半导体集成电路课程教学大纲
《半导体物理实验》课程教学大纲

《半导体物理实验》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:半导体物理实验所属专业:电子材料与器件工程专业本科生课程性质:专业必修课学分: 4(二)课程简介、目标与任务;本课程是为物理科学与技术学院电子材料与器件工程专业大四本科生所开设的实验课,是一门专业性和实践性都很强的实践教学课程。
开设本课程的目标和任务是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制坚定基础。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;由于是实验课,所以需要学生首先掌握《半导体物理》和《半导体器件》的基本知识,再通过本课程培养学生对半导体材料和器件的制备及测试方法的实践能力。
其具体要求包括:1、了解半导体材料与器件的基本研究方法;2、理解半导体材料与器件相关制备与基本测试设备的原理、功能及使用方法,并能够独立操作;3、通过亲自动手操作提高理论与实践相结合的能力,提高理论学习的主动性。
开设本课程的目的是培养学生实事求是、严谨的科学作风,培养学生的实际动手能力,提高实验技能。
(四)教材与主要参考书。
教材:《半导体物理实验讲义》,自编教材参考书:1. 半导体器件物理与工艺(第三版),施敏,苏州大学出版社,2. [美]A.S.格罗夫编,齐健译.《半导体器件物理与工艺》.科学出版社,1976二、课程内容与安排实验一绪论1、介绍半导体物理实验的主要内容2、学生上课要求,分组情况等实验二四探针法测量电阻率一、实验目的或实验原理1、了解四探针电阻率测试仪的基本原理;2、了解的四探针电阻率测试仪组成、原理和使用方法;3、能对给定的薄膜和块体材料进行电阻率测量,并对实验结果进行分析、处理。
二、实验内容1、测量单晶硅样品的电阻率;2、测量FTO导电层的方块电阻;3、对测量结果进行必要的修正。
三、实验仪器与材料四探针测试仪、P型或N型硅片、FTO导电玻璃。
电子科技大学集成电路原理讲义

年代后半期日本曾一度超过美国之外,美国一直在世界上占绝对优势。现在仍是日本第二。
美国在 4 英寸线中(占 45%)和 8 英寸线中(占 31%)名列世界第一;而日本在 5 英寸线
中(占 47%)和 6 英寸线中(占 43%)名列世界第一。韩国在 80 年代以倾国的财力发展 IC 之
后,跃居到世界第三,尤其是在 DRAM 存储器生产方面走在世界的前列。
3、“8.5”期间的发展: 华晶“908”工程 华越 上无 14 厂+外资 PHILIPS贝岭(中资 85%) 上无 26 厂+外资 PHILIPS菲利浦(外资 51%) 首钢+NEC首钢 NEC(日方控股)
4、“9.5”期间新建项目: “909”工程——上海华虹 NEC(其中中方投资 100 亿) 1 条 8 英寸、CD=0.350.5m IC 生产线 1 条 8 英寸硅单晶生产线 7 家设计公司:
2
教学大纲 3. CMOS 数字集成电路——分析与设计,S-M. Kang,清华大学出版社(影印),2004 年 8 月第一版。 4. CMOS 模拟电路设计,P.E.艾伦,D.R.霍尔伯格,科学出版社,1995 年 3 月第一版。 5. CMOS 模拟电路设计(英文),P.E.Allen,D.R.Holberg,电子工业出版社,2002 年 6 月第二版。 6. 模拟 CMOS 集成电路设计,毕查德.拉扎维著,陈贵灿等译,西安交通大学出版社,2003 年 3 月第一
TN431.1 5222。 6、《超大规模集成电路技术》,[美],施敏,科学出版社。TN49 S93。 7、《双极与 MOS 模拟集成电路设计》,[美],艾伦.B.格里本,上海交大出版社。
TN431.1 9188。 1995 年及其以后: 1. 半导体集成电路,朱正涌,清华大学出版杜 2001 年 1 月第一版。 2. 数字集成电路设计透视(英文),J. M. Rabaey,清华大学出版社(影印),1999 年 2 月第一版。
半导体物理试验-微电子学院微电子试验教学中心-西安电子科技大学

《半导体物理实验》教学大纲课程编号:MI4221016课程名称:半导体物理实验英文名称:Experiments ofSemiconductor Physics学时:8 学分:0.5课程类别:限选课程性质:专业课适用专业:集成电路与系统集成先修课程:半导体物理和半导体器件电子学开课学期:4 开课院系:微电子学院一、课程的教学目标与任务目标:培养学生独立完成半导体材料特性测试、分析的实践动手能力,巩固和强化半导体物理知识,提升学生在微电子技术领域的竞争力,培养学生灵活运用理论知识解决实际问题的能力,锻炼学生分析、探讨和总结实验结果的能力。
