2019年普通高等学校招生全国统一考试数学卷(北京.理)含答案
2019年北京理综高考试题(word版含答案)

2.哺乳动物肝细胞的代谢活动十分旺盛,下列细胞结构与对应功能表述有误的是4.以下高中生物学实验中,操作不正确的是 ...2019 年普通高等学校招生全国统一考试理科综合能力测试(北京卷)本试卷共 16 页,共 300 分。
考试时长 150 分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16第一部分(选择题 共 120 分)本部分共 20 小题,每小题 6 分,共 120 分。
在每小题列出四个选项中,选出最符合题目要求的一项。
1.细胞膜的选择透过性保证了细胞内相对稳定的微环境。
下列物质中,以(自由)扩散方式通过细胞膜的是A .Na +B .二氧化碳C .RNAD .胰岛素..A .细胞核:遗传物质储存与基因转录B .线粒体:丙酮酸氧化与 ATP 合成C .高尔基体:分泌蛋白的合成与加工D .溶酶体:降解失去功能的细胞组分3.光反应在叶绿体类囊体上进行。
在适宜条件下,向类囊体悬液中加入氧化还原指示剂DCIP ,照光后 DCIP 由蓝色逐渐变为无色。
该反应过程中A .需要 ATP 提供能量B .DCIP 被氧化C .不需要光合色素参与D .会产生氧气...A .在制作果酒的实验中,将葡萄汁液装满整个发酵装置B .鉴定 DNA 时,将粗提产物与二苯胺混合后进行沸水浴C .用苏丹Ⅲ染液染色,观察花生子叶细胞中的脂肪滴(颗粒)D .用龙胆紫染液染色,观察洋葱根尖分生区细胞中的染色体5.用 XhoI 和 SalI 两种限制性核酸内切酶分别处理同一 DNA 片段,酶切位点及酶切产物分离结果如图。
以下叙述不正确的是6.下列我国科技成果所涉及物质的应用中,发生的不是化学变化的是 ...A .图 1 中两种酶识别的核苷酸序列不同B .图 2 中酶切产物可用于构建重组 DNAC .泳道①中是用 SalI 处理得到的酶切产物D .图中被酶切的 DNA 片段是单链 DNA..A .甲醇低温所制B .氘、氚用作“人造太阳”C .偏二甲肼用作发射“天D .开采可燃冰,将 氢气用于新能源 核聚变燃料宫二号”的火箭燃料 其作为能源使用汽车7.我国科研人员提出了由 CO 2 和 CH 4 转化为高附加值产品 CH 3COOH 的催化反应历程。
(完整版)2019年高考理科数学全国2卷(附答案)

n g 12B-SX-0000020绝密★启用前2019年普通高等学校招生全国统一考试理科数学 全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内对应的点位于z A .第一象限B .第二象限C .第三象限D .第四象限3.已知=(2,3),=(3,t ),=1,则=ABAC BC AB BC A .-3 B .-2 C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离:- - - - - - - - 密封线 -n g e ts o12B-SX-0000020R ,点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的2L延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,点到月球2L 的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:.121223()()M M M R r R r r R +=++设,由于的值很小,因此在近似计算中,则r R α=α34532333(1)ααααα++≈+r 的近似值为A B CD 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数 B .平均数C .方差D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面221x y +=A .2B .3C .4D .89.下列函数中,以为周期且在区间(,)单调递增的是2π4π2πA .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,),2sin 2α=cos 2α+1,则sin α=2πA .B15C .D .11.设F 为双曲线C :的右焦点,为坐标原点,以22221(0,0)x y a b a b -=>>O 为直径的圆与圆交于P ,Q 两点.若,则C 的离OF 222x y a +=PQ OF =心率为A .B C .2D .12.设函数的定义域为R ,满足,且当()f x (1) 2 ()f x f x +=时,.若对任意,都有(0,1]x ∈()(1)f x x x =-(,]x m ∈-∞,则m 的取值范围是8()9f x ≥-A .B .9,4⎛⎤-∞ ⎥⎝⎦7,3⎛⎤-∞ ⎥⎝⎦n g a gs 12B-SX-0000020C .D .5,2⎛⎤-∞ ⎥⎝⎦8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
2019年全国普通高等学校招生统一考试数学(文)(北京卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(文)(北京卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。
将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6.保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、单选题1.已知集合A={(|||<2)},B={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:故选A.点睛:此题考查集合的运算,属于送分题.2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3.执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4.设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.详解:当时,不成等比数列,所以不是充分条件; 当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件故选B.点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.5.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A.B.C.D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以()12,n n a n n N -+=≥∈, 又1a f =,则7781a a q f===故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种: (1)定义法,若1n n a q a +=(*0,q n N ≠∈)或1n n aq a -=(*0,2,q n n N ≠≥∈), 数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中, 0n a ≠且212n n n a a a --=⋅(*3,n n N ≥∈),则数列{}n a 是等比数列.6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数. 详解:由三视图可得四棱锥,在四棱锥中,, 由勾股定理可知:, 则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.7.在平面直角坐标系中, ,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A. ABB. CDC. EFD. GH【答案】C【解析】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时, cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时, cos ,sin x y αα==, tan y x α=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时, cos ,sin x y αα==, tan y xα=, sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限, tan 0,sin 0,cos 0ααα><<,故D 选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到sin ,cos ,tan ααα所对应的三角函数线进行比较. 