2020年中考数学 最值问题探究 专题训练
中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
2020年中考数学压轴解答题10 二次函数与线段关系及最值定值问题(学生版)

备战2020中考数学之解密压轴解答题命题规律专题10 二次函数与线段关系及最值定值问题【类型综述】图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用. 一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.【方法揭秘】由勾股定理产生的函数关系,在两种类型的题目中比较常用.类型一,已知“边角边”,至少一边是动态的,求角的对边.如图1,已知点A 的坐标为(3, 4),点B 是x 轴正半轴上的一个动点,设OB =x ,AB =y ,那么我们在直角三角形ABH 中用勾股定理,就可以得到y 关于x 的函数关系式.类型二,图形的翻折.已知矩形OABC 在坐标平面内如图2所示,AB =5,点O 沿直线EF 翻折后,点O 的对应点D 落在AB 边上,设AD =x ,OE =y ,那么在直角三角形AED 中用勾股定理就可以得到y 关于x 的函数关系式.图1 图2【典例分析】【例1】如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;(2)类比探究:如图③,在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由; (3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ;①在旋转过程中,若1t =时,求对应的EPF ∆的面积; ②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.【例2】如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y . ①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.【例3】抛物线2(0)y ax bx c a =++≠与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,4)C -.已知(2,0)A -,抛物线的对称轴l 交x 轴于点(1,0)D . (1)求出,,a b c 的值;(2)如图1,连接BC ,点P 是线段BC 下方抛物线上的动点,连接,PB PC .点,M N 分别在y 轴,对称轴l 上,且MN y ⊥轴.连接,AM PN .当PBC ∆的面积最大时,请求出点P 的坐标及此时AM MN NP ++的最小值;(3)如图2,连接AC ,把AOC ∆按照直线y x =对折,对折后的三角形记为A OC ∆'',把A OC ∆''沿着直线BC 的方向平行移动,移动后三角形的记为A O C ∆''''',连接DA '',DC '',在移动过程中,是否存在DA C ∆''''为等腰三角形的情形?若存在,直接写出点C ''的坐标;若不存在,请说明理由.【例4】如图在锐角△ABC 中,BC =6,高AD =4,两动点M 、N 分别在AB 、AC 上滑动(不包含端点),且MN ∥BC,以MN 为边长向下作正方形MPQN,设MN =x,正方形MPQN 与△ABC 公共部分的面积为y . (1)如图(1),当正方形MPQN 的边P 恰好落在BC 边上时,求x 的值;(2)如图(2),当PQ 落△ABC 外部时,求出y 与x 的函数关系式(写出x 的取值范围)并求出x 为何值时y 最大,最大是多少?【例5】如图,抛物线y=12-x2+mx+m(m>0)的顶点为A,交y轴于点C.(1)求出点A的坐标(用含m的式子表示);(2)若直线y=﹣x+n经过点A,与抛物线交于另一点B,证明:AB的长是定值;(3)连接AC,延长AC交x轴于点D,作直线AD关于x轴对称的直线,与抛物线分别交于E、F两点.若∠ECF=90°,求m的值.【例6】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B 点的坐标为(3,0),与y轴交于点C(0,﹣3).(1)求二次函数解析式;(2)若点Q为抛物线上一点,且S△ABQ=12S△ACQ,求点Q的坐标;(3)若直线l:y=mx+n与抛物线有两个交点M,N(M在N的左边),P为抛物线上一动点(不与M,N重合).过P作PH平行于y轴交直线l于点H,若HM HNHP⋅=5,求m的值.【变式训练】1.如图,抛物线y =ax 2+4x +c (a ≠0)与反比例函数y =5x的图象相交于点B ,且点B 的横坐标为5,抛物线与y 轴交于点C (0,6),A 是抛物线的顶点,P 和Q 分别是x 轴和y 轴上的两个动点,则AQ +QP +PB 的最小值为_____.2.如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D 是抛物线 y =﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________3.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.4.