任务:在理论课程的学习基础上,通过大量实验,熟练掌握现代微电子技术中半导体材料特性相关的实验手段和测试技术。
课程以教师讲解,学生实际动手操作以及师生讨论的形式实施。
二、本课程与其它课程的联系和分工本实验要求学生掌握半导体物理效应的测试技术和分析手段,共设置9个实验,要求学生选择完成其中4个实验。
(一)高频光电导衰退法测量非平衡少子寿命(2学时)具体内容:利用高频光电导衰退法分别测量具有高、中、低电阻率的半导体单晶硅样品的少子寿命,并对测试结果进行分析和探讨。
1.基本要求(1)掌握高频光电导衰退法测量少子寿命的测试原理和方法;(2)掌握半导体材料中少子、少子寿命和电阻率等相关概念。
2.重点、难点重点:高频光电导衰退法测试实验样品的少子寿命;难点:概念理解和测试结果分析和探讨。
3.说明:学习和掌握非平衡少子寿命的测试原理和测试方法。
(二)恒定表面光电压法测量硅中少子的扩散长度(2学时)具体内容:利用恒定表面光电压法测试硅样品中少子的扩散长度。
1.基本要求(1)了解恒定表面光电压法测试硅材料中少子扩散长度的测试原理;(2)掌握半导体中少子扩散长度的测试方法。
2.重点、难点重点:对实验样品进行少子扩散长度的测试;难点:实验仪器的使用和少子扩散长度的准确测量。
3.说明:掌握半导体中少子扩散长度的测试方法。
半导体物理学 教学大纲

半导体物理学一、课程说明课程编号:140313Z10课程名称(中/英文):半导体物理学/Semiconductor physics课程类别:专业选修课学时/学分:48/3先修课程:量子力学;固体物理学适用专业:应用物理、物理科学、电子信息科学与技术教材、教学参考书:➢刘恩科,朱秉升,罗晋生编著《半导体物理学》(第七版),电子工业出版(2011)➢《半导体物理》,钱佑华,徐至中,高等教育出版社2003➢《半导体器件物理》(第3版),耿莉,张瑞智译|(美)S. M. SZE, KWOK K. NG 著,西安交通大学出版社 2010➢《Semiconductor Physics and Devices:Basic Principles》4rd Ed. (美)Donald A. Neamen 电子工业出版社2013➢《半导体物理学学习辅导与典型题解》--高等学校理工科电子科学与技术类课程学习辅导丛书,田敬民电子工业出版社2006➢半导体物理讲义与视频资料,蒋玉龙二、课程设置的目的意义本课程是高等学校应用物理、物理学和电子信息科学与技术专业本科生的专业选修课。
本课程的目的和意义是:通过本课程的学习使学生获得半导体物理方面的基本理论、基本知识和方法。
通过本课程的学习要为应用物理、物理学与电子信息科学与技术专业本科生学习其它专业课(材料、器件、集成电路等)以及毕业后从事半导体相关的技术开发与科学研究奠定必要的理论基础。
三、课程的基本要求本课程所使用的教材共13章,分为四大部分。
第1-5章,晶体半导体的基本知识和性质的阐述;第6-9章,为半导体的接触现象;第10-12章,为半导体的各种特殊效应;第13章为非晶态半导体。
全部课堂教学为48课时,对上述内容做了必要精简。
第10-13章全部不在课堂讲授,留给学生自学或参考,其它各章节的内容也作了部分删减。
通过本课程的学习,使学生掌握半导体物理的基本性质,即半导体中电子的状态及主要半导体的能带结构,半导体中的杂质能级和缺陷能级,半导体中载流子的统计分布,半导体的导电性和非平衡载流子的运动规律,p-n结,金属半导体接触理论等。
《集成电路版图设计》课程教学大纲

《集成电路版图设计》课程教学大纲课程名称:集成电路版图设计课程代码:英文名称:IC Layout Design课程性质:专业课学分/学时:3/54开课学期:春季适用专业:微电子学、电子科学与技术先修课程:后续课程:开课单位:课程负责人:大纲执笔人:大纲审核人:一、课程性质和教学目标(在人才培养中的地位与性质及主要内容,指明学生需掌握知识与能力及其应达到的水平)课程性质:简单介绍课程,说明本课程在专业培养中的地位和作用,下面给出一个例子供参考。
课程性质:集成电路版图设计是微电子学和电子科学与技术专业必修课程,同时也是专业主干课程。
本课程旨在让学生初步掌握集成电路版图设计的原理、方法并进行实践。
教学目标:说明本课程的主要内容,以及课程教学应达到的目标,下面给出一个例子供参考。