8.设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.二、填空题9.设向量a=(1,0),b=(−1,m),若,则m=_________.【答案】【解析】分析:根据坐标表示出,再根据,得坐标关系,解方程即可.详解:,,由得:,,即.点睛:此题考查向量的运算,在解决向量基础题时,常常用到以下:设,则①;②.10.已知直线l过点(1,0)且垂直于轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.【答案】【解析】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.详细:由题意可得,点在抛物线上,将代入中,解得:,,由抛物线方程可得:,焦点坐标为.点睛:此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.11.能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.【答案】(答案不唯一)【解析】分析:根据原命题与命题的否定的真假关系,可将问题转化为找到使“若,则”成立的,根据不等式的性质,去特值即可.详解:使“若,则”为假命题则使“若,则”为真命题即可,只需取即可满足所以满足条件的一组的值为(答案不唯一)点睛:此题考查不等式的运算,解决本题的核心关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.12.若双曲线的离心率为,则a=_________.【答案】4【解析】分析:根据离心率公式,及双曲线中的关系可联立方程组,进而求解参数的值.详解:在双曲线中,,且点睛:此题考查双曲线的基本知识,离心率是高考对于双曲线考查的一个重要考点,根据双曲线的离心率求双曲线的标准方程及双曲线的渐近线都是常见的出题形式,解题的关键在于利用公式,找到之间的关系.13.若,y满足,则2y−的最小值是_________.【答案】3【解析】分析:将原不等式转化为不等式组,画出可行域,分析目标函数的几何意义,可知当时取得最小值.详解:不等式可转化为,即满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.点睛:此题考查线性规划,求线性目标函数的最值,当时,直线过可行域在轴上截距最大时,值最大,在轴上截距最小时,值最小;当时,直线过可行域在轴上截距最大时,值最小,在轴上截距最小时,值最大.14.若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则为钝角,,故.点睛:此题考查解三角形的综合应用,余弦定理的公式有三个,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含的表达式的最值问题是解题的第二个关键.三、解答题15.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.【答案】(I)(II)【解析】分析:(1)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(2)由(1)可得,进而可利用等比数列求和公式进行求解.详解:(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.16.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)将化简整理成的形式,利用公式可求最小正周期;(2)根据,可求的范围,结合函数图像的性质,可得参数的取值范围.详解:(Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负.好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(Ⅰ)(Ⅱ)(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.【解析】分析:(1)分别计算样本中电影总部数及第四类电影中获得好评的电影部数,代入公式可得概率;(2)利用古典概型公式,计算没有获得好评的电影部数,代入公式可得概率;(3)根据每部电影获得好评的部数做出合理建议..详解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为.(Ⅱ)设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得.(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.点睛:本题主要考查概率与统计知识,属于易得分题,应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.18.(本小题14分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】分析:(1)欲证,只需证明即可;(2)先证平面,再证平面P AB⊥平面PCD;(3)取中点,连接,证明,则平面.详解:(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴.(Ⅱ)∵底面为矩形,∴.∵平面平面,∴平面.∴.又,∵平面,∴平面平面.(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴.又平面,平面,∴平面.点睛:证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.19.设函数.(Ⅰ)若曲线在点处的切线斜率为0,求a;(Ⅱ)若在处取得极小值,求a的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)求导,构建等量关系,解方程可得参数的值;(2)对分及两种情况进行分类讨论,通过研究的变化情况可得取得极值的可能,进而可求参数的取值范围.详解:解:(Ⅰ)因为,所以.,由题设知,即,解得.(Ⅱ)方法一:由(Ⅰ)得.若a>1,则当时,;当时,.所以在x=1处取得极小值.若,则当时,,所以.所以1不是的极小值点.综上可知,a的取值范围是.方法二:.(1)当a=0时,令得x=1.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.(2)当a>0时,令得.①当,即a=1时,,∴在上单调递增,∴无极值,不合题意.②当,即0<a<1时,随x的变化情况如下表:∴在x=1处取得极大值,不合题意.③当,即a>1时,随x的变化情况如下表:∴在x=1处取得极小值,即a>1满足题意.(3)当a<0时,令得.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.综上所述,a的取值范围为.点睛:导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数单调性或求单调区间问题;③利用导数求函数的极值最值问题;④关于不等式的恒成立问题.解题时需要注意的有以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值最值问题时常常会涉及到分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.20.已知椭圆2222:1(0)x y M a b a b +=>>斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .【答案】(Ⅰ)2213x y +=(Ⅲ)1【解析】分析:(1)根据题干可得,,a b c 的方程组,求解22,a b 的值,代入可得椭圆方程;(2)设直线方程为y x m =+,联立,消y 整理得2246330x mx m ++-=,利用根与系数关系及弦长公式表示出AB ,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合C D Q 、、三点共线,利用共线向量基本定理得出等量关系,可求斜率k . 