学分析法常量测定Li δ Ni 1- x - y Co x Mn y O 2 中的镍、钴、锰含量1 实验1.1 实验原理1.1.1 N i含量的测定原理Li δ Ni 1- x - y Co x Mn y O 2 系列材料中 Ni 含量的测定采用重量分析法。

在含有酒石酸的氨性介质中,以丁二酮肟为沉淀剂,与金属镍离子形成螯合物,形成两个五原子环。

1.1.2 C o 含量的测定原理Co 含量的测定依然采用重量分析法,所选用的沉淀剂为1- 亚硝基 -2- 萘酚。

在 HAc 介质中,1- 亚硝基 -2- 萘酚与金属钴离子形成具有配位键的螯合物 [5] 。

1.1.3 M n 含量的测定原理Mn 含量的测定是以铬黑T 为指示剂,用EDTA 标准溶液进行络合滴定[5] 。

但在三元体系材料中,镍和钴离子会对铬黑T 产生封闭作用,应以 KCN 作掩蔽剂来消除封闭现象 [5] 。

1.2 主要试剂EDTA 标准溶液;10%酒石酸溶液;10%氨水溶液;1%丁二酮肟溶液;(3+97) 氨水溶液;1%1- 亚硝基-2-萘酚溶液;33%HAc 溶液; KCN 溶液;氨 - 氯化铵缓冲溶液(pH=10);固体铬黑T 指示剂;Ni 标准溶液(1 mg/mL);Co标准溶液(1 mg/mL);Mn 标准溶液(1 mg/mL)。

1.3 实验方法1.3.1 样品的制备本实验以Li δ Ni 1/3 Co 1/3 Mn 1/3 O 2 为例,测试其镍、钴、锰含量。

准确称取 2 g(精确至 0.000 1 g)样品置于 200 mL 烧杯中,加少量水润湿,加入 20 mL HCl (1+1),加热溶解并蒸发至近干,冷却后转移至 200 mL 容量瓶中,稀释至刻度。

1.3.2 N i含量的测定移取 1.3.1 中所述试样溶液 20.00 mL,置于 200 mL 烧杯中,加入 5~10 mL 10% 酒石酸溶液,滴加 10%氨水至溶液变为紫色,加热至75~80 ℃,在搅拌下加入60~70 mL 1% 丁二酮肟溶液,保温15~30 min,冷却放置 1 h。

锂电池自放电测量:静置与动态测量法详解

锂电池自放电测量:静置与动态测量法详解锂离子电池自放电的测量方法主要分为两大类:静置测量方法,通过对电池进行长时间的静置得到自放电率;动态测量方法,在动态过程中实现对电池的参数识别。

一、静置测量法目前主流的锂离子电池自放电测量方法是在一定的环境条件下,对电池进行较长时间的静置,测量静置前后电池参数的变化,来表征锂离子电池的自放电程度。

根据测量参数的不同,静置测量主要分为3大类:容量测量、开路电压测量和电流测量。

1、容量测量在电池进行长时间静置前,对电池进行一次充放电,记录静置前的放电容量Q0。

静置后采用同样的方式使电池放电,记录静置后的放电容量Q。

根据式(7)可以计算得到电池的自放电率η。

再对电池采用同样的方式进行一次充放电,记录循环后的电池放电容量Q1。

根据式(8)和(9)可以分别计算得到电池的可逆自放电量Qrev和不可逆自放电量Qirr。

该方法的示意图如图1所示。

图1 容量测量方法示意图在国际标准化机构及各国政府相关部门和行业协会发布的电池测试手册中,对通过容量测量来检测电池自放电作了相关规定:国际电工委员会(IEC)发布的《含碱性或其他非酸性电解质的蓄电池和蓄电池组:便携式二次锂电池和蓄电池组》(IEC 61960)中规定,将处于50%SOC状态下的电池,在环境温度(20±5)℃下存储90d,再次充电后电池的放电量应不小于额定容量的85%,具体测量流程如图2a所示。

