(完整版)中考数学题型汇总

合集下载

2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

压轴题05圆的综合目录题型一切线的判定题型二圆中求线段长度题型三圆中的最值问题题型四圆中的阴影部分面积题型五圆中的比值(相似)问题下图为二次函数图象性质与几何问题中各题型的题型一切线的判定解题模板:技巧:有切点,连半径,证垂直(根据题意,可以证角为90°,如已有90°角,可以尝试证平行) 没切点,作垂直,证半径(通常为证全等,也可以通过计算得到与半径相等)【例1】1.(2023-四川攀枝花-中考真题)如图,AB 为O 的直径,如果圆上的点D 恰使ADC B ∠=∠,求证:直线CD 与O 相切.【变式1-1】(2023-辽宁-中考真题)如图,ABC 内接于O ,AB 是O 的直径,CE 平分ACB ∠交O 于点E ,过点E 作EF AB ∥,交CA 的延长线于点F .求证:EF 与O 相切;【变式1-2】(2023-辽宁-中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF与O相切;(2)若41sin5BF AFE=∠=,,求BC的长.【变式1-3】(2023-湖北鄂州-中考真题)如图,AB为O的直径,E为O上一点,点C为EB的中点,过点C作CD AE⊥,交AE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是O的切线;题型二圆中求线段长度解题模板:【例2】(2023-西藏-中考真题)如图,已知AB为O的直径,点C为圆上一点,AD垂直于过点C的直线,交O于点E,垂足为点D,AC平分BAD∠.(1)求证:CD 是O 的切线; (2)若8AC =,6BC =,求DE 的长.【变式2-1】(2023-内蒙古-中考真题)如图,AB 是⊙O 的直径,E 为⊙O 上的一点,点C 是AE 的中点,连接BC ,过点C 的直线垂直于BE 的延长线于点D ,交BA 的延长线于点P .(1)求证:PC 为⊙O 的切线;(2)若PC =,10PB =,求BE 的长.【变式2-2】(2023-辽宁大连-中考真题)如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF ∥交AB 于点G .若AD =4DE =,求DG 的长.【变式2-3】(2023-湖北恩施-中考真题)如图,ABC 是等腰直角三角形,90ACB ∠=︒,点O 为AB 的中点,连接CO 交O 于点E ,O 与AC 相切于点D .(1)求证:BC是O的切线;(2)延长CO交O于点G,连接AG交O于点F,若AC FG的长.题型三圆中的最值问题解题模板:技巧精讲:1、辅助圆模型【例3】(2023-湖南长沙-三模)如图1:在O 中,AB 为直径,C 是O 上一点,3,4AC BC ==.过O 分别作OH BC ⊥于点H ,OD AC ⊥于点D ,点E 、F 分别在线段BC AC 、上运动(不含端点),且保持90EOF ∠=︒.(1)OC =______;四边形CDOH 是______(填矩形/菱形/正方形); CDOH S =四边形______; (2)当F 和D 不重合时,求证:OFD OEH ∽;(3)⊙在图1中,P 是CEO 的外接圆,设P 面积为S ,求S 的最小值,并说明理由;⊙如图2:若Q 是线段AB 上一动点,且1QAQB n =∶∶,90EQF ∠=︒,M 是四边形CEQF 的外接圆,则当n 为何值时,M 的面积最小?最小值为多少?请直接写出答案.【变式3-1】(2023-安徽-模拟预测)如图,半圆的直径4AB =,弦CD AB ∥,连接,,,AC BD AD BC .(1)求证:ADC BCD △≌△;(2)当ACD 的面积最大时,求CAD ∠的度数.【变式3-2】(2023-四川-中考真题)如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,以BC 为边在BC 上方作Rt BDC ,且30DBC ∠=︒.(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=︒,30EBA ∠=︒,连接DE ,用等式表示线段AC 与DE 的数量关系是 ;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC 的长;(3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时tan CBA ∠的值.