详解:(Ⅰ)由题意得2c =,所以c =又c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=. (Ⅱ)设直线AB 的方程为y x m =+,由22{ 13y x mx y =++=消去y 可得2246330x mx m ++-=,则()22236443348120m m m ∆=-⨯-=->,即24m <,设()11,A x y , ()22,B x y ,则1232mx x +=-, 212334m x x -=,则12AB x =-=, 易得当20m =时, max ||AB =AB (Ⅲ)设()11,A x y , ()22,B x y , ()33,C x y , ()44,D x y ,则221133x y += ①, 222233x y += ②,又()2,0P -,所以可设1112PA y k k x ==+,直线PA 的方程为()12y k x =+, 由()1222{ 13y k x x y =++=消去y 可得()222211113121230k x k x k +++-=,则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712,4747x y C x x ⎛⎫-- ⎪++⎝⎭,同理可得2222712,4747x y D x x ⎛⎫-- ⎪++⎝⎭.故3371,44QC x y ⎛⎫=+- ⎪⎝⎭, 4471,44QD x y ⎛⎫=+- ⎪⎝⎭, 因为,,Q C D 三点共线,所以3443717104444x y x y ⎛⎫⎛⎫⎛⎫⎛⎫+--+-= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到,,a b c 三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式21AB x =-变形为AB =再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.。
2019年普通高等学校招生全国统一考试(押题卷)理科数学(二)

2019年普通高等学校招生全国统一考试(押题卷)理科数学(二)第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2340A x x x =∈--≤Z ,{}0ln 2B x x =<<,则A B 的真子集的个数为( ) A .3B .4C .7D .82.设复数1z =-(i 是虚数单位),则z z z ⋅+的值为( ) A.B.C.D.3.“p q ∧为假”是“p q ∨为假”的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要4.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( )盏. A .2B .3C .26D .275.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则5x z y -=的取值范围为( )A .24,33⎡⎤-⎢⎥⎣⎦B .42,33⎡⎤-⎢⎥⎣⎦C .33,,24⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭D .33,,42⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭6.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的取值范围是( ) A .910a ≤<B .910a <≤C .1011a <≤D .89a <≤7.设双曲线()2222:10,0x y C a b a b-=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为( ) A .2BC.D .48.过抛物线()20y mx m =>的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,54PQ m =,则m =( ) A .4B .6C .8D .109.一排12个座位坐了4个小组的成员,每个小组都是3人,若每个小组的成员全坐在一起,则不同的坐法种数为( ) A .()33434A AB .()44343A AC .121233A AD .121244A A10.设函数1()2f x =对于任意[11] x ∈-,,都有()0f x ≤成立,则a =( ) A .4 B .3 CD .111.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174πB .214πC .4πD .5π12.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标系原点)的斜率为k ,则( )A .至少存在两个点P 使得1k =-B .对于任意点P 都有0k <C .对于任意点P 都有1k <D .存在点P 使得1k ≥ 第Ⅱ卷本卷包括必考题和选考题两部分。
圆锥曲线全国卷高考真题解答题(含解析))

圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.9.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.2018年全国普通高等学校招生统一考试理数(全国卷II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.15.2018年全国卷Ⅲ文数高考试题已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.16.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.17.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .18.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.19.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.22.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)设1F , 2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点, M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a , b .23.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积24.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222,2c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =2a a C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当32k =时上式不成立,因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->,解得322k <<. 因此k 的取值范围是()32,2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。
2019年高考数学真题试卷(理)(天津卷)含逐题详解

【答案】D
【分析】
只需把 用 表示出来,即可根据双曲线离心率的定义求得离心率。
【详解】 的方程为 ,双曲线的渐近线方程为 .
故得 .
所以 , , .
所以 。
故选D。
【点睛】双曲线 的离心率 。
6
【答案】A
【分析】
利用利用 等中间值区分各个数值的大小。
【详解】 .
.
,故 .
所以 。
故选A。
【点睛】利用指数函数,对数函数的单调性时要根据底数与 的大小区别对待。
在 中,内角 所对的边分别为 .已知 , .
(Ⅰ)求 的值.
(Ⅱ)求 的值.
16.(本小题满分13分)
设甲,乙两位同学上学期间,每天7:30之前到校的概率均为 .假定甲,乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量 的分布列和数学期望.
A. B. C. D.
2019年普通高等学校招生全国统一考试(天津卷)
数学(理工类)
第Ⅱ卷
注意事项:
1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二.填空题:本大题共6小题,每小题5分,共30分.
9. 是虚数单位,则 的值为_____________.
10. 的展开式中的常数项为_____________.
7.
【答案】A
【分析】
只需根据函数性质逐步得出 值即可。
【详解】 为奇函数,可知 .
由 可得 .
把其图象上各点的横坐标伸长到原来的 倍,得 .