教学目标:本课程讲授集成电路版图设计涉及的流程、设计方法和优化方法,并基于CMOS 工艺讲授集成电路版图设计。
本课程的具体教学目标如下:1、了解集成电路设计流程,掌握版图设计流程;2、掌握集成电路版图设计和优化方法;3、能利用Cadence仿真软件,基于CMOS工艺,完成集成电路的版图设计;4、能利用Cadence仿真软件,基于CMOS工艺,完成集成电路的版图优化;5、正确认识集成电路版图设计的重要意义、发展规律和未来发展趋势。
二、课程目标与毕业要求的对应关系(明确本课程知识与能力重点符合标准哪几条毕业要求指标点)三、课程教学内容及学时分配(含课程教学、自学、作业、讨论等内容和要求,指明重点内容和难点内容)(重点内容:★;难点内容:∆)1、课程介绍和集成电路版图设计导论(3课时)(支撑课程目标1、5)1.1本课程的教学内容、结构和考核等1.2集成电路版图设计的重要性★1.3集成电路设计流程1.4集成电路版图设计的流程★1.5集成电路版图设计的发展规律和未来趋势2、Cadence Virtuoso 应用(3课时)(支撑课程目标3、4)2.1环境配置与启动方式2.2 界面介绍2.3基本操作介绍3、集成电路原理图设计(6课时)(支撑课程目标2、3、4)3.1 原理图设计基本操作介绍3.2 电路器件调用与修改参数3.3 电路连线与端口设计3.4 电路设计模块化4、集成电路前仿真(12课时)(支撑课程目标3、4)4.1仿真环境搭建4.2 直流仿真4.3 瞬态仿真4.4 电路设计与调试★∆5、集成电路版图设计基础(9课时)(支撑课程目标2、3、4)5.1 版图设计基本操作介绍5.2 版图器件调用与参数设置5.3 版图连线与端口设计6、集成电路版图设计规则检查DRC(3课时)(支撑课程目标3、4)6.1 版图DRC环境配置6.2 DRC结果报告阅读与理解6.3 DRC错误修改★7、集成电路版图与原理图对比LVS(12课时)(支撑课程目标3、4)7.1版图LVS环境配置7.2 LVS结果报告阅读与理解7.3 LVS错误修改★8、集成电路版图优化(6课时)(支撑课程目标2、3、4)8.1 版图布板布局优化★8.2 版图连线优化8.3 版图局部优化四、教学方法1、教学方式:讲解与实验相结合;2、教师以多媒体课件讲授为主线,学生复习课件内容,并自学教学参考书相关内容;3、安排27课时设计实践,辅以设计实例的讲解,学生完成上机设计和设计报告。
半导体物理与器件教学大纲

半导体物理与器件(教学大纲)Semiconductor Physics and Devices课程编码:12330540学分:课程类别:专业基础课计划学时: 48 其中讲课: 48 实验或实践: 0 上机:0适用专业:IC设计、电信推荐教材:尼曼(Donald H.Neamen)著,赵毅强,姚素英。
解晓东译,《半导体物理与器件》(第3版),电子工业出版社,2010参考书目:D. A. Neamen,《Semiconductor Physics and Devices: Basic Principles》,清华出版社,2003R. T. Pierret著,黄如等译,《半导体器件基础》,电子工业出版社,2004刘恩科、朱秉升、罗晋生等,《半导体物理学》,西安交通大学出版社,2004黄昆、谢希德,《半导体物理学》,科学出版社,1958曾谨言,《量子力学》,科学出版社,1981谢希德、方俊鑫,《固体物理学》,上海科学技术出版社,1961课程的教学目的与任务本课程是集成电路专业的重要选修课之一。
本课程较全面地论述了半导体的一些基本物理概念、现象、物理过程及其规律,并在此基础上选择目前集成电路与系统的核心组成部分,如双极型晶体管(BJT)、金属-半导体场效应晶体管(MESFET)和MOS场效应晶体管(MOSFET)等,作为分析讨论的主要对象来介绍半导体器件基础。
学习和掌握这些半导体物理和半导体器件的基本理论和分析方法,为学习诸如《集成电路工艺》、《集成电路设计》等后续课程打下基础,也为将来从事微电子学的研究以及现代VLSI与系统设计和制造工作打下坚实的理论基础。
课程的基本要求本课程要求学生掌握半导体物理和半导体器件的基本概念和基本规律,对于基础理论,要求应用简单的模型定性说明,并能作简单的数学处理。
学习过程中,注意提高分析和解决实际问题的能力,并重视理论与实践的结合。
本课程涉及的物理概念和基本原理较多,为了加深对它们的理解,在各章节里都给学生留有一些习题或思考题,这些题目有的还是基本内容的补充。
《模拟CMOS集成电路设计》实验教学大纲