美国汽车研究委员会(USCAR)发布的电动车用电池测试手册规定,测量前应先测量与电池工作区间对应的实际电量。

将电池以C/3倍率放出50%的可用电量后,在环境温度30℃下存储30d,再次充电后测量电池的放电量。

中国国家标准化管理委员会发布的《电动汽车用动力蓄电池性能要求及试验方法》(GB/T 31486)与IEC标准较为相近,规定了荷电保持及容量恢复能力的测量试验流程。

以室温试验为例,电池在室温条件下存储8d,要求荷电保持率不低于初始容量的85%,容量恢复不低于初始容量的90%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

干货分享锂电池电化学测量方法锂离子电池电极过程动力学探究中常用的有循环伏安法(CV)、电化学阻抗谱(EIS)、恒电流间歇滴定技术(GITT)、恒电位间歇滴定技术(PITT)、电流脉冲弛豫(CPR)、电位阶跃计时电流(PSCA)和电位弛豫技术(PRT)等。

锂电池的电极反应主要包括哪些电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空问电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反应,体积变化,吸放热等过程。

这些过程有些同时进行,有些先后发生。

电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。

分清两电极和三电极电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。

两电极两电极由研究电极(W),亦称之为工作电极和辅助电极(C),亦称之为对电极组成。

锂电池的研究中多数为两电极电池,两电极电池测量的电压是正极电势与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。

三电极三电极电池包括,W和C分别是工作电极和对电极,R是参比电极。

W和C之间通过极化电流,实现电极的极化。

W和R之间通过极小的电流,用于测量工作电极的电势。

通过三电极电池,可以专门研究工作电极的电极过程动力学。

参比电极的特征1、参比电极应为可逆电极:2、不易被极化,以保证电极电势比较标准和恒定:3、具有较好的恢复特性,不发生严重的滞后现象;4、具有较好的稳定性和重现性;5、快速暂态测量时,要求参比电极具有较低的电阻,以减少干扰,提高测量系统的稳定性;6、不同的溶液体系,采用相同的参比电极的,其测量结果可能存在差异,误差主要来源于溶液体系间的相互污染和液接界电势的差异。

常用的参比电极水溶液体系参比电极:可逆氢电极、甘汞电极、汞一氧化汞电极、汞一硫酸亚汞电极等;非水溶液体系参比电极:银一氯化银电极、Pt 电极以及金属锂、钠等电极。

其他:也可以用银丝、铂丝做准参比电极,或者采用电化学反应电位稳定的溶解于电解液的二茂铁氧化还原电对。

关于准参比电极细节可参考A.J.Bard编著的(Electrochemical Methods)。

电极过程电极过程一般情况下包括下列基本过程或步骤:1、电化学反应过程:在电极/溶液界面上得到或失去电子生成反应产物的过程,即电荷转移过程;2、传质过程:反应物向电极表面或内部传递或反应产物自电极内部或表面向溶液中或向电极内部的传递过程(扩散和迁移);3、电极界面处靠近电解液一侧的双电层以及靠近电极内一侧的空间电荷层的充放电过程;4、溶液中离子的电迁移或电子导体、电极内电子的导电过程。

此外,伴随电化学反应,还有溶剂、阴阳离子、电化学反应产物的吸附/脱附过程,新相生长过程以及其它化学反应等。

典型的电极过程及动力学参数离子在电解质中的迁移电阻(Rsol);离子在电极表面的吸附电阻和电容(Rad,Cad);电化学双电层电容(Cdl);空间电荷层电容(Csc);离子在电极电解质界面的传输电阻(Rincorporation);离子在表面膜中的输运电阻和电容(Rfilm,Cfilm);电荷转移(Rct);电解质中离子的扩散电阻(Zdiffusion);电极中离子的扩散(Zdiffusion)——体相扩散(Rb)和晶粒晶界中的扩散(Rgb);宿主晶格中外来原子/离子的存储电容(Cchem);相转变反应电容(Cchem);电子的输运(Re)。