由 的最小正周期为 可得 .
由 ,可得 .
2019年数学普通高等学校招生全国统一考试数学(理)全国甲卷
2019年数学高考全国2卷全国(Ⅱ)理一、选择题(共11小题;共55分)1. 已知z=(m+3)+(m−1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A. (−3,1)B. (−1,3)C. (1,+∞)D. (−∞,−3)2. 已知集合A={1,2,3},B={x∣ (x+1)(x−2)<0,x∈Z},则A∪B=( )A. {1}B. {1,2}C. {0,1,2,3}D. {−1,0,1,2,3}3. 已知向量a⃗=(1,m),b⃗⃗=(3,−2),且(a⃗+b⃗⃗)⊥b⃗⃗,则m=( )A. −8B. −6C. 6D. 84. 如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A. 24B. 18C. 12D. 95. 圆x2+y2−2x−8y+13=0的圆心到直线ax+y−1=0的距离为1,则a=( )A. −43B. −34C. √3D. 26. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. 20πB. 24πC. 28πD. 32π7. 若将函数y=2sin2x的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A. x=kπ2−π6(k∈Z) B. x=kπ2+π6(k∈Z)C. x=kπ2−π12(k∈Z) D. x=kπ2+π12(k∈Z)8. 中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A. 7B. 12C. 17D. 349. 若 cos (π4−α)=35,则 sin2α= ( )A. 725B. 15C. −15D. −72510. 从区间 [0,1] 随机抽取 2n 个数 x 1,x 2,⋯,x n ,y 1,y 2,⋯,y n ,构成 n 个数对 (x 1,y 1),(x 2,y 2),⋯,(x n ,y n ),其中两数的平方和小于 1 的数对共有 m 个,则用随机模拟的方法得到的圆周率的近似值为 ( )A. 4nmB. 2nmC. 4mnD. 2mn11. 已知 F 1,F 2 是双曲线 E :x 2a 2−y 2b 2=1 的左,右焦点,点 M 在 E 上,MF 1 与 x 轴垂直,sin∠MF 2F 1=13,则 E 的离心率为 ( )A. √2B. 32C. √3D. 2二、填空题(共1小题;共5分)12. 三角形 ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,若 cosA =45,cosC =513,a =1,则b = .三、选择题(共1小题;共5分)13. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为(x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +y i )m i=1= ( ) A. 0 B. m C. 2mD. 4m四、填空题(共3小题;共15分)14. 有三张卡片,分别写有 1 和 2,1 和 3,2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是 2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是 1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是 .15. α,β 是两个平面,m ,n 是两条线,有下列四个命题:① 如果m⊥n,m⊥α,n∥β,那么α⊥β.② 如果m⊥α,n∥α,那么m⊥n.③ 如果α∥β,m⊂α,那么m∥β.④ 如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.则上述四个命题真命题的是16. 若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,b=.五、解答题(共8小题;共104分)17. S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=1,[lg99]=1.Ⅰ求b1,b11,b101;Ⅱ求数列{b n}的前1000项和.18. 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:ⅠⅡ若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;Ⅲ求续保人本年度的平均保费与基本保费的比值.19. 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H.将三角形DEF沿EF折到三角形DʹEF的位置ODʹ=√10.Ⅰ证明:DʹH⊥平面ABCD;Ⅱ求二面角B−DʹA−C的正弦值.20. 已知椭圆E:x2t +y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.Ⅰ当t=4,∣AM∣=∣AN∣时,求三角形AMN的面积;Ⅱ当2∣AM∣=∣AN∣时,求k的取值范围.21. (1)讨论函数 f (x )=x−2x+2⋅e x 的单调性,并证明当 x >0 时,(x −2)⋅e x +x +2>0Ⅱ 证明:当 a ∈[0,1) 时,函数 g (x )=e x −ax−ax 2(x >0) 有最小值.设 g (x ) 的最小值为 ℎ(a ),求函数 ℎ(a ) 的值域.22. 如图,在正方形 ABCD ,E ,G 分别在边 DA ,DC 上(不与端点重合),且 DE =DG ,过 D 点作 DF ⊥CE ,垂足为 F .