《模拟CMOS集成电路设计》实验教学大纲
课程代码:MICR2004
课程名称:模拟CMOS集成电路设计
英文名称:Design of Analog CMOS Integrated Circuits
实验室名称:微电子实验室
课程学时:72实验学时:18
一、本课程实验教学目的与要求
通过本课程的实验,可以进一步加强学生对《模拟CMOS集成电路设计》所学内容的理解和掌握,特别是培养学生的动手能力,达到掌握模拟集成电路的设计原理、设计方法和设计工具。
二、主要仪器设备及现有台套数
PC机现有25台; Work Station现有4台。
四、考核方式
1、实验报告:包括实验目的、实验工具、实验方法过程、实验结果(原理图,版图,DRC、LVS验证报告,GDSII文件)。
2、考核方式:
(1)实验课的考核方式:教师验收评定成绩。
(2)实验课考核成绩:根据实验完成情况和实验报告是否完整确定,实验成绩占课程总成绩的10%。
五、实验教材、参考书
1、教材:《模拟CMOS集成电路设计实验指导手册》,自编。
2、参考书:《模拟CMOS集成电路设计》. 陈贵灿(译),西安交通大学出版社.2003出版。
《半导体物理学》课程教学大纲

《半导体物理学》课程教学大纲一、 课程说明(-)课程名称:《半导体物理学》所属专业:物理学(电子材料和器件工程方向)课程性质:专业课学 分:4学分(二) 课程简介、目标与任务:《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修 课程。
通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律, 培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习 奠定基础。
本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机 理:重点学习半导体中的电子状态及载流子的统讣分布规律,学习半导体中载流子的输 运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基 本结构及其表面、界面问题。
(三) 先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握 这些先修课程中必要的知识。
通过本课程的学习为后继《半导体器件》、《晶体管原理》 等课程的学习奠定基础。
(四) 教材与主要参考书:[叮刘恩科,朱秉升,罗晋生.半导体物理学(第7版)[M].北京:电子工业 出版社.2011.[2] 黄昆,谢希德.半导体物理学[M].北京:科学出版社.2012.[3] 叶良修.半导体物理学(第2版)[H].上册.北京:高等教育出版社.2007.[4] S. M. Sze, Physics of Semiconductor Devices (2nd ed.), Wiley, New York, 2006.二、 课程内容与安排第一章 半导体中的电子状态半导体的晶格结构和结合性质 半导体中的电子状态和能带 半导体中电子的运动有效质量 本征半导体的导电机构空穴 1 / 8节节节节一二三四 第第第第回旋共振 硅和错的能带结构 III-V 族化合物半导体的能带结构 II-VI 族化合物半导体的能带结构 Si“Ge 文合金的能带宽禁带半导体材料(一)教学方法与学时分配课堂讲授,大约8-10学时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《半导体集成电路》课程教学大纲(包括《集成电路制造基础》和《集成电路原理及设计》两门课程)集成电路制造基础课程教学大纲课程名称:集成电路制造基础英文名称:The Foundation of Intergrate Circuit Fabrication课程类别:专业必修课总学时:32 学分:2适应对象:电子科学与技术本科学生一、课程性质、目的与任务:本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。
半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。
本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。
并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。