如图,在Rt △ABC 中,∠BAC =90°,AB =AC =16cm ,AD 为BC 边上的高,动点P 从点A 出发,沿A →D 方向以2/s 的速度向点D 运动,过P 点作PE ∥BC 交AC 于点E ,过E 点作EF ⊥BC 于点F ,设△ABP 的面积为S 1,四边形PDFE 的面积为S 2,则点P 在运动过程中,S 1+S 2的最大值为______.5.在平面直角坐标系中,已知()A 2,4、()P 1,0,B 为y 轴上的动点,以AB 为边构造ABC V ,使点C 在x 轴上,BAC 90.M ∠=o 为BC 的中点,则PM 的最小值为______.6.如图,在平面直角坐标系中,抛物线y=﹣x 2+4x 与x 轴交于点A,点M 是x 轴上方抛物线上一点,过点M 作MP ⊥x 轴于点P,以MP 为对角线作矩形MNPQ,连结NQ,则对角线NQ 的最大值为_________.7.如图,在平面直角坐标系中,过A (-1,0)、B (3,0)两点的抛物线交y 轴于点C,其顶点为点D,设△ACD 的面积为S 1,△ABC 的面积为S 2.小芳经探究发现:S 1︰S 2是一个定值.这个定值为________.8.如图,在平面直角坐标系中,有二次函数23333y x x =--+,顶点为H ,与x 轴交于A 、B 两点(A 在B 左侧),易证点H 、B 关于直线3:33l y x =+对称,且A 在直线l 上.过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,则HN NM MK ++的最小值为________9.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P 是抛物线上的一个动点(不与点A 点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .当2PE ED =时,求P 点坐标;(3)如图所示,设抛物线与y 轴交于点F ,在抛物线的第一象限内,是否存在一点Q ,使得四边形OFQC 的面积最大?若存在,请求出点Q 的坐标;若不存在,说明理由.10.如图,在矩形ABCD 中,AB=18,AD=12,点M 是边AB 的中点,连结DM,DM 与AC 交于点G ,点E,F 分别是CD 与DG 上的点,连结EF,(1)求证:CG=2AG .(2)若DE=6,当以E,F,D 为顶点的三角形与△CDG 相似时,求EF 的长.(3)若点E 从点D 出发,以每秒2个单位的速度向点C 运动,点F 从点G 出发,以每秒1个单位的速度向点D 运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG 的面积的最小值.11.如图①,抛物线y=a(x 2+2x-3)(a≠0)与x 轴交于点A 和点B,与y 轴交于点C,且OC=OB.(1)直接写出点B 的坐标是( , ),并求抛物线的解析式;(2)设点D 是抛物线的顶点,抛物线的对称轴是直线l,连接BD,线段OC 上的点E 关于直线l 的对称点E'恰好在线段BD 上,求点E 的坐标;(3)若点F 为抛物线第二象限图象上的一个动点,连接BF,CF,当△BCF 的面积是△ABC 面积的一半时,求此时点F 的坐标.12.如图,抛物线y =﹣x 2+mx +2与x 轴交于点A ,B ,与y 轴交于点C ,点A 的坐标为(1,0) (1)求抛物线的解析式(2)在抛物线的对称轴l 上找一点P ,使PA +PC 的值最小,求出点P 的坐标 (3)在第二象限内的抛物线上,是否存在点M ,使△MBC 的面积是△ABC 面积的12?若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线212y x mx n =++交x 轴于A 、B 两点,直线y=kx+b 经过点A,与这条抛物线的对称轴交于点M (1,2),且点M 与抛物线的顶点N 关于x 轴对称.(1)求抛物线的函数关系式;(2)设题中的抛物线与直线的另一交点为C,已知P(x,y)为线段AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.求线段PQ的最大值及此时P坐标;(3)在(2)的条件下,求△AQC面积的最大值.14.如图,抛物线y=﹣12x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.(3)连接AD并延长,过抛物线上一点Q(Q不与A重合)作QN⊥x轴,垂足为N,与射线交于点M,使得QM=3MN,若存在,请直接写出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,点A在抛物线y=- x2 + 4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB 的长.(2)点P 为线段AB .上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H,点F 为y 轴上一点,当∆PBE 的面积最大时,求PH + HF + 12FO 的最小值. (3)在(2)中,PH+HF+12方FO 取得最小值时,将∆CFH 绕点C 顺时针旋转60°后得到∆CF'H',过点F'作CF'的垂线与直线AB 交于点Q,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.16.