Ⅰ 证明:B ,C ,G ,F 四点共圆;Ⅱ 若 AB =1,E 为 DA 的中点,求四边形 BCGF 的面积.23. 在直角坐标系 xOy 中,圆 C 的方程为 (x +6)2+y 2=25.Ⅰ 以坐标原点为极点,轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;Ⅱ 直线 l 的参数方程是 {x =tcosα,y =tsinα,(t 为参数),l 与 C 交于 A ,B 两点,∣AB∣=√10,求 l 的斜率.24. 已知函数 f (x )=∣∣x −12∣∣+∣∣x +12∣∣,M 为不等式 f (x )<2 的解集.Ⅰ 求 M ;Ⅱ 证明:当 a ,b ∈M 时,∣a +b∣<∣1+ab∣.答案第一部分1. A2. C3. D4. B5. A6. C7. B8. C9. D 10. C11. A第二部分12. 2113第三部分13. B第四部分14. 1和315. ②③④16. 1−ln2第五部分17. (1)设{a n}的公差为d,S7=7a4=28,所以a4=4,所以d=a4−a13=1,所以a n=a1+(n−1)d=n.所以b1=[lga1]=[lg1]=0,b11=[lga11]=[lg11]=1,b101=[lga101]=[lg101]=2.(2)记{b n}的前n项和为T n,则T1000=b1+b2+⋯+b1000=[lga1]+[lga2]+⋯+[lga1000].当0≤lga n<1时,n=1,2,⋯,9;当1≤lga n<2时,n=10,11,⋯,99;当2≤lga n<3时,n=100,101,⋯,999;当lga n=3时,n=1000.所以T1000=0×9+1×90+2×900+3×1=1893.18. (1)设续保人本年度的保费高于基本保费为事件A,P(A)=1−P(A)=1−(0.30+0.15)=0.55.(2)设续保人保费比基本保费高出60%为事件B,P(B∣ A)=P(AB)P(A)=0.10+0.050.55=311.(3)设本年度所交保费为随机变量X.平均保费EX =0.85a ×0.30+0.15a +1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=0.255a +0.15a +0.25a +0.3a +0.175a +0.1a=1.23a.所以平均保费与基本保费比值为 1.23. 19. (1) 因为 AE =CF =54,所以 AEAD =CFCD ,所以 EF ∥AC . 因为四边形 ABCD 为菱形, 所以 AC ⊥BD ,所以 EF ⊥BD , 所以 EF ⊥DH ,所以 EF ⊥DʹH . 因为 AC =6, 所以 AO =3; 又 AB =5,AO ⊥OB , 所以 OB =4,所以 OH =AE AO⋅OD =1,所以 DH =DʹH =3,所以 ∣ODʹ∣2=∣OH∣2+∣DʹH∣2, 所以 DʹH ⊥OH . 又 OH ∩EF =H , 所以 DʹH ⊥面ABCD .(2) 建立如图坐标系 H −xyz .B (5,0,0),C (1,3,0),Dʹ(0,0,3),A (1,−3,0),AB ⃗⃗⃗⃗⃗⃗=(4,3,0),ADʹ⃗⃗⃗⃗⃗⃗⃗⃗=(−1,3,3),AC ⃗⃗⃗⃗⃗⃗=(0,6,0),设面 ABDʹ 法向量 n 1⃗⃗⃗⃗⃗=(x,y,z ),由 {n 1⃗⃗⃗⃗⃗⋅AB ⃗⃗⃗⃗⃗⃗=0,n 1⃗⃗⃗⃗⃗⋅ADʹ⃗⃗⃗⃗⃗⃗⃗⃗=0, 得 {4x +3y =0,−x +3y +3z =0, 取 {x =3,y =−4,z =5,所以 n 1⃗⃗⃗⃗⃗=(3,−4,5). 同理可得面 ADʹC 的法向量 n 2⃗⃗⃗⃗⃗=(3,0,1),所以 ∣cosθ∣=∣n 1⃗⃗⃗⃗⃗⃗⋅n 2⃗⃗⃗⃗⃗⃗∣∣∣n 1⃗⃗⃗⃗⃗⃗∣∣∣∣n2⃗⃗⃗⃗⃗⃗∣∣=5√2⋅√10=7√525, 所以 sinθ=2√9525.20. (1) 当 t =4 时,椭圆 E 的方程为 x 24+y 23=1,A 点坐标为 (−2,0),因为 ∣AM ∣=∣AN ∣,MA ⊥NA ,由椭圆的对称性,k =1,则直线 AM 的方程为 y =x +2.联立 {x 24+y 23=1,y =x +2,并整理得 7x 2+16x +4=0,所以 M (−27,127),所以 S △AMN =12×(2−27)×127×2=14449.(2) 直线 AM 的方程为 y =k(x +√t), 联立 {x 2t +y 23=1,y =k(x +√t),并整理得(3+tk 2)x 2+2t √tk 2x +t 2k 2−3t =0.解得 x =−√t 或 x =−t √tk 2−3√t 3+tk 2,所以 ∣AM∣=√1+k 2∣∣∣−t √tk 2−3√t3+tk 2+√t ∣∣∣=√1+k 2⋅6√t3+tk 2. 所以 ∣AN∣=√1+k 2⋅6√t 3k+t k.因为 2∣AM∣=∣AN∣, 所以 2⋅√1+k 2⋅6√t3+tk 2=√1+k 2⋅6√t 3k+t k,整理得 t =6k 2−3k k 3−2.因为椭圆 E 的焦点在 x 轴, 所以 t >3,即6k 2−3k k −2>3,整理得(k 2+1)(k−2)k −2<0,解得 √23<k <2.21. (1) 因为 f (x )=x−2x+2⋅e x ,所以 fʹ(x )=e x (x−2x+2+4x+2)=x 2e xx+2.因为当 x ∈(−∞,−2)∪(−2,+∞) 时,fʹ(x )>0, 所以 f (x ) 在 (−∞,−2) 和 (−2,+∞) 上单调递增.所以 x >0 时,x−2x+2⋅e x >f (0)=−1,所以 (x −2)e x +x +2>0 得证. (2) 因为gʹ(x )=(e x −a )x 2−2x (e x −ax −a )x 4=x (xe x −2e x +ax +2a )x 4=(x +2)⋅(x −2x +2⋅e x+a)x 3,a ∈[0,1), 令 ℎ(x )=x−2x+2e x +a ,则 ℎ(0)=a −1<0,ℎ(2)=a ≥0,由(1)的结论,ℎ(x ) 在 (0,2] 上有唯一零点 x =t .