智能温度控制系统 文献综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古科技大学信息工程学院测控专业毕业实习报告

——文献综述

题目:电阻炉温度控制系统设计

学生姓名:贾旺

学号:0967112301

专业:测控技术与仪器

班级:测控2009-3

指导教师:左鸿飞

前言

电阻炉被广泛地应用在工业生产中,它的温度控制效果直接影响到生产效率和产品质量,因而工业生产对温度控制系统的要求很高。目前电阻炉通常采用常规PID 控制,但是电阻炉的温度控制具有非线性、大惯性、大滞后等特点,难以对其建立精确的数学模型,因而常规PID控制难以取得良好的控制效果。因此,设计一个控制精度高、运行稳定的电阻炉温度控制系统具有很高的应用价值。

本文以电阻炉为控制对象,以UP550程序调节器为硬件核心,采用PID控制方法,设计一种控制精度高的温度控制系统。在文中详细阐述了控制系统的硬件设计和控制方法。

本系统的温度检测电路集成在UP550程序调节器中,简化了系统的硬件设计,提高了温度检测的精度。在输出控制中主要采用硬件电路实现,降低了程序的复杂性。在系统的硬件电路中采用了抗干扰设计,增强了系统的抗干扰能力。

常规PID控制算法简单、易于实现,适用于可建立精确数学模型的确定性控制系统。而实际工业生产过程往往具有非线性和时变性,难以建立精确的数学模型,因此常规PID控制器不能达到理想的控制效果。但通过UP550程序调节器可以同时设定多组PID参数,根据不同温度段特性更改PID参数弥补了常规PID控制的不足。采用常规PID控制和论文设计的控制系统在电阻炉上进行控制实验,并对控制效果进行分析,结果表明,该控制系统的控制效果优于常规PID,具有超调小、控制精度高、抗扰性强、运行稳定等优点,具有较好的应用前景。

第一章绪论

1.1 课题背景和意义

从20世纪20年代开始,电阻炉就在工业上得到使用。随着科学技术的发展,电阻炉被广泛的应用在冶金、机械、石油化工、电力等工业生产中,在很多生产过程中,温度的测量和控制与生产安全、生产效率、产品质量、能源节约等重大技术经济指标紧紧相连。因此各个领域对电阻炉温度控制的精度、稳定性、可靠性等要求也越来越高,温度测控制技术也成为现代科技发展中的一项重要技术。

温度控制技术发展经历了三个阶段:l、定值开关控制;2、PID控制;3、智能控制。定值开关控制方法的原理是若所测温度比设定温度低,则开启控制开关加热,反之则关断控制开关。其控温方法简单,没有考虑温度变化的滞后性、惯性,导致系统控制精度低、超调量大、震荡明显。PID控制温度的效果主要取决于P、I、D三个参数。PID控制对于确定的温度系统,控制效果良好,但对于控制大滞后、大惯性、时变性温度系统,控制品质难以保证。电阻炉是由电阻丝加热升温,靠自然冷却降温,当电阻炉温度超调时无法靠控制手段降温,因而电阻炉温度控制具有非线性、滞后性、惯性、不确定性等特点。目前国内成熟的电阻炉温度测控系统以PID控制器为主,PID 控制对于小型实验用电阻炉控制效果良好,但对于大型工业电阻炉就难以保证电阻炉控制系统的精度、稳定性等。智能控制是一类无需人的干预就能独立驱动智能机械而实现其目标的自动控制,随着科学技术和控制理论的发展,国外的温度测控系统发展迅速,实现对温度的智能控制。应用广泛的温度智能控制的方法有模糊控制、神经网络控制、专家系统等,具有自适应、自学习、自协调等能力,保证了控制系统的控制精度、抗干扰能力、稳定性等性能。比较而言,国外温度控制系统的性能要明显优于国内,其根本原因就是控制算法的不同。