【变式3-3】(2023-陕西西安-模拟预测)【问题情境】如图1,在ABC 中,120A ∠=︒,AB AC =,BC =ABC 的外接圆的半径值为______; 【问题解决】如图2,点P 为正方形ABCD 内一点,且90BPC ∠=︒,若4AB =,求AP 的最小值; 【问题解决】如图3,正方形ABCD 是一个边长为的书展区域设计图,CE 为大门,点E 在边BC 上,CE =,点P 是正方形ABCD 内设立的一个活动治安点,到B 、E 的张角为120︒,即120BPE ∠=︒,点A 、D 为另两个固定治安点,现需在展览区域内部设置一个补水供给点Q ,使得Q 到A 、D 、P 三个治安点的距离和最小,试求QA QD QP ++的最小值.(结果精确到0.1m 1.7≈,214.3205≈)题型四 圆中的阴影部分面积【例4】(2024-西藏拉萨-一模)如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线; (2)若6AB =,求阴影部分的面积【变式4-1】(2023-陕西西安-一模)如图,正六边形ABCDEF 内接于O .(1)若P 是CD 上的动点,连接BP ,FP ,求BPF ∠的度数;(2)已知ADF △的面积为O 的面积.【变式4-2】(2023-浙江衢州-中考真题)如图,在Rt ABC △中,90,ACB O ∠=︒为AC 边上一点,连结OB .以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =.(2)若,2OB OA AE ==.⊙求半圆O 的半径.⊙求图中阴影部分的面积.【变式4-3】(2023-辽宁阜新-中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【变式4-4】(2023-山东枣庄-中考真题)如图,AB 为O 的直径,点C 是AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).题型五 圆中的比值(相似)问题 技巧精讲:【例5】(2024-陕西西安-模拟预测)如图,AB 为O 的直径, 点 D 为O 上一点, 过点 B 作O 切线交AD 延长线于点 C ,CE 平分ACB ∠,CE BD ,交于F .(1)求证:BE BF =;(2)若O 半径为2,3sin 5A =,求DF 的长度. 【变式5-1】(2023-湖南湘西-二模)如图,AB 是O 的直径,点C ,D 在O 上,AD 平分CAB ∠,交BC 于点E ,连接BD .(1)求证:BED ABD △△.(2)当3tan 4ABC ∠=,且10AB =时,求线段BD 的长.(3)点G 为线段AE 上一点,且BG 平分ABC ∠,若GE =,3BG =,求CE 的长.【变式5-2】(2024-陕西西安-一模)如图,AB 是O 的直径CD 与O 相切于点C ,与BA 的延长线交于点D ,连接BC ,点E 在线段OB 上,过点E 作BD 的垂线交DC 的延长线于点F ,交BC 于点G .(1)求证:FC FG =;(2)若220AO AD ==,点E 为OB 的中点,求GE 的长.【变式5-3】(2024-陕西西安-一模)如图,AB 是O 的直径,点D 在直径AB 上(D 与,A B 不重合),CD AB ⊥且CD AB =,连接CB ,与O 交于点F ,在CD 上取一点E ,使EF 与O 相切.(1)求证:EF EC =;(2)若D 是OA 的中点,4AB =,求BF 的长.一、解答题1.(2024-云南-模拟预测)如图,四边形ABCD 内接于O ,对角线AC 是O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,F 为CE 的中点,连接BD ,DF ,BD 与AC 交于点P .(1)求证:DF 是O 的切线;(2)若45DPC ∠=︒,228PD PB +=,求AC 的长.2.(2024-湖北黄冈-模拟预测)如图,PO 平分APD ∠,PA 与⊙O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为4,5OC =,求PA 的长.3.