可得函数 g (x ) 在 (0,t ) 上单调递减,在 (t,+∞) 上单调递增,因此 x =t 也是函数 g (x ) 的极小值点,亦为最小值点.因此当 a ∈[0,1) 时,函数 g (x ) 有最小值 g (t ).由于t −2t +2e t+a =0, 即 a =−t−2t+2e t ,当 a ∈[0,1) 时,有 t ∈(0,2].所以函数 g (x ) 的最小值g (t )=e t +(t +1)t −2t +2⋅e tt 2=e t t +2.令 r (t )=e tt+2(m ∈(0,2]),则其导函数rʹ(t )=t +1()2e t>0,因此函数 r (t ) 在 (0,2] 上单调递增,从而函数 ℎ(a ) 的值域,即函数 g (x ) 的最小值的取值范围是(r (0),r (2)],即 (12,14e 2].22. (1) 因为 DF ⊥CE , 所以 Rt △DEF ∽Rt △CED .所以 ∠GDF =∠DEF =∠BCF ,DFDG =CFBC . 因为 DE =DG ,CD =BC , 所以DE DG=CF BC.所以 △GDF ∽△BCF , 所以 ∠CFB =∠DFG .所以 ∠GFB =∠GFC +∠CFB =∠GFC +∠DFG =∠DFC =90∘. 所以 ∠GFB +∠GCB =180∘. 所以 B ,C ,G ,F 四点共面.(2) 因为 E 为 AD 中点,AB =1,所以 DG =CG =DE =12, 所以在 Rt △GFC 中,GF =GC ,连接 GB ,Rt △BCG ≌Rt △BFG , 所以 S 四边形BCGF =2S △BCG =2×12×1×12=12.23. (1) 由 {x =ρcosθ,y =ρsinθ, 可得,(ρcosθ+6)2+ρ2sin 2θ=25,整理得 ρ2+12ρcosθ+11=0 即为所求.(2) 令直线 l 的斜率为 k ,可得直线的直角坐标方程为 kx −y =0. 圆的半径为 r =5,圆心到直线的距离 d =√k 2+1,又因为 ∣AB∣=√10, 所以可得∣AB∣24+d 2=r 2,即 52+36k 2k 2+1=25,解得 k =±√153. 24. (1) 当 x ≤−12 时,原不等式可以化为 12−x −x −12<2,解得 x >−1, 所以此时不等式的解集为 (−1,−12];当 x ≥12 时,原不等式可以化为 x −12+x +12<2,解得 x <1, 所以此时不等式的解集为 [12,1);当 −12<x <12 时,原不等式可以化为 x +12+12−x <2,解得 x ∈R , 所以此时不等式的解集为 (−12,12); 综上可得原不等式的解集为 M =(−1,1).(2) 要证明 ∣a +b∣<∣1+ab∣,则只需要证明 (a +b )2<(1+ab )2.因为(1+ab)2−(a+b)2=a2b2+1−a2−b2=(a2−1)(b2−1),而由1可得a2<1,b2<1,所以(a2−1)(b2−1)>0.所以原不等式得证.。
2019年北京卷《文数》高考真题文档版及解析答案(精准版)
2019年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =(A )(–1,1)(B )(1,2)(C )(–1,+∞)(D )(1,+∞)(2)已知复数z =2+i ,则z z ⋅=(A (B (C )3(D )5(3)下列函数中,在区间(0,+∞)上单调递增的是(A )12y x =(B )y =2x-(C )12log y x=(D )1y x=(4)执行如图所示的程序框图,输出的s 值为(A )1(B )2(C )3(D )4(5)已知双曲线2221x y a-=(a >0,则a =(A(B )4(C )2(D )12(6)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为(A )1010.1(B )10.1(C )lg10.1(D )10.110-(8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为(A )4β+4cos β(B )4β+4sin β(C )2β+2cos β(D )2β+2sin β第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学【含答案】
A.24B.264.已知e()e1xaxxf x=-是偶函数,则A.2-B.1-5.设O为平面坐标系的坐标原点,在区域为A,则直线OA的倾斜角不大于π4(1)证明://EF平面ADO;(2)证明:平面ADO⊥平面BEF(3)求二面角D AO C--的正弦值20.已知椭圆2222:1( Cbxaa y+=(1)求C的方程;6.D【分析】根据题意分别求出其周期,【详解】因为()sin()f x x ωϕ=+在区间30ABO = ∠,3,232OC AB BC ===显然,,CE DE E CE DE ⋂=因此平面CDE ⊥平面ABC 直线CD ⊂平面CDE ,则直线从而DCE ∠为直线CD 与平面由余弦定理得:当点,A D 位于直线PO 同侧时,设则:PA PD ⋅ =||||cos PA PD α⎛⋅ ⎝12cos cos 4παα⎛⎫=⨯- ⎪⎝⎭22⎛15.2-【分析】根据等比数列公式对24536a a a a a =化简得得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则245a a a 则24a q =,即321a q q =,则11a q =,因为910a a=2于是1//,,/2DE AB DE AB OF=平行四边形,//,EF DO EF DO=,又EF⊄所以//EF平面ADO.