本文的研究,以电阻炉为控制对象,UP550程序调节器为硬件核心元件,设计一种新型的温度测控系统,使其具有硬件电路简单、系统性能优良等优点。

1.2 国内外温度控制系统的概况与发展趋势

传统的PID控制及改进型PID控制原理简单、工作稳定、可靠性高、鲁棒性强,

曾在电阻炉温度控制系统中得到了普遍的采用,其缺点是必须预先建立控制对象的数学模型,因而其对于一些大滞后、多输入、时变性电阻炉系统,控制效果难以满意。自智能控制理论发展以来,智能控制技术开始逐渐应用于工业控制。1974年,Mamdani 首次用模糊逻辑和模糊推理实现了蒸汽机的控制,其标志着人们用模糊逻辑进行工业控制的开始,也宣告了模糊控制的问世。1976年,P.J.King和Mamdani等人合作,用模糊控制对反应器进行温度控制,他们采用模糊模型的预估方案,从而成功解决了不稳定问题。这也是控制史上首次利用模糊控制来进行温度控制。在20世纪90年代,美国、英国相续发表《智能控制专辑》,同本、德国等国也连续发表多篇智能控制方面的论文,涉及到军事、工业、家用电器等众多领域,包括智能温度控制在各个领域的应用。如今Simens和Inform公司联合研制了性能优良的模糊控制开发软件工具及第三代模糊微处理器,可利用软件或硬件的方法实现对系统的模糊控制。

在Zadeh创立模糊集合论的同年,我国傅京孙教授首先提出了把人工智能中的直觉推理方法用于学习控制系统,奠定了国内智能控制发展的基础。模糊控制应用于核反应堆、城市交通等控制中。随后更多的学者开始关注智能控制技术,近年来我国也越来越重视智能控制理论和应用的研究,从1993到1995连续三年国内都召丌了与智能控制有关的学术会议。由于温度控制设计到冶金、化工、机械等众多领域,因而温度智能控制技术也是国内学者研究的重要内容,越来越多与智能温度控制有关的论文在科技刊物上发表。

总体上说,智能控制在温度控制系统中的应用越来越广泛。目前,国外已研制出商品化、智能化、精度高、小型化的智能温度控制系统,开发出成熟的智能控制算法和控制软件。相比较而言,国内智能控制技术的应用要落后于国外,目前国内成熟的温度控制系统以常规PID和各种改进PID控制为主,商品化的智能控制系统少,在智能控制算法和控制软件的开发方面投入人力、物力也较少。

第二章控制方法介绍及硬件选择

2.1智能控制

“智能控制”一词在1967年Leondes和Mendel在他们的“人工智能控制"技术报告中正式使用,智能控制是一门新兴的理论和技术,目前关于智能控制的定义、理论、结构等尚无统一的系统描述,1993年美国IEEE控制系统学会智能控制技术委员会邀请成立一个专家小组,目的在于描述智能控制系统的特点,对“智能控制"一词进行定义,并指出因为不问的观点和描述问题智能控制系统的多种定义是必须的。在上述专家小组发表的综合报告中指出,实际上称为具有智能的系统其智能应相当高才行。通常这种智能要求具有感知环境、作出决策和控制动作的能力,更高的智能还包括认识目标和事件用语言模型代表知识,对未来作出推理和计划。智能控制的研究对象具有以下几个特点:一、不确定性的模型。智能控制的对象通常存在严重的不确定性,其不确定性是指模型未知或知之甚少以及模型的结构和参数可能在很大范围内变化。二、高度的非线性。在传统的控制理论中,线性理论比较成熟,而非线性理论很不成熟,非线性控制方法也比较复杂,采用智能控制方法可以较好的解决非线性系统的控制问题。三、复杂的任务要求。传统的控制系统控制任务要求比较单一,智能控制系统可以完成复杂的任务要求。例如在复杂的工业过程控制系统中,除了要求对各被控物理量实现定值调节外,还要求能实现整个系统的自动启停、故障的自动诊断以及紧急情况的自动处理等功能。智能控制是一类无需人的干预就能独立驱动智能机械而实现其目标的自动控制,“智能”一词是对系统的自动化程度、范围及所能完成复杂控制任务的功能的表征,一般智能控制系统的功能包括以下三点:一、学习功能。系统能对一个过程或未知环境所提供的信息进行识别、记忆、学习并利用积累的经验进一步改善系统的性能。二、适应功能。系统应具有适应受控对象动力学特性、环境变化和运行条件变化的能力。三、组织功能。对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有主动性和灵活性。智能控制的方法很多,包括专家控制、神经控制、模糊控制、基于模式识别的智能控制、多模变结构智能控制、仿人智能控制等,现在介绍主要的三种智能控制方法——专家控制、神经控制、模糊控制。

2.1.1 专家控制

专家家系统通过某种知识获取手段,把人类专家的领域知识和经验技巧移植到计算机中,并且模拟人类专家的推理、决策过程,表现出求解复杂问题的人工智能。因而,专家系统是一种人工智能的计算机程序系统,这些程序软件具有相当于某个专门

相关文档
最新文档