(2024-江苏淮安-模拟预测)如图,已知直线l 与O 相离,OA l ⊥于点A ,交O 于点 P ,点 B 是O 上一点,连接BP 并延长,交直线l 于点 C ,使得AB AC =.(1)判断直线AB 与O 的位置关系并说明理由;(2)4PC OA ==,求线段 PB 的长.4.(2024-四川凉山-模拟预测)如图,CD 是O 的直径,点P 是CD 延长线上一点,且AP 与O 相切于点A ,弦AB CD ⊥于点F ,过D 点作DE AP ⊥于点E .(1)求证:∠∠EAD FAD =;(2)若4PA =,2PD =,求O 的半径和DE 的长.5.(2024-四川凉山-模拟预测)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是O 的切线;(2)若30A ∠=︒,3DF =,求CE 长.6.(2024-山东泰安-一模)如图,AB CD ,是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC BD ,.(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.7.(2024-福建南平-一模)如图1,点D 是ABC 的边AB 上一点.AD AC =,CAB α∠=,O 是BCD △的外接圆,点E 在DBC 上(不与点C ,点D 重合),且90CED α∠=︒-.(1)求证:ABC 是直角三角形;(2)如图2,若CE 是⊙O 的直径,且2CE =,折线ADF 是由折线ACE 绕点A 顺时针旋转α得到. ⊙当30α=︒时,求CDE 的面积;⊙求证:点C ,D ,F 三点共线.8.(2023-四川甘孜-中考真题)如图,在Rt ABC △中,=90ABC ∠︒,以BC 为直径的O 交AC 边于点D ,过点C 作O 的切线,交BD 的延长线于点E .(1)求证:=DCE DBC ∠∠;(2)若=2AB ,=3CE ,求O 的半径.9.(2023-湖北黄石-中考真题)如图,AB 为O 的直径,DA 和O 相交于点F ,AC 平分DAB ∠,点C 在O 上,且CD DA ⊥,AC 交BF 于点P .(1)求证:CD 是O 的切线;(2)求证:2AC PC BC ⋅=;(3)已知23BC FP DC =⋅,求AF AB的值.10.(2023-辽宁鞍山-中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.(2)若10BE =,2sin 3BDC ∠=,求O 的半径.11.(2023-湖南湘西-中考真题)如图,点D ,E 在以AC 为直径的O 上,ADC ∠的平分线交O 于点B ,连接BA ,EC ,EA ,过点E 作EH AC ⊥,垂足为H ,交AD 于点F .(1)求证:2AE AF AD =⋅;(2)若sin 5ABD AB ∠==,求AD 的长. 12.(2023-辽宁沈阳-中考真题)如图,AB 是O 的直径,点C 是O 上的一点(点C 不与点A ,B 重合),连接AC 、BC ,点D 是AB 上的一点,AC AD =,BE 交CD 的延长线于点E ,且BE BC =.(1)求证:BE 是O 的切线;(2)若O 的半径为5,1tan 2E =,则BE 的长为______ .13.(2023-黑龙江大庆-中考真题)如图,AB 是O 的直径,点C 是圆上的一点,CD AD ⊥于点D ,AD 交O 于点F ,连接AC ,若AC 平分DAB ∠,过点F 作FG AB ⊥于点G ,交AC 于点H ,延长AB ,DC 交于点E .(1)求证:CD 是O 的切线;(2)求证:AF AC AE AH ⋅=⋅;(3)若4sin 5DEA ∠=,求AH FH的值.14.(2023-四川雅安-中考真题)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 与AC 交于点D ,点E 是BC 的中点,连接BD ,DE .(1)求证:DE 是O 的切线;(2)若2DE =,1tan 2BAC ∠=,求AD 的长;(3)在(2)的条件下,点P 是O 上一动点,求PA PB +的最大值.15.(2023-辽宁营口-中考真题)如图,在ABC 中,AB BC =,以BC 为直径作O 与AC 交于点D ,过点D 作DE AB ⊥,交CB 延长线于点F ,垂足为点E .(1)求证:DF 为O 的切线;(2)若3BE =,4cos 5C =,求BF 的长.。