已知,二次函数24y x x c =-+的图像与x 轴的一个交点为O(0,0),点P (m,0)是x 轴正半轴上的一个动点.(1)如图1,求二次函数的图像与x 轴另一个交点的坐标; (2)如图2,过点P 作x 轴的垂线交直线33y x =与点C,交二次函数图像于点D, ①当PD=2PC 时,求m 的值;如图3,已知A (3,-3)在二次函数图像上,连结AP,求12AP OP +的最小值;(3如图4,在第(2)小题的基础上,作直线OD,作点C关于直线OD的对称点C’,当C’落在坐标轴上时,请直接写出m的值.17.如图1,已知抛物线y =ax2+bx +c 经过A(-3,0),B (1,0 ),C (0,3 )三点,其顶点为D,对称轴是直线l , l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求∆PBC 周长的最小值;(3)如图2,若 E 是线段AD 上的一个动点(E 与A, D 不重合),过 E 点作平行于y 轴的直线交抛物线于点 F ,交x 轴于点G ,设点 E 的横坐标为m ,四边形AODF 的面积为S 。
2020年九年级数学中考经典几何题讲义系列:几何最值问题

3 / 18
(4) 两点两线的最值问题: (两个动点+两个定点)
问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。 核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最 短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线 段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。 变异类型:演变为多边形周长、折线段等最值问题。 1. 如图,点 A 是∠MON 内的一点,在射线 ON 上作点 P,使 PA 与点 P 到射线 OM 的距离之 和最小。
A.
B.
C.
D.1
考点: 轴对称-最短路线问题;正方形的性质. 菁优网版权所有
分析: 根据题意得出作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN=
,此时四边形 BMNE
解答: 的周长最小,进而利用相似三角形的判定与性质得出答案. 解:作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN= ,延长 DF 交 BC 于 P,作
2.连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、 正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
∵LN=AS=
=40.
2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略

2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?P【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
2020中考数学冲刺练习-第19讲 线段的最值问题--含解析

2020数学中考冲刺专项练习专题19线段的最值问题【难点突破】着眼思路,方法点拨, 疑难突破;两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.【名师原创】原创检测,关注素养,提炼主题;【原创】如图,抛物线y=ax2+bx+c与y轴交于点A(0,2),与x轴交于一点(-2+ 2,0),对称轴为直线x=﹣2,抛物线上存在B、C两点,点B在对称轴左侧,点C在对称轴右侧,BC=6且平行于x轴。
(1)求此抛物线的解析式.(2)求△ABC的面积.(3)点P在x轴负半轴上,且PA+PB的最小值为,求点P的坐标.直线CP将线段AB分成1:3两部分,试求点P的坐标。
【解答】解:(1)由题意得:x=﹣=﹣2,b=4a,c=2,又∵过点(-2+2,0),代入y=ax 2+4ax+2,解得a=1,故b=4则此抛物线的解析式为y=x 2+4x+2; (2)∵抛物线对称轴为直线x=﹣2,BC=6, ∴B 横坐标为﹣5,C 横坐标为1, 把x=1代入抛物线解析式得:y=7,又∵点A 的坐标为(0,2),故点A 到BC 的距离为7-2=5, ∴△ABC 的面积=5×6÷2=15. (3)由(2)题可知B (﹣5,7),C (1,7), 设直线PC 解析式为y=kx+b ,交AB 与点D , 过点A 作AE//BC ,交PC 于点E ,① 当AD :BD=1:3时,则有AE :BC=1:3又∵BC=6,故AE=2,从而得到点E 的坐标为(-2,2) 则代入PC 解析式可得:722k b k b +=⎧⎨-+=⎩解得:53163k b ⎧=⎪⎪⎨⎪=⎪⎩则直线PC 解析式为y=53x+163,则可得点P 的坐标为(0,165-) ②当AD :BD=3:1时,则有AE :BC=3:1 同理可得到点E 的坐标为(-18,2) 则代入PC 解析式可得:7182k b k b +=⎧⎨-+=⎩解得:51912819k b ⎧=⎪⎪⎨⎪=⎪⎩则直线PC 解析式为y=519x+ 12819,则可得点P 的坐标为(0,1285-) 综上所述可得点P 的坐标为(0,165-)或(0,1285-).