二、教学基本要求:1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。
2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。
3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。
4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。
5、掌握溅射、蒸发原理,了解系统组成,形貌及台阶覆盖问题的解决。
6、掌握硅化学汽相淀积(CVD)基本化学过程及动力学原理,了解各种不同材料、不同模式CVD方法系统原理及构造。
7、掌握外延生长的基本原理;理解外延缺陷的生成与控制方法;了解硅外延发展现状及外延参数控制技术。
8、掌握光刻工艺的原理、方法和流程,掩膜版的制造以及刻蚀技术(干法、湿法)的原理、特点,光刻技术分类;了解光刻缺陷控制和检测以及光刻工艺技术的最新动态。
9、掌握金属化原理及工艺技术方法;理解ULSI的多层布线技术对金属性能的基本要求,用Cu布线代替A1的优点、必要性;了解铝、铜、低k材料的应用。
10、掌握双极、CMOS工艺步骤;了解集成电路的隔离工艺,集成电路制造过程中质量管理基础知识、统计技术应用和生产的过程控制技术。
三、课程内容:1、介绍超大规模集成电路制造技术的历史、发展现状、发展趋势;硅的晶体结构特点;微电子加工环境要求、单晶硅的生长技术(直拉法、区熔法)和衬底制备(硅圆片制备及规格,晶体缺陷,硅中杂质和硅单晶的整形、定向及抛光工艺)。
2、SiO2结构及性质,硅的热氧化工艺原理、设备及工艺技术,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算,SiO2薄膜厚度的测量。
3、杂质扩散机理,扩散系数和扩散方程,扩散杂质分布,常用扩散工艺及系统设备以及工艺特点、杂质分布的影响因素。
4、离子注入掺杂工艺原理,浓度分布及影响因素,离子注入系统组成,注入损伤和退火,离子注入特点及应用。
5、真空技术基础知识,真空系统组成,等离子体基本原理及应用。
蒸发和溅射系统组成及工作原理,形貌及台阶覆盖问题的解决。
6、化学汽相淀积(CVD)基本化学过程及动力学原理,不同材料、不同模式CVD方法系统原理及构造,简要介绍多晶硅、二氧化硅等CVD原理、方法以及工艺。
7、外延(同质、异质)机理和工艺技术及其装置与质量控制,外延层杂质浓度分布、外延缺陷控制及外延厚度和电阻率的测量。
8、光刻工艺的原理、流程、方法及特点,光刻缺陷控制及检测,光刻技术分类(光学光刻,非光学光刻);最新的光刻工艺技术动态,紫外线、X射线和电子束曝光等光刻进展以及掩膜制备;刻蚀分类(湿法刻蚀、干法刻蚀),常用刻蚀液组成及应用,干法刻蚀系统原理及结构组成。
了解半导体生产中常用材料的刻蚀技术。
9、金属化与布线技术(ULSI集成电路对金属性能的基本要求,铝、铜、低k材料的应用和工艺技术方法,布线技术)10、双极、CMOS工艺技术方法及工艺流程;集成电路制造过程中质量管理基础知识,统计技术和生产的过程控制技术。
五、课程实验内容及要求因为学校学时和设备条件限制,未开设实验课程六、教材及参考书:教材:《硅集成电路工艺基础》,关旭东,北京大学出版社,2005参考书:1、半导体制造技术,(美)Michael Quirk,Julian Serda著,韩郑生等译,电子工业出版社,2004年1月2、微电子制造科学原理与工程技术,(美)Stephen A.Campbell著,曾莹严利人等译,电子工业出版社,2003年1月3、芯片制造——半导体工艺制程实用教程(第四版),(美)Peter Van Zant著,赵树武等译,电子工业出版社,2004年10月4、芯硅超大规模集成电路工艺技术:理论、实践与模型,(美)James D.Plummer MichaelD.Deal Peter B.Griffin著,电子工业出版社,2003年4月七、说明:该课程为集成电路中实践性很强的工程技术类课程,建议结合微电子研究所现有条件(如超净实验室、溅射仪等),尽快开设出相应实验课程。
该课程的先修课程为:量子力学、固体物理、半导体物理。
八、考核方法:考试九、制订者:潘国峰《集成电路原理及设计》课程教学大纲课程名称:集成电路原理及设计英文名称:Principle and Design of Integrated Circiut课程类别:必修总学时56学时:(包括实验:14学时)学分:3.5分适应对象:电子科学与技术专业本科生一、课程性质、目的与任务《集成电路原理及设计》是电子科学与技术学科的专业基础必修课。