山西中考数学计算真题汇总(历年)

山西中考数学计算真题汇总(历年)

山西省中考数学计算真题汇总一.选择题(共1小题)1.分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3二.填空题(共8小题)2.不等式组的解集是.3.化简的结果是.4.计算:=.5.计算:9x3÷(﹣3x2)=.6.方程=0的解为x=.7.方程的解是x=.8.分解因式:5x3﹣10x2+5x=.9.分解因式:ax4﹣9ay2=.三.解答题(共21小题)10.(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.11.解方程:2(x﹣3)2=x2﹣9.12.(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.13.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.14.(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.15.解不等式组并求出它的正整数解:.16.(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.17.解方程:(2x﹣1)2=x(3x+2)﹣7.18.(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.解方程:.20.(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.21.(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.22.化简:23.(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=024.计算:(3﹣π)0+4sin45°﹣+|1﹣|.25.解不等式组:.26.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.27.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.28.解不等式组,并写出它的所有非负整数解.29.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|30.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.山西省中考数学计算真题汇总参考答案与试题解析一.选择题(共1小题)1.(2011•山西)分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3【分析】观察可得最简公分母是2x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1.检验:把x=1代入2x(x+3)=8≠0.∴原方程的解为:x=1.故选B.【点评】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二.填空题(共8小题)2.(2012•山西)不等式组的解集是﹣1<x≤3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤3,所以不等式组的解集是﹣1<x≤3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.(2012•山西)化简的结果是.【分析】将原式第一项的第一个因式分子利用平方差公式分解因式,分母利用完全平方公式分解因式,第二个因式的分母提取x分解因式,约分后将第一项化为最简分式,然后利用同分母分式的加法法则计算后,即可得到结果.【解答】解:•+=•+=+=.故答案为:.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.4.(2011•山西)计算:=.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.5.(2010•山西)计算:9x3÷(﹣3x2)=﹣3x.【分析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.【解答】解:9x3÷(﹣3x2)=﹣3x.【点评】本题主要考查单项式的除法,同底数幂的除法,熟练掌握运算法则和性质是解题的关键.6.(2010•山西)方程=0的解为x=5.【分析】观察可得最简公分母是(x+1)(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【解答】解:方程两边同乘以(x+1)(x﹣2),得2(x﹣2)﹣(x+1)=0,解得x=5.经检验:x=5是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2009•太原)方程的解是x=5.【分析】本题最简公分母为2x(x﹣1),去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘2x(x﹣1),得4x=5(x﹣1),去括号得4x=5x﹣5,移项得5x﹣4x=5,合并同类项得x=5.经检验x=5是原分式方程的解.【点评】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.8.(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【分析】先提取公因式5x,再根据完全平方公式进行二次分解.【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).【分析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).【点评】此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.三.解答题(共21小题)10.(2016•山西)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11.(2016•山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.12.(2015•山西)(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣4×﹣÷(﹣)=﹣9+4=﹣5;(2)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【分析】分别把1、2代入式子化简求得答案即可.【解答】解:第1个数,当n=1时,[﹣]=(﹣)=×=1.第2个数,当n=2时,[﹣]=[()2﹣()2]=×(+)(﹣)=×1×=1.【点评】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.14.(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.【解答】解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(2014•山西)解不等式组并求出它的正整数解:.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2013•山西)(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第二步开始出现错误,正确的化简结果是.【分析】(1)根据特殊角的三角函数值,0指数幂的定义解答;(2)先通分,后加减,再约分.【解答】(1)解:原式=×﹣1=1﹣1=0.(2)解:﹣=﹣====.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是.故答案为二,.【点评】(1)本题考查了特殊角的三角函数值,0指数幂,是一道简单的杂烩题;(2)本题考查了分式的加减,要注意,不能去分母.17.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.18.(2012•山西)(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】(1)分别根据0指数幂、负整数指数幂、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行解答即可;(2)先根据整式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=1+2×﹣3=1+3﹣3=1;(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题考查的是实数的混合运算及整式的化简求值,熟记0指数幂、负整数指数幂、特殊角的三角函数值计算法则及整式混合运算的法则是解答此题的关键.19.(2012•山西)解方程:.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.【点评】本题考查的是解分式方程.在解答此类题目时要注意验根,这是此类题目易忽略的地方.20.(2011•山西)(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.【分析】(1)将分式的分子、分母因式分解,约分,通分化简,再代值计算;(2)先分别解每一个不等式,再求解集的公共部分,用数轴表示出来.【解答】解:(1)原式=•﹣=﹣===,当a=﹣时,原式==﹣2;(2)由①得,x≥﹣1,由②得,x<2∴不等式组的解集为﹣1≤x<2.用数轴上表示如图所示.【点评】本题考查了分式的化简求值解一元一次不等式组.分式化简求值的关键是把分式化到最简,然后代值计算,解一元一次不等式组,就是先分别解每一个不等式,再求解集的公共部分.21.(2010•山西)(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.【分析】(1)先把根式化成最简根式,把三角函数化为实数,再计算;(2)先对括号里的分式通分、对分解因式,再去括号化简求值.【解答】解:(1)原式=3+(﹣8)﹣+1 (4分)=3﹣8﹣1+1=﹣5.(5分)(2)原式=•(1分)=(2分)==(3分)=x+2.(4分)当x=﹣3时,原式=﹣3+2=﹣1.(5分)【点评】考查了实数的运算和分式的化简求值,熟练掌握和运用有关法则是关键.22.(2009•太原)化简:【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:原式===1.【点评】解决本题的关键是分式的通分和分式的乘法中的约分.要先化简后计算.23.(2009•山西)(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=0【分析】(1)首先计算一次式的平方和两个一次式的积,然后进行减法计算即可;(2)首先把第一个分式进行化简转化为同分母的分式的加法,即可计算;(3)利用配方法,移项使方程的右边只有常数项,方程两边同时加上一次项系数的一半,则左边是完全平方式,右边是常数,即可利用直接开平方法求解.【解答】解:(1)(x+3)2﹣(x﹣1)(x﹣2)=x2+6x+9﹣(x2﹣3x+2)=x2+6x+9﹣x2+3x﹣2=9x+7.(2)===1.(3)移项,得x2﹣2x=3,配方,得(x﹣1)2=4,∴x﹣1=±2,∴x1=﹣1,x2=3.【点评】(1)解决本题的关键是掌握整式乘法法则;(2)本题主要考查分式运算的掌握情况;(3)本题主要考查了配方法解一元二次方程,正确理解解题步骤是解题关键.24.(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣+|1﹣|的值是多少即可.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.25.(2016•北京)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2015•北京)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.29.(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣5﹣+=﹣4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.30.(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【分析】先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.【解答】解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.【点评】此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.。