【典题精练】典例精讲,运筹帷幄,举一反三;【例题1】如图1,菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段B C 、CD 、BD 上的任意一点,求PK +QK 的最小值.图1【解析】如图2,点Q 关于直线BD 的对称点为Q ′,在△KPQ ′中,PK +QK 总是大于PQ ′的.如图3,当点K 落在PQ ′上时,PK +QK 的最小值为PQ ′.如图4,PQ ′的最小值为Q ′H ,Q ′H 就是菱形ABCD 的高,Q ′H=3.这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.图2 图3 图4【例题2】如图1,已知A (0, 2)、B (6, 4)、E (a , 0)、F (a +1, 0),求a 为何值时,四边形ABEF 周长最小?请说明理由.图1【解析】在四边形ABEF 中,AB 、EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图2,将线段BF 向左平移两个单位,得到线段ME .如图3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.图2 图3【例题3】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,∴当点P在劣弧OB上运动时,点P的纵坐标随着∠PAO的增大而增大.∵OE′=1,∴点E′在以点O为圆心,1为半径的圆O上运动,∴当AP与⊙O相切时,∠E′AO(即∠PAO)最大,此时∠AE′O=90°,点D′与点P重合,点P的纵坐标达到最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【最新试题】名校直考,巅峰冲刺,一步到位。
2020年数学中考最值问题试题总汇【含答案】

⎭⎝⎝44⎭初中代数、几何所有最值问题一代数问题中的最值问题1、从 - 3,- 2,-1,4,5中任取两个数相乘,所得积中最大值为a ,最小值为b ,求-4答案:32、若a , b , c 都是大于1的自然数,且a c= 252b , 求a 的最小值?答案:42.a 的值?b 解析:252b 可以分成某数幂的形式。
252b=6×6×7b ,×即b=7,即 a=6×7=42.3、下面是按一定规律排列的一组数:1 ⎛-1 ⎫第一个数: - 1+⎪2 ⎝ 2 ⎭1 ⎛-1 ⎫⎛(-1)2 ⎫⎛(-1)3 ⎫第二个数: - 1+⎪ 1+⎪1+⎪3 ⎝ 2 ⎪⎪⎭⎝⎭1 ⎛-1 ⎫⎛(-1)2 ⎫⎛(-1)3 ⎫⎛(-1)4 ⎫⎛(-1)5 ⎫第三个数: - 1+ 1+1+1+4 ⎝ 2 ⎪⎪⎭⎝⎭⎝⎪⎪⎭⎝⎭……第 n 个数:1⎛-1 ⎫⎛(-1)2 ⎫⎛(-1)3⎫⎛(-1)2n -1 ⎫- 1+⎪ 1+⎪1+⎪…… 1+⎪n +1 ⎝ 2 ⎭ ⎪⎪ ⎭⎝⎭⎝2n ⎪;那么在第 10 个数,第 11 个数,第 12个数中,最大数是?答案:第 10 个。
解析:第n 个数是1- n 2(n +1), 把n = 10, n = 11, n = 12, n = 13分别代入得出答案。
4、已知: 20n 是整数,求满足条件的 最小整正数n 的值?答案:5解析:20n=4×5×n ,因为20n 是整数,∴ 20n 是一个完全平方数,∴ n 的最小值为54、当(m+n )²+1 取最小值时,求m 2 - n 2 + 2 m - 2 n 的值?答案:0解析:(m+n )²+1 取最小值,m+n=0 时最小。
再用特值法求出答案。
5、设a = 350 , b = 440 , c = 530 , 求a , b , c 中最大和最小的是?答案:最大是b ,最小时c 。
2020年中考数学复习微专题最值问题(费马点问题)
2020年中考数学复习专题最值问题(费马点问题)突破与提升策略问题:在△ABC内找一点P,使得P A+PB+PC最小.APB C【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.其实理论还是上面的理论,本题难点在于有3条线段,我们需要对这三条线段作一些位置上的变化,如果能变换成在一条直线上,问题就能解决了!若点P满足∠P AB=∠BPC=∠CP A=120°,则P A+PB+PC值最小,P点称为该三角形的费马点.接下来讨论3个问题:(1)如何作三角形的费马点?(2)为什么是这个点?(3)费马点怎么考?一.如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC为边作等边△BCF,连接AF,必过点P,有∠P AB=∠BPC=∠CP A =120°.EB ACAB CDE在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE . 有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC∠≥︒ ,这个图就不是这个图了,会长成这个样子:此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以咧?