(2)法一:由(1)可知//EF(3)法一:过点O 作//OH BF 交由AO BF ⊥,得HO AO ⊥,且FH 又由(2)知,OD AO ⊥,则DOH ∠因为,D E 分别为,PB PA 的中点,因此即有11,33DG AD GE BE ==,又FH法二:平面ADO 的法向量为n平面ACO 的法向量为(30,0,1n = 所以131313cos ,1n n n n n n ⋅==+⋅因为[]13,0,πn n ∈ ,所以sin n【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.(1)()ln 2ln 2x y +-(2)存在11,22a b ==-满足题意,理由见解析1⎛⎫-;23.(1)[2,2](2)8.【分析】(1)分段去绝对值符号求解不等式作答(2)作出不等式组表示的平面区域,再求出面积作答3⎧由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -所以ABC 的面积1|2ABC S =。
【全国Ⅲ卷】2019年高考招生全国统一考试理综试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 Li 7 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Ar 40 Fe 56 I 127 一、选择题:本题共13个小题,每小题6分。
共78分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列有关高尔基体、线粒体和叶绿体的叙述,正确的是A.三者都存在于蓝藻中B.三者都含有DNAC.三者都是ATP合成的场所D.三者的膜结构中都含有蛋白质2.下列与真核生物细胞核有关的叙述,错误的是A.细胞中的染色质存在于细胞核中B.细胞核是遗传信息转录和翻译的场所C.细胞核是细胞代谢和遗传的控制中心D.细胞核内遗传物质的合成需要能量3.下列不利于人体散热的是A.骨骼肌不自主战栗B.皮肤血管舒张C.汗腺分泌汗液增加D.用酒精擦拭皮肤4.若将n粒玉米种子置于黑暗中使其萌发,得到n株黄化苗。
那么,与萌发前的这n粒干种子相比,这些黄化苗的有机物总量和呼吸强度表现为A.有机物总量减少,呼吸强度增强B.有机物总量增加,呼吸强度增强C.有机物总量减少,呼吸强度减弱D.有机物总量增加,呼吸强度减弱5.下列关于人体组织液的叙述,错误的是A.血浆中的葡萄糖可以通过组织液进入骨骼肌细胞B.肝细胞呼吸代谢产生的CO2可以进入组织液中C.组织液中的O2可以通过自由扩散进入组织细胞中D.运动时,丙酮酸转化成乳酸的过程发生在组织液中6.假设在特定环境中,某种动物基因型为BB和Bb的受精卵均可发育成个体,基因型为bb的受精卵全部死亡。
现有基因型均为Bb的该动物1 000对(每对含有1个父本和1个母本),在这种环境中,若每对亲本只形成一个受精卵,则理论上该群体的子一代中BB、Bb、bb个体的数目依次为A.250、500、0B.250、500、250C.500、250、0D.750、250、07.化学与生活密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷) 本试卷分第I卷(选择题)和第II(非选择题)两部分,第I卷1至2页,第II卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.
第I卷(选择题 共40分)
注意事项: 1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上. 一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知costan0,那么角是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角
2.函数()3(02)xfxx≤的反函数的定义域为( )
A.(0), B.(19], C.(01), D.[9), 3.平面∥平面的一个充分条件是( ) A.存在一条直线aa,∥,∥ B.存在一条直线aaa,,∥ C.存在两条平行直线ababab,,,,∥,∥ D.存在两条异面直线abaab,,,∥,∥ 4.已知O是ABC△所在平面内一点,D为BC边中点,且2OAOBOC0,那么( ) A.AOOD B.2AOOD
C.3AOOD D.2AOOD 5.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种 6.若不等式组220xyxyyxya≥,≤,≥,≤表示的平面区域是一个三角形,则a的取值范围是( ) A.43a≥ B.01a≤ C.413a≤≤ D.01a≤或43a≥ 7.如果正数abcd,,,满足4abcd,那么( ) A.abcd≤,且等号成立时abcd,,,的取值唯一 B.abcd≥,且等号成立时abcd,,,的取值唯一 C.abcd≤,且等号成立时abcd,,,的取值不唯一 D.abcd≥,且等号成立时abcd,,,的取值不唯一
8.对于函数①()lg(21)fxx,②2()(2)fxx,③()cos(2)fxx,判断如下三个命题的真假: 命题甲:(2)fx是偶函数;
命题乙:()fx在(),上是减函数,在(2),上是增函数; 命题丙:(2)()fxfx在(),上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( ) A.①③ B.①② C.③ D.②
2019年普通高等学校招生全国统一考试
数学(理工农医类)(北京卷) 第II卷(共110分) 注意事项: 1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.