初中中考数学经典题型练习题分类汇总大全考试全套总结

初中中考数学经典题型练习题分类汇总大全考试全套总结

初中中考数学复习专题复习训练试题汇总大全及答案必备目录实数专题训练 (3)实数专题训练答案 (7)代数式、整式及因式分解专题训练 (8)代数式、整式及因式分解专题训练答案 (12)分式和二次根式专题训练 (12)分式和二次根式专题训练答案 (16)一次方程及方程组专题训练 (17)一次方程及方程组专题训练答案 (21)一元二次方程及分式方程专题训练 (22)一元二次方程及分式方程专题训练答案 (26)一元一次不等式及不等式组专题训练 (27)一元一次不等式及不等式组专题训练答案 (31)一次函数及反比例函数专题训练 (32)一次函数及反比例函数专题训练答案 (36)二次函数及其应用专题训练 (37)二次函数及其应用专题训练答案 (41)立体图形的认识及角、相交线与平行线专题训练 (42)立体图形的认识及角、相交线与平行线专题训练答案 (47)三角形专题训练 (47)三角形专题训练答案 (52)1/100多边形及四边形专题训练 (53)多边形及四边形专题训练答案 (56)圆及尺规作图专题训练 (57)圆及尺规作图专题训练答案 (61)轴对称专题训练 (62)轴对称专题训练答案 (67)平移与旋转专题训练 (68)平移与旋转专题训练答案 (73)相似图形专题训练 (74)相似图形专题训练答案 (78)图形与坐标专题训练 (79)图形与坐标专题训练答案 (85)图形与证明专题训练 (86)图形与证明专题训练答案 (89)概率专题训练 (90)概率专题训练答案 (94)统计专题训练 (95)统计专题训练答案 (100)2/100实数专题训练一、填空题:(每题3分,共36分)1、-2的倒数是____。

2、4的平方根是____。

3、-27的立方根是____。

的绝对值是____。

5、2004年我国外汇储备3275.34亿美元,用科学记数法表示为____亿美元。

7、近似数0.020精确到____位,它有____个有效数字。

中考数学压轴题十大题型(含详细答案)

中考数学压轴题十大题型(含详细答案)