是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二.为什么是这个点为什么P点满足∠P AB=∠BPC=∠CP A=120°,P A+PB+PC值就会最小呢?归根结底,还是要重组这里3条线段:P A、PB、PC的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC≌△ABE,可得:CD=BE.类似的手拉手,在图4中有3组,可得:AF=BE=CD.E更巧的是,其长度便是我们要求的P A+PB+PC的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值!接下来才是真正的证明:考虑到∠APB=120°,∴∠APE=60°,则可以AP为边,在PE边取点Q使得PQ=AP,则△APQ是等边三角形.△APQ、△ACE均为等边三角形,且共顶点A,故△APC≌△AQE,PC=QE.以上两步分别转化P A=PQ,PC=QE,故P A+PB+PC=PB+PQ+QE=BE.没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!三.费马点怎么考?问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=点O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.NG图2图1ABCD EP【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG为边作等边△MGH,连接NH,则NH的值即为所求的点O到△MNG三个顶点的距离和的最小值.(此处不再证明)HGNM过点H作HQ⊥NM交NM延长线于Q点,根据∠NMG=75°,∠GMH=60°,可得∠HMQ=45°,∴△MHQ是等腰直角三角形,∴MQ=HQ=4,∴NH==464QHGNM【练习】如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求P A+PB+PC的最小值.C【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为P A+PB+PC的最小值.至于点P的位置?这不重要!AB CD如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH ⊥BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.HDCB A【练习】如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.ABCDME【分析】依然构造60°旋转,将三条折线段转化为一条直线段. 分别以AD 、AM 为边构造等边△ADF 、等边△AMG ,连接FG ,易证△AMD ≌△AGF ,∴MD =GF ∴ME +MA +MD =ME +EG +GF过F 作FH ⊥BC 交BC 于H 点,线段FH 的长即为所求的最小值.HFGE MDCBA。
2020年中考数学压轴题之动点产生的定值和最值专题Word版无答案
2020年中考数学压轴题之动点产生的定值和最值专题Word版无答案中考数学压轴题专题动点产生的定值与最值问题中考数学压轴题——动点产生的定值与最值问题目录第1 讲角为定值的常规解法第2 讲角为定值的高级解法第3 讲边为定值的动点问题第4 讲线段的和或差为定值的动点问题第5 讲比值为定值的动点问题第6 讲乘积为定值的动点问题第7 讲面积为定值的动点问题第8 讲动点产生的几何最值问题【几何法证明角为定值】(1)三角形内角和定理(2)三角形外角定理第 1 讲 角为定值的常规解法(3)等腰三角形底角相等(4)直角三角形两锐角互余(5)平行线的同位角相等、内错角相等、同旁内角互补(6)平行四边形的对角相等、邻角互补(7)等腰梯形底角相等(8)圆所涉及的角的关系:圆心角、圆周角、弦切角定理等【例】如图,平面内两条互相垂直的直线相交于点 O,∠MON=90°,点 A 、B 分别在射线 OM 、 ON 上移动,AC 是△BAO 的角平分线,BD 为∠ABN 的角平分线,AC 与 BD 的反向延长线交于 点 P.试问:随着点 A 、B 位置的变化,∠APB 的大小是否会变化?若保持不变,请求出∠APB 的度数;若发生变化,求出变化范围。
、【例】如图所示,O 的直径 AB=4,点 P 是 AB 延长线上的一点,过 P 点作 O 的切线,切点为 C , 连接 AC.(1)若∠CPA=30°,求 PC 的长;(2)若点 P 在 AB 的延长线上运动,∠CPA 的平分线交 AC 于点 M ,你认为∠CMP 的大小是否发 生变化?若变化,请说明理由;若不变化,求出∠CMP 的大小。
【代数法求角为定值】一般在直角坐标系中,可以用坐标的方法表示出边或角,从而求解具体角为定值的问题。
【例】如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y = ax2 + bx + c 经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,−5),D(4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”。