值得注意的是,不同电极过程的响应时间不同,总的来说:电荷转移<表面反应<电子传输<界面扩散<固相反应<体相扩散,因此离子在电极、电解质材料内部的扩散以及固相反应一般是速率控制步骤。

极化及类型在施加了外来电场后,电池或电极逐渐偏离平衡电势的状态,称之为极化。

极化电势与平衡电势的差值的大小被称之为过电势。

在不具有流动相的电池中,存在着3种类型的极化:1、化学极化——与电荷转移过程有关的极化,极化的驱动力是电场梯度。

电化学极化的大小是由电化学反应速率决定的,电化学极化电阻(Rct)的大小与交换电流密度直接相关。

2、浓差极化——与参与电化学反应的反应物和产物的扩散过程有关的极化,极化的驱动力为浓度梯度。

浓差极化与传质粒子的扩散系数有关。

3、欧姆极化——与载流子在电池中各相输运有关的极化,驱动力是电场梯度。

欧姆极化的大小是由电池内部涉及到电迁移的各类电阻之和,即欧姆电阻决定的。

若还存在其它基本电极过程,如匀相或多相化学反应过程,则可能存在化学反应极化。

电化学测量方法在锂电池中的经典应用锂离子电池电极材料在电池充放电过程中一般经历以下几个步骤:1、剂化的锂离子从电解液内迁移到电解液/固体电极的两相界面;2、溶剂化的锂离子吸附在电解液/固体电极的两相界面;3、去溶剂化;4、电荷转移,电子注入电极材料的导带,吸附态的锂离子从电解液相迁移至活性材料表面晶格;5、锂离子从活性材料表面晶格向内部扩散或迁移;6、电子从集流体向活性材料的迁移。

循环伏安法常用于电极反应的可逆性、电极反应机理(如中间体、相界吸/脱附、新相生成、偶联化学反应的性质等)及电极反应动力学参数(如扩散系数、电极反应速率常数等)的探究。

电势向阴极方向扫描时,电活性物质在电极上还原,产生还原峰;向阳极方向扫描,还原产物重新在电极上氧化,产生氧化峰。

因而一次扫描,完成一个还原和氧化过程的循环,其电流一电压曲线称为循环伏安曲线。

通过循环伏安曲线的氧化峰和还原峰的峰高、对称性、氧化峰与还原峰的距离,中点位置,可判断电活性物质在电极表面反应的可逆程度和极化程度。

如果氧化与还原反应的过电位差别不大的化,还可以把一对氧化峰与还原峰之间的中点值近似作为该反应的热力学平衡电位值。

另外恒电流充放电的电压容量曲线微分后以dQ/dV 作为纵轴,横轴为电压,可以获得与CV曲线十分相似的结果,其实本质并没区别。

循环伏安法计算锂离子扩散系数注意:仅适用于扩散过程为控制步骤且电极为可逆体系,此时有公式常温时,式中,Ip为峰电流的大小,n为参与反应的电子数,A为浸入溶液中的电极面积,F为法拉第常数,DLi为Li在电极中的扩散系数,v为扫描速率,△C0为反应前后待测浓度的变化。

可以按如下步骤来计算:1、测量电极材料在不同扫描速率下的循环伏安曲线;2、将不同扫描速率下的峰值电流对扫描速率的平方根作图;3、对峰值电流进行积分,测量样品中锂的浓度变化;4、将相关参数带入式(2),即可求得扩散系数。

需要注意的是,由于以下几个原因,其测得的绝对值在不同文献中不尽相同需要该反应收扩散控制,而且循环伏安测到的化学扩散系数并非电极材料内部本征的离子扩散系数(详细内容请见扩展阅读)。