一、中考数学压轴题1.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.6.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.7.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.8.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.9.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.10.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.11.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式; (3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)12.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.13.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.15. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.16.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积.17.如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.18.如图,在⊙O中,直径AB=10,tanA=3.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.21.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,过点D作AB的平行线交CB的延长线于点E.(1)如图1,连结AD,求证:∠ADC=∠DEC.(2)若⊙O的半径为5,求CA•CE的最大值.(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,①求y关于x的函数解析式;②若CBBE=45,求y的值.22.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?25.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.F解析:(1)∠FAB=90°;(2)22d h =;(3)直线PS 与直线AF 的交点K(-2,6).【解析】【分析】(1)通过直线AB 的解析式可求出点A 、B 的坐标,可知AOB 是等腰直角三角形,再结合已知条件即可确定90FAB ∠=︒;(2)根据已知条件证明CP=AC=QC=BC 从而得出△ACP 是等腰直角三角形,在Rt △CRP 中,利用sin ∠CPR 22CR CP ==,推出2CP CR =,继而得出22BQ CR =,得出答案; (3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ,证明△AHC ≌△CEP ,设AH CE n ==,得出EG=CE+CH+GH=n+2+2=n+4,再通过角的等量代换,得出∠EAG=∠G ,从而有EG=EA=n+4,在Rt △AHE 中,通过勾股定理AE²=HE²+AH²可求出n 的值为6,从而得出直线AF 的解析式y = x + 8 ,再求出直线PS 的解析式为 y=-x+4,求交点即可.【详解】解:(1)如下图,y = -x + m ,当x=0时,y=m∴A (0,m ),OA=m当y=0时,0=-x+m ,x=m ,∴B (m ,0),OB=m∴OA=OB∴∠OAB=∠OBA=45°∵∠AFO=45°,∠FAB+∠FBA+∠AFB=180°∴∠FAB=90°(2)如下图 ,∵CP 、AC 分别是 Rt △QPB 和 Rt △QAB 的斜边上的中线∴CP= 12QB ,12AC QB =, ∴CP=AC=QC=BC∴∠CAB=∠CBA设∠CAB=∠CBA=α,∴∠CBP=45°+α∴∠CPB=∠CBP=45°+α∴∠PCB=180°-(∠CPB+∠CBP )=90°-2α∵∠ACB=180°-∠CAB-∠CBA=180°-2α∴∠ACP=∠ACB-∠PCB=180°-2α-(90°-2α)=90°∵AC=CP∴△ACP 是等腰直角三角形∴∠CPA=∠CAP=45°∵CR ⊥AP ,∴∠CRP=90°,在Rt △CRP 中sin ∠CPR 22CR CP == ∴2CP CR =∵12CP BQ =, ∴22BQ CR =即22d h =(3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ∴∠AHC=∠CEP=90°∴∠HAC+∠HCA=∠PCE+∠HCA∴∠HAC=∠PCE ,∵AC=CP∴△AHC ≌△CEP∴CH=PE=2,AH=CE ,∴GH=CH=2,AH CE n ==∴EG=CE+CH+GH=n+2+2=n+4设∠DAP=β,则∠AEG=2β∴α+β=45°∵∠EBD=∠EDB=∠HDA=∠HAD=45°∴∠CAH=∠HAD-α=45°-α=β∵AH 垂直平分 GC∴AG=AC∴∠GAH=∠CAH=β∴∠G=90°-β 在△EAG 中∠EAG=180°-∠G-∠AEG=180°-(90°-β)-2β =90°-β∴∠EAG=∠G∴EG=EA=n+4在 Rt △AHE 中,AE²=HE²+AH²222(4)(2)n n n +=++126,2n n ==-(舍)∴AH=OE=6,EP=EB=2∴OB=OE+BE=8∴m=8,∴A (0,8)∴OA=OF=8 , ∴F (-8,0)∴直线 AF 的解析式为 y = x + 8∵CD=CE-DE=CE-BE=6-2=4∵线段 CD 关于直线 AB 的对称线段 DS∴SD=CD=4,∠CDA=∠SDA=45°∴∠CDS=90°,∴SD ∥x 轴过点 S 分别作 SM ⊥x 轴于点 M ,SN ⊥y 轴于点 N∴四边形 OMSN 、SMED 都是矩形∴OM=SN=OE-ME=2,ON=SM=DE=BE=2∴S(2,2)∵OP=OE-EP=6-2=4,∴P(4,0)设直线 PS 的解析式为 y=ax+b∴4022a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩∴直线 PS 的解析式为 y=-x+4设直线PS 与直线AF 的交点K(x ,y)∴48y x y x =-+⎧⎨=+⎩解得26x y =-⎧⎨=⎩∴直线PS 与直线AF 的交点K(-2,6).【点睛】本题考查的知识点是一次函数与几何图形,将一次函数的图象与几何图形综合在一起的问题,是考查学生综合素质和能力的热点题型,它充分体现了数学解题中的数形结合思想和整体转化思想.本题考查的知识点有一次函数图象与坐标轴的交点问题、等腰直角三角形的判定及性质、三角形内角和定理、全等三角形的判定及性质、矩形的性质、待定系数法求一次函数解析式、线段垂直平分线等.2.C解析:(1)112y x =-+;(2)1d t =-+;(3)6215t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD 的解析式为:112y x =-+; (2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,令26 112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM ,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6tBG MT==-,∴MN MT=,∵90KNM LTM∠=∠=︒,∴ENH≌EMG,∴LNKM∠=∠,设KMNα∠=,则KMB KMNα∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得t =(不合题意舍去)或t =故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1,∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+,∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3,∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:1112018m -=,或2112018m +=(不合题意,舍去), ∴点P 的横坐标为11201-. 【点睛】 本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩ 解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+,16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩解得5959 ac⎧=⎪⎪⎨⎪=⎪⎩∴直线DM的解析式为5599y x=+.【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.6.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力. 7.A解析:(1)详见解析;(2)2448x x y -+=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====, 根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+ ∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)24804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴224242()xAE E Q-===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.8.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,4AB =222232BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴==== 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.9.A解析:(1)145;(2)2274,0314971421,2235t tSt t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<<⎪⎪⎝⎭⎩;(3)t的值为477或727.【解析】【分析】(1)如下图,根据4tan3A=,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN 所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3, 图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t∴2解得:27∴综上得:t的值为477或727.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.10.A。

中考数学复习《一次函数》经典题型及测试题(含答案)