2020中考数学专题10——最值问题之阿氏圆
IA2020中考专题10——最值问题之阿氏班级________姓名____________ . 【模型解析】“阿氏圆”樓型——u PA + k PB M型最值♦条件:A、B为定点,P为ΘO±一个动A, —= k (0<i<l). OB♦问題:求PA^k PB的最小血并预出点P的位置・CP ∙k PB•所以PA + k PB∙PAYP≥AC,当P为AC与GlO的交点时■ PA^kPB的最小置为AC・【例題分析】2例 1.⅛ Rt∆ABC 中P ZACB=90β , AC=4, BC=3,点 D 为AABC 内一动点■满足CD=2,求AD÷ jBD 的最小值•例2•问题提出:如图h在RtΔ^5C中.ZACB=90°. CB=A, CA≈69 CDC半径为2, P为SI上一动点,连结肿、BP9求AP丄BP的最小值.2图2图3√2 2尝试解决,为了解决这个问題,下面给出一种耘題思路:如图2,连按CP,在CB 上取点D,使CDCP1PD 1 1CD=I,则有一=—=-,Xv ZPCD=ZBCP, ΛΔPCDS≤ΔJCP, — = -, APD=-BP, CPCB2 BP 2 2:.AP--BP^AP^PD.2请你芫成余下的思考,芥直按写出答案,AP +I BP 的最小值为 ______________ .2自主探索:在“问题提出"的条件不变的情况下,^AP^BP 的最:、值为 ______________ . 拓展延伸:己知扇形CoD 中,ZCOD=90°, OC=6, 0Λ=3f 0B≡5f 点P 是弧CD 上一点,求的最小值.【巩固训练】2•如BB 2,在Rt∆ABC 中∙ ZB=90t ∙ AB=CB=2,以点B 为圆心作HIB 与AC 相切.点P 为OaB 上任3•如图3,己知点P 是边长为6的正方形ABCD 内SC —动点・PA=3■求PC÷- PD 的量小值为.—动点.则PA∙PC 的最小值是 __________1 •如图 1,在 Rt∆ABC 中,ZACB=90∙ , CB=4, CA=6, HIC 半径为 2,点 P 为21上一动点,连按 AP,国45•如图5,己知点A (4, 0), B (4, 4力点P 在半径为2的圆0上运动•试求丄AP+BP 的最小值• 26•如旳6,己知点A (-3^ 0) ,B (03), C C1, 0),若点P 为ElCJz 的一気 试求, CI)1AP ÷BP ^^5 ⑵的最小值.7.如图 7,扼物线y=-χ2+bx-^c 与直线 AB 交于 A(-4,-4), B(0, 4)两点,直线 AC : V = -^X-6 交y 轴于点C,点E 是直线AB ±的动点,过点E 作EF 丄X 轴交AC 于点F,交拋物线于点G(I) 求牠物线y = -x 2+bx + C 的表达式;4•如EB 4,己知[S O 半径为1, AC. BD 为切线,AC=1, BD=2, P 为弧AB 上一动点试求√2 2PC÷PD留5国6(2) 连按GB, EO,当四边形GEOB 是平行四边形时, 求点G 的坐标:(3) ①在y 轴上存在一点H,连按EH, HF,当点E 运动到什么住置时,以A. E l F, H 为顶点的四边形是矩形?求出此时点匕H 的坐标: ②在①的前提下,以点E 为El 心,EH 长为半径作Eh 点M 为EIE 上一动点,求ZAM 十CM 的最小值.2图72020中考专题10——最值问題之阿氏圆 参考答案CD 2 例1・分析:由C 为定点D 为动点可知CD 的运动轨迹为以C 为图心半径为2的匮。
《2020年中考数学保A必刷压轴题(湖南长沙专版)》(二):最值问题专题(解析版)
《2020年中考数学保A必刷压轴题(湖南长沙专版)》(二)最值问题专题1.(2019•十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=6.解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.2.(2019•黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是.解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.3.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是4<BC≤.解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.4.(2019•连云港)如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作⊙C 与直线BD 相切,点P 是⊙C 上一个动点,连接AP 交BD 于点T ,则的最大值是 3 .