还有就是,如果是多孔粉末电极,其真实反应面积远大于电极几何面积,且难以精确测量,给结果带来很大的不确定性。

当然,关于循环伏安法原理使用等,我们会另外详细介绍。

交流阻抗谱我们将交流阻抗谱的内容已经介绍过,详情见此2篇文章:【干货】79页PPT——锂电之电化学阻抗谱(EIS)详解【干货】锂电之电化学阻抗谱(EIS)简析恒电流间歇滴定技术恒电流问歇滴定技术(galvanostatic intermittent titration technique)由德国科学家W.Weppner 提出,基本原理是在某一特定环境下对测量体系施加一恒定电流并持续一段时问后切断该电流,观察施加电流段体系电位随时间的变化以及弛豫后达到平衡的电压,通过分析电位随时闾的变化可以得出电极过程过电位的弛豫信息,进而推测和计算反应动力学信息。

当体系满足如下条件时,可以计算锂离子扩散系数1、电极体系为等温绝热体系;2、电极体系在施加电流时无体积变化与相变;3、电极响应完全由离子在电极内部的扩散控制;4、τ≤L2/D,L为离子扩散长度;5、电极材料的电子电导远大于离子电导等条件计算公式如下:式中,DLi为“在电极中的化学扩散系数,Vm为活性物质的体积,A为浸入溶液中的真实电极面积,F为法拉第常数,n为参与反应的电子数目,I0为滴定电流值,dE/dx为开路电位对电极中Li浓度曲线上某浓度处的斜率(即库仑滴定曲线),dE/dt1/2为极化电压对时间平方根曲线的斜率。

利用GITT方法测量电极材料中的锂化学扩散系数基本过程如下:在电池充放电过程中的某一时刻,施加微小电流并恒定一段时间后切断;记录电流切断后的电极电位随时间的变化;做出极化电压对时间平方根曲线,即dE/dt1/2曲线;测量库仑滴定曲线,即dE/dx 曲线;代入相关参数,利用公式求解扩散系数。

恒电势间歇滴定技术恒电位间歇滴定技术(potentiostatic intermittent titration technique)是通过瞬时改变电极电位并恒定该电位值,同时记录电流随时间变化的测量方法。

通过分析电流随时间的变化可以得出电极过程电位弛豫信息以及其它动力学信息,类似于恒电位阶跃,只是PITT是多电位点测量。

使用恒电位间歇滴定技术测量锂离子化学扩散系数公式如下:式中,i为电流值,t为时间,△Q为嵌入电极的电量,DLi为Li在电极中的扩散系数,d 为活性物质的厚度。

基本操作如下:以恒定电位步长瞬间改变电极电位,记录电流随时间的变化;利用ln(i)一t曲线;截取ln(i)一t曲线线性部分的数据,求斜率即可求出锂离子化学扩散系数。

电位弛豫技术电位弛豫技术(potential relax technique)是在电池与外界无物质和能量交换的条件下研究电极电势随时间的变化关系,该方法属于电流阶跃测量方法中的断电流法,与GITT实验方法一致,不同的是分析弛豫过程中的电位变化。

该方法最早由中国科学院物理研究所王庆等运用于锂离子电池电极材料中的离子扩散动力学研究。

计算公式为:式中,ψm为平衡电极电位,ψ为初始电位,R 为气体常数,T为绝对温度,d为活性物质的厚度,DLi为Li在电极中的扩散系数,t 为电位达到平衡时的时间。

具体测量步骤如下:对电池预充放电,使电池的库仑效率降至97%左右;在电池充/放电到一定程度时,切断电流,采用CPT(chrono potentiometry technique)记录电压随时问的变化曲线;运用公式对ln[exp(ψm-ψ)xF/RT-1]-t作图,并对后半部分作线性拟合;ln[exp(ψm-ψ)xF/RT-1]-t曲线进行拟合,求解拟合曲线斜率,带公式即可求得锂的化学扩散系数。

运用电位弛豫技术测量电极过程动力学信息需要满足一定的前提条件。

通常,锂离子电池在首周充放电过程中伴随着一些副反应,典型的副反应为SEI膜的形成,为避免副反应的发生对锂离子化学扩散系数测量所带来的干扰,通常电池需要进行几个充放电循环之后开始测量其化学扩散系数。

相关文档
最新文档