中考数学复习《一次函数》经典题型及测试题(含答案)

中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。

初中数学基础知识及经典题型完整版(实用的中考专题复习指导书)

初中数学基础知识及经典题型完整版(实用的中考专题复习指导书)

综合知识讲解目录第一章绪论11.1初中数学的特点11.2怎么学习初中数学21.3如何去听课51.4几点建议6第二章应知应会知识点72.1代数篇72.2几何篇11第三章例题讲解17第四章兴趣练习294.1代数部分294.2几何部分45第五章复习提纲50第一章绪论1.1初中数学的特点1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.1.2怎么学习初中数学1,培养良好的学习兴趣。

两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

“好”和“乐”就是愿意学,喜欢学,这就是兴趣。

兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。

在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。

那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。

听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。

所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。

只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。

2,建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。

高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。

初中数学中考必考题型

初中数学中考必考题型
题型一
运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求
值类。

题型二
运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

题型三
解三角函数问题、判断三角形形状、正余弦定理的应用。

题型四
数列的通向公式得求法。

题型五
数列的前n项求和的求法。

题型六
利用导数研究函数的极值、最值。

题型七
利用导数几何意义求切线方程。

题型八
利用导数研究函数的单调性,极值、最值
题型九
利用导数研究函数的图像。

题型十
求参数取值范围、恒成立及存在性问题。

题型十一
数形结合确定直线和圆锥曲线的位置关系。

题型十二
焦点三角函数、焦半径、焦点弦问题。

题型十三
动点轨迹方程问题。

规律探索--图形规律(解析版)-中考数学重难点题型专题汇总

规律探索-中考数学重难点题型专题汇总图形规律1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D.【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.2.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.3.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解析】根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.5.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解析】∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.Y Y-=()6.观察下列树枝分杈的规律图,若第n个图树枝数用n Y表示,则94A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.8.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A.()202020202,2-B.()202120212,2C.()202020202,2⨯D.()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=3222-⨯-,()2020202020212,2A ∴,故选:C.【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.9.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多个小正方形.【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解析】∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n 个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n 个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,…∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.11.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2019个菱形时,2n-1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.12.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是32=n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:1255,22n n +-==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,第n个图形中的黑色圆点的个数为()1 2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,,其中每3个数中,都有2个能被3整除,33÷2=161,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.14.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有12019190 2⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1) 2n n-.15.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,拼成第n 个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.16.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+ +n=()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+ +n=()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n.17.如图,由两个长为2,宽为1的长方形组成“7”字图形ABCDEF,其中顶点A 位于x 轴上,顶点B,D 位于y 轴上,O 为坐标原点,则OB OA的值为__________.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.【答案】(1)12;(2)606255(,【解析】(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴OB DC OA BC =,∵DC=1,BC=2,∴OB OA =12,故答案为:12.(2过C 作CM⊥y 轴于M,过M 1作M 1N⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD ==CM=OA=5,DM=OB=AN=5,∴C(5),∵AF=3,M 1F=BC=2,∴AM 1=AF-M 1F=3-2=1,∴△BOA≌ANM 1(AAS),∴NM 1=OA=255,∵NM 1∥FN 1,∴1111251553M N AM FN AF FN ==,,∴FN 1=655,∴AN 1=355,∴ON 1=OA+AN 1=253555555+=,∴F(555,655),同理,F 1(857555,F 2(55,),F 3(1459555,),F 4(17510555,),…F 2019),即(【名师点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键18.如图,正方形1ABCB 中,AB =,AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】20203【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =,∴∠11B AA =30°,∴11B A =1B A∴111=2=2(3AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=33133⨯=,∴2112=23A A -⨯;∴线段20202021A A =202112020332(33-⨯=,故答案为:2020)3.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.19.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1AC 为一边,在BC 的延长线上作菱形111ACC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得134S =,2S =242n n S -=,然后问题可求解.【详解】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,过点B 作BE⊥CD 于点E,如图所示:∴3sin 2BE BC BCD =⋅∠=,∴1121133244A D BE A S D =⋅==,同理可得:2222133244S A D ==⨯=,2233233444S A D ==⨯=∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-==⋅;故答案为40382【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.20.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n+5(n 为正整数)”,再代入n=30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n+1)+(n −1)2+2=n 2−n+5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】n =n 2−n+5(n 为正整数)”是解题的关键.21.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究22.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示.【解析】第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n 个图案有(3n+1)个三角形.故答案为:(3n+1).23.如图,四边形ABCD 是矩形,延长DA 到点E,使AE=DA,连接EB,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)【分析】先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n﹣1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.【解析】∵AE=DA,点F 1是CD 的中点,矩形ABCD 的面积等于2,∴△EF 1D 和△EAB 的面积都等于1,∵点F 2是CF 1的中点,∴△EF 1F 2的面积等于12,同理可得△EF n﹣1F n 的面积为12n−1,∵△BCF n 的面积为2×12n ÷2=12n ,∴△EF n B 的面积为2+1﹣1−12−⋯−12n−1−12n =2﹣(1−12n )=2n +12n .故答案为:2n +12n .。