方法1、解:设C 的半径为R ,如图,作BD 的平行线P E ',使P E '切C 于P ',则PE 与BD 的最大距离为2R ,BD 与C 相切,∴点C 到BD 的距离为R ,∴四边形ABCD 是矩形,∴点A 到BD 的距离为R ,∴点A 到PE 的最大距离为3R ,∴AP AT 的最大值为33R R=; 方法2、解:如图,过点A 作AG BD ⊥于G ,BD 是矩形的对角线,90BAD ∴∠=︒,5BD ∴==,1122AB AD BD AG =, 125AG ∴=,BD 是C 的切线,C ∴的半径为125过点P 作PE BD ⊥于E ,AGT PET ∴∠=∠,ATG PTE ∠=∠,AGT PET ∴∆∆∽, ∴AG AT PE PT=, ∴512PT PE AT =⨯ 1AP AT PT PTAT AT AT+==+, 要AP AT最大,则PE 最大, 点P 是C 上的动点,BD 是C 的切线,PE ∴最大为C 的直径,即:245PE =最大, ∴AP AT 最大值为8134+=, 故答案为3.方法3、解:如图,过点P 作//PE BD 交AB 的延长线于E ,AEP ABD ∴∠=∠,APE ATB ∆∆∽, ∴AP AE AT AB=, 4AB =,4AE AB BE BE ∴=+=+, ∴14AP BE AT =+, BE ∴最大时,AP AT最大, 四边形ABCD 是矩形,3BC AD ∴==,4CD AB ==,过点C 作CH BD ⊥于H ,交PE 于M ,并延长交AB 于G , BD 是C 的切线,90GME ∴∠=︒,在Rt BCD ∆中,5BD ,90BHC BCD ∠=∠=︒,CBH DBC ∠=∠,BHC BCD ∴∆∆∽, ∴BH CH BC BC DC BD==, ∴3345BH CH ==, 95BH ∴=,125CH =, 90BHG BAD ∠=∠=︒,GBH DBA ∠=∠,BHG BAD ∴∆∆∽, ∴HG BG BH AD BD AB==, ∴95354HG BG ==,2720HG ∴=,94BG =, 在Rt GME ∆中,33sin 55GM EG AEP EG EG =∠=⨯=, 而94BE GE BG GE =-=-, GE ∴最大时,BE 最大,GM ∴最大时,BE 最大,2720GM HG HM HM =+=+, 即:HM 最大时,BE 最大,延长MC 交C 于P ',此时,HM 最大2425HP CH '===, 1234GP HP HG ''∴=+=, 过点P '作//P F BD '交AB 的延长线于F ,BE ∴最大时,点E 落在点F 处,即:BE 最大BF =,在Rt △GP F '中,1234143sin sin 45GP GP FG F ABD ''====∠∠, 8BF FG BG ∴=-=, ∴AP AT 最大值为8134+=, 故答案为:3.5.(2019•镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.解:∵抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,∴=﹣=﹣2∵线段AB的长不大于4,∴4a+1≥3∴a≥∴a2+a+1的最小值为:()2++1=;故答案为.6.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.7.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C.D.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.8.(2019•东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∵=4π,∴n=120即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,∴BF=AB•sin∠BAF=6×=3,∴最短路线长为3.故选:D.9.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.解:如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH ⊥AB 于H .∵S △ABE =•AB •EH =S △AOB ﹣S △AOE ,∴EH =,∴AH ==,∴tan ∠BAD ===,故选:B .10.(2019•台州)如图,直线l 1∥l 2∥l 3,A ,B ,C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =4,且=,则m +n 的最大值为 .解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M , 设AE x =,CF y =,BN x =,BM y =,4BD =,4DM y ∴=-,4DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC∴∆∆∽,∴AE BEBF CF=,即x mn y=,xy mn∴=,ADN CDM∠=∠,CMD AND∴∆∆∽,∴AN DNCM DM=,即4243m xn y-==-,3102y x∴=-+,23mn=,32n m∴=,5()2m n m∴+=最大,∴当m最大时,5()2m n m+=最大,22333(10)10222mn xy x x x x m ==-+=-+=,∴当1010332()2x=-=⨯-时,250332mn m==最大,103m∴=最大,m n∴+的最大值为51025233⨯=.故答案为:253.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最值问题探究