9.22(1)i .
10.若数列na的前n项和210(123)nSnnn,,,,则此数列的通项公式为 ;数列nna中数值最小的项是第 项. 11.在ABC△中,若1tan3A,150C,1BC,则AB . 12.已知集合|1Axxa≤,2540Bxxx≥.若AB,则实数a的取值范围是 . 13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,那么cos2的值等于 .
14.已知函数()fx,()gx分别由下表给出
则[(1)]fg的值为 ;满足[()][()]fgxgfx的x的值是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)
数列na中,12a,1nnaacn(c是常数,123n,,,),且123aaa,,成公比不为1的等比数列. (I)求c的值;
(II)求na的通项公式. 16.(本小题共14分) 如图,在RtAOB△中,π6OAB,斜边4AB.RtAOC△可以通过RtAOB△以直线AO为轴旋转得到,且二面角BAOC是直二面角.动点D的斜边AB上. (I)求证:平面COD平面AOB; (II)当D为AB的中点时,求异面直线AO与CD所成角的大小; (III)求CD与平面AOB所成角的最大值. 17.(本小题共14分) 矩形ABCD的两条对角线相交于点(20)M,,AB边所在直线的方程为360xy,点(11)T,在AD边所在直线上. (I)求AD边所在直线的方程; (II)求矩形ABCD外接圆的方程; (III)若动圆P过点(20)N,,且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程. x 1 2 3 ()fx 1 3 1 x 1 2 3 ()gx 3 2 1 O C A D B 18.(本小题共13分) 某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示. (I)求合唱团学生参加活动的人均次数; (II)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.
(III)从合唱团中任选两名学生,用表示这两人参加活动次
数之差的绝对值,求随机变量的分布列及数学期望E.
19.(本小题共13分) 如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记2CDx,梯形面积为S. (I)求面积S以x为自变量的函数式,并写出其定义域; (II)求面积S的最大值.
20.已知集合12(2)kAaaak,,,≥,其中(12)iaikZ,,,,由A中的元素构成两个相应的集合: ()SabaAbAabA,,,,()TabaAbAabA,,,.
其中()ab,是有序数对,集合S和T中的元素个数分别为m和n. 若对于任意的aA,总有aA,则称集合A具有性质P. (I)检验集合0123,,,与123,,是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T; (II)对任何具有性质P的集合A,证明:(1)2kkn≤; (III)判断m和n的大小关系,并证明你的结论.
1 2 3 10 20 30 40 50 参加人数 活动次数 4r C D
A B 2r 2019年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)答案 一、选择题(本大题共8小题,每小题5分,共40分) 1.C 2.B 3.D 4.A 5.B 6.D 7.A 8.D 二、填空题(本大题共6小题,每小题5分,共30分)
9.i 10.211n 3 11.102 12.(23), 13.725 14.1 2 三、解答题(本大题共6小题,共80分) 15.(共13分)
解:(I)12a,22ac,323ac,
因为1a,2a,3a成等比数列, 所以2(2)2(23)cc, 解得0c或2c. 当0c时,123aaa,不符合题意舍去,故2c. (II)当2n≥时,由于 21aac,
322aac,
1(1)nnaanc,
所以1(1)[12(1)]2nnnaancc. 又12a,2c,故22(1)2(23)nannnnn,,. 当1n时,上式也成立, 所以22(12)nannn,,. 16.(共14分) 解法一: (I)由题意,COAO,BOAO, BOC是二面角BAOC是直二面角,
又二面角BAOC是直二面角, COBO,又AOBOO,
CO平面AOB,
又CO平面COD. 平面COD平面AOB.
(II)作DEOB,垂足为E,连结CE(如图),则DEAO∥, CDE是异面直线AO与CD所成的角.
在RtCOE△中,2COBO,112OEBO,
225CECOOE.
又132DEAO.
在RtCDE△中,515tan33CECDEDE.
异面直线AO与CD所成角的大小为15arctan3.
(III)由(I)知,CO平面AOB, CDO是CD与平面AOB所成的角,且2tanOCCDOODOD.
当OD最小时,CDO最大,
这时,ODAB,垂足为D,3OAOBODAB,23tan3CDO,
CD与平面AOB所成角的最大值为23arctan3.
解法二: (I)同解法一.
(II)建立空间直角坐标系Oxyz,如图,则(000)O,,,(0023)A,,,(200)C,,,
(013)D,,,
(0023)OA,,,(213)CD,,,
cosOACDOACDOACD,
6642322
.
异面直线AO与CD所成角的大小为6arccos4. O
C
A D
B x
y
z
O C
A D
B E