2023年中考数学一轮复习之必考点题型全归纳与分层精练-整式的加减(原卷版)

专题03整式的加减【专题目录】技巧1:求代数式值的技巧技巧2:整式加减在几何中的应用技巧3:整体思想在整式加减中的应用【题型】一、代数式求值【题型】二、同类项【题型】三、整式的加减【题型】四、化简求值【题型】五、图形类规律探索【考纲要求】1、能并用代数式表示,会求代数式的值;能根据特定问题找到所需要的公式,并会代入具体的值进行计算.2、掌握同类项及合并同类项的概念,并能熟练进行合并;掌握同类项的有关应用.3、掌握去括号与添括号法则,充分注意变号法则的应用;会用整式的加减运算法则,熟练进行整式的化简及求值.【考点总结】一、整式整式的相关概念单项式由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数。

如:单项式321abπ-系数是π21-,次数是4。

多项式几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数。

如:多项式2+4x2y﹣3231yx是五次三项式整式整式是单项式与多项式的统称。

同类项所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项。

【考点总结】二、整式的加减运算【注意】1、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(1)、去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)、去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)、对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)、去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.2、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号合并同类项把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变。

历年全国中考数学试题及答案(完整详细版)

班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学题型汇总
1.中点
①中线:D为BC中点,AD为BC边上的中线


有全等平行线中有中点,容易是斜边的一半直角三角形的斜边中线,可得使得到延长.6
.5
BDAD2cb.4CDEABDDEADEAD.3SS.2CDBD.12222ACDABD







1.例
.如图,在菱形ABCD中,tan∠ABC=,P为AB上一点,

以PB为边向外作菱形PMNB,连结DM,取DM中点E,
连结AE,PE,则的值为( )

A. B. C. D.

2. 角平分线
②角平分线:AE平分∠BAC

有等腰三角形平行线间有角平分线易作全等三角形有相同角有公共边极易.5
.4
.3.2BAE.1CEBEACABDFDECAE


3.高线
③垂线:AF⊥BC

角形多个直角,易有相似三充分利用求高线可用等面积法即.4
Rt.3.290AFCBCAF.1


②直角三角形:AD为中线AE为垂线

••••RtAEBCABACSBCCDABC,构造充分利用特殊角;勾股定理:等面积法::斜边中线为斜边的一半两角互余:,60,45305.
BCCEACBCBEAB
BCABAC.4
212
1
.3

2
1
BDAD

.2
90CB.1

22
222
4.函数坐标公式

公式1:两点求斜率
k

21
21
xxyykAB


113531203330360145kxkxkxkxkx时,轴正方向夹角为⑤与
时,轴正方向夹角为④与
时,轴正方向夹角为③与
时,轴正方向夹角为②与
时,轴正方向夹角为①与

公式2:两点之间距离
2212
21
)()(AByyxx

应用:弦长公式
公式3:中点公式
)2,3(ABC)2,2(AB3213212121yyyxxxyyxx重心
中点
应用:求中点坐标
公式4:两直线平行与垂直

1//21212121•kkllkkll②

应用:①平行与垂直②直角三角形

5.相似中的特殊角




tantan1tantantan


)(
6.将军引马
7.旋转
8.对称
9.反比例函数
看坐标求面积对称反比例函数关于系直线与反比例交点的关坐标点的表示的关系面积与.5
xy.4.3.2k.1
10.二次函数
最值二次函数中的三种线段与铅垂高二次函数当中的水平长二次函数的移动不等式二次函数与二次方程或关系对称轴与顶点及三大表达式及转化.6
.5
.4
.3
c.b.a.2
.1
11. 圆 扇形的面积与弧长弧度,圆心角,圆周角弦长,弦心距,弧长,园中的对称与翻折内心外心,内切圆外接圆与弧度园中的圆周角,圆心角园中的内接四边形园中的两个等腰三角形园中的三个直角三角形.8.7.6--.5.4.3.2.1
12规律题


14应用题

相关文档
最新文档