该课程在《电路分析》、《模拟电路》、《数字电路》、《半导体物理》等课程的基础上,全面系统地介绍半导体集成电路的基本原理、基本电路和基本分析方法。
课程全部内容分为四部分:第一部分介绍集成电路的基础知识和基本电路模型,第二部分主要介绍集成电路的具体元件构成和功能模块及其作用原理,第三部分讨论集成电路的设计方法和步骤,并进行上机模拟仿真练习。
第四部分为实验,学生利用Tanner集成电路设计软件系统进行电路设计与仿真。
二、教学基本要求《集成电路原理及设计》课程要求学生了解双极性集成电路和MOS集成电路的工艺特点;掌握双极性集成电路中TTL、ECL、I2L电路和CMOS集成电路的组成和工作原理;要求学生掌握集成电路传统设计方法和近现代设计方法的差异以及典型的集成电路设计方法;掌握在Tanner系统中利用S—edit模块进行电路图设计并对电路进行直流分析、瞬态分析;利用L—edit进行版图设计,满足设计规则,并进行版图与电路图一致性的检查,得到最终的版图,并且对版图进行验证,提取相关参数。
三、课程内容第一部分集成电路的基础知识和基本电路模型第一章集成电路的基本制造工艺掌握集成电路的基本制造原理和工艺,了解MOS与Bi-CMOS的制作过程和工艺。
第二章集成电路中的晶体管及其寄生效应掌握埃伯斯-莫尔模型及其推导过程,理解有源和无源寄生效应产生的原因及影响。
第三章集成电路中的无源元件;掌握集成电阻器、集成电容器和互连在工艺上的处理方法。
第二部分集成电路的具体元件构成和功能模块及其作用原理第四章晶体管-晶体管逻辑电路(TTL)理解TTL电路在集成电路中的重要作用,了解各种简单TTL电路的级连和作用以及TTL电路的逻辑扩展。
第五章发射级耦合逻辑(ECL)电路理解ECL电路的特点,ECL电路的组成和工作原理,以及ECL电路的逻辑扩展功能。
第六章集成注入逻辑(I2L)电路理解I2L单元电路的工作原理,电路正常工作的条件,电路逻辑组合以及工艺和版图设计。
第七章MOS反相器掌握MOS反相器的作用和原理,了解MOS反相器的差异和功能以及逻辑功能扩展。
第八章MOS基本逻辑单元掌握MOS基本单元电路的结构特点,级联级负载的设定方法,影响电气和物理结构的设计因素,以及各种逻辑类型的比较。
掌握传输门的工作原理和特点,以及各种触发器的原理。
第九章MOS逻辑功能部件掌握多路开关、加法器、进位链、算数单元以及寄存器的工作原理。
第十章存储器掌握存储器的分类,各种存储器的存储原理,特点和存在的问题,未来存储器的发展方向。
第十一章接口电路掌握双极型集成电路之间的接口电路,TTL和MOS逻辑系列之间的接口电路,掌握接口电路的构成和工作原理。
第三部分集成电路的设计方法和步骤第十七章集成电路设计概述掌握集成电路正向设计的原则,了解MOS和双极型电路的设计方法。
第十八章集成电路的工艺模拟和器件物理特性的模拟掌握工艺模拟的作用和工艺模拟的求解方法和器件模型。
第二十章集成电路设计方法掌握集成电路定制设计方法的思想和原则,理解全定制和半定制的设计方法。
实验Tanner系统掌握S—edit模块建立电路图的方法,以及对电路图进行各种分析的方法;掌握利用L —edit建立版图的方法以及版图设计中的规则。
四、学时分配:(总56学时,授课42学时)五、课程实验内容及要求(实验14学时)通过本课程实验部分的学习,让学生掌握集成电路设计软件的使用方法。
课程讲述集成电路从电路设计、电路性能分析到版图设计的过程,仿真过程以及仿真后输出结果的数据提取;以美国集成电路设计系统Tanner的教学平台为依托,通过实验学习来培养学生的集成电路设计能力。
要求学生在学完本课程后,具备集成电路电路与版图设计的初步能力,能熟练使用tanner工具软件。
六、教材及参考书教材:朱正涌半导体集成电路清华大学出版社2002年参考书:张延庆半导体集成电路上海科学技术出版社2000年杨之廉超大规模集成电路设计方法学导论清华大学出版社1999年孙润Tanner集成电路设计教程北京希望电子出版社2001廖裕评陆瑞强Tanner Pro集成电路设计与布局实战指导科学出版社2008 实验指导书:实验指导书为自主编写的《集成电路原理与设计》实验指导书,专门为该课程设计,具有很强的针对性,能够帮助学生做好实验准备。
七、说明《集成电路原理及设计》课程的先修课为电路分析、半导体物理、数字电路、模拟电路等;后续课为微电子毕业设计。
本课程上课与实验的学时比为3:1,作业为每章后面3~5个习题,另外还要补充一下课外习题。