第 1 页 共 4 页
最值问题探究
1.如下左图,在RtΔABC 中,∠ACB=90° ,AC=6 ,BC=8 ,P ,Q 两点分别是边
AC ,BC 上的动点,将△PCQ 沿PQ 翻折,C 点的对应点为C’ ,连接 ,则
AC’ 的最小值是
_________.
2.问题背景:如上图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,
可推出结论:PA+PC=PE.
问题解决:如上图2,在△MNG中,MN=6,∠M=75°,MG=42.点O是△MNG内一点,则点O
到△MNG三个顶点的距离和的最小值是
3.如下左图,矩形ABCD是一个长为1000米、宽为600米的货场,A、D是入口。现拟在货
场内建一个收费站P,在铁路线BC段上建一个发货站台H,设铺设公路AP、DP以及PH
之长度和为l.
(1)求l的最小值。
(2)请指出当l取最小值时,收费站P和发货站台H的几何位置。
4.如上右图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC
边上,且BM=6.P为对角线BD上一点,则PM−PN的最大值为 .
5.如下左图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动
点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最
小值是
最值问题探究
第 2 页 共 4 页
6.如上右图,抛物线)8)(2(41xxy与x轴交于A、B两点,交y轴于C点,点D为抛
物线上第四象限的动点,连接BD交AC于点P,求BPDP的最大值。
7.已知直线43kkxy )0(k,求原点O到此直线的最大距离。
8.如下左图,已知正方形ABCD的边长是4,点E是AB边上的一个动点,连接CE,BG⊥
CE于G,点P是AB边上的另一个动点,则PD+PG的最小值为
9.如上中图,矩形ABCD中,AB=2,AD=3,点E. F分别AD、DC边上的点,且EF=2,点
G为EF的中点,点P为BC上一动点,则PA+PG的最小值为___.
10.如上右图,在ΔABC中,∠ACB=90°,斜边上的高是3,则ΔABC面积的最小值是
11.如下左图,正方形ABCD与正方形CEFG的边长分别为a,b(b>2a),将正方形ABCD绕点
C旋转,在旋转过程中,ΔAEG的面积S的取值范围是
最值问题探究
第 3 页 共 4 页
12,如上中图,在矩形ABCD中,AB=3,AD=3,连接AC,点E为AC上一个动点,点F
为BC上一个动点,连接BE、EF,且始终满足∠ABE=∠BFE.,则线段BF的最小值为
13.如上右图,已知等腰RtΔABC中,∠ACB=90°,AC=BC,AB=20,动点D、F同时从点A
出发,分别沿AC、AB方向运动,点D的速度是每秒2个单位长度,点F的速度是每秒1
个单位长度,DE∥AB,点M是DE的中点,当运动时间t 时,MF的值最小,最小
值是
14.如下左图,等腰ABC中,∠ABC=∠ACB=30°,AB=6,BD平分∠ABC,点P,Q分别是边
BC和射线BD上一动点,则PQ+QC的最小值是
15.如上中图,在平面直角坐标系中A(6,0),B(0,8),点C在y轴正半轴上,点D在x轴
正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于点E,F,则线段EF
的最大值为
16.如上右图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD
上一动点,则EP+AP的最小值为
最值问题探究
第 4 页 共 4 页
17.如下左图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边
上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为
18.如上中图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P是斜边BC上一动点,PE⊥AB于
E,PF⊥AC于F,EF与AP相交于点O,则OF的最小值为
19.如上右图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上
的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段
AF长的最小值是
20.如下左图,在矩形ABCD中,AB=5,BC=33,点E在BC上,且BE:EC=1:2,P为矩
形ABCD内一点,且∠EPC=60°,则线段AP的最小值为
21.如上中图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,
点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值有___个.
22.如上右图,四边形ABCD在平面直角坐标系中,A(0,0),B(7,0),∠ABC=45°,点D在
y轴正半轴上,CD的长为3,则四边形ABCD的面积的最小值为_____.(结果保留根号)