光电效应测普朗克常数实验报告

合集下载

普朗克常数测定实验报告

普朗克常数测定实验报告

普朗克常数测定实验报告引言:普朗克常数是量子力学中的重要物理常数,被用于描述微观粒子的行为。

它的准确测定对于量子力学的研究和应用具有重要意义。

本实验旨在通过测量光电效应中的截止频率来确定普朗克常数的值。

实验原理:光电效应是指当光照射到金属表面时,金属会发射出电子。

根据经典电磁学理论,光的能量应与光的强度成正比,而与光的频率无关。

然而,实验观察到光电效应的实际情况与经典理论不符。

爱因斯坦通过解释光的能量以量子的形式存在,提出了光子概念,并认为光电效应是光子与金属中电子的相互作用导致的。

根据爱因斯坦的理论,光电效应中发射的电子动能与光子的能量有关,可以用以下公式表示:E = hf - φ其中,E为电子的动能,h为普朗克常数,f为光的频率,φ为金属的逸出功。

当光的频率小于截止频率f0时,光电效应不会发生。

实验步骤:1. 准备一块金属板,清洁表面并将其固定在电极上。

2. 通过电源和电流计提供一定的电压,使电流通过金属板。

3. 将光源对准金属板,逐渐增加光的频率,观察电流变化。

4. 当光的频率大于截止频率时,电流会明显增大,此时记录下光的频率。

5. 重复实验多次,取平均值作为截止频率f0。

数据处理与分析:根据实验记录的截止频率f0,利用普朗克-爱因斯坦公式可以求得普朗克常数h。

由于不同实验条件下测得的截止频率可能有一定的误差,可以通过计算均值和标准差来评估实验结果的可靠性。

结果与讨论:根据多次实验的测量结果,得到截止频率f0的平均值为x,并计算得到标准差s。

利用普朗克-爱因斯坦公式,可以得到普朗克常数的值为h = x - φ。

本实验的结果与已知的普朗克常数值进行比较,可以评估实验的准确性。

如果测得的普朗克常数与已知值接近,说明实验结果可靠;如果差异较大,则需要进一步考察实验步骤和条件是否存在问题。

实验结论:通过测量光电效应中的截止频率,可以确定普朗克常数的值。

本实验测得的普朗克常数与已知值的接近程度说明了实验的可靠性。

光电效应及普朗克常量测定实验报告

光电效应及普朗克常量测定实验报告

光电效应及普朗克常量测定实验报告实验报告:光电效应及普朗克常量测定一、引言光电效应是指当光照射到金属表面时,金属表面的电子被激发并跃迁到导体中,产生电子流。

这一现象的解释是基于量子理论,即光子作为光的组成单元,能量与频率成正比,与材料的电子结构属性相关。

本实验通过测量光敏电流和入射光的不同参数,来研究光电效应,并进一步测定普朗克常量。

二、实验装置本实验所需的装置主要有:光电效应实验台、可变波长的光源、电子计数器、电磁铁等。

三、实验步骤1.通过调节光源的波长和强度,选择合适的工作条件,使光电效应能够明显观测到。

2.利用电子计数器测量光敏电流随波长的变化关系,记录数据。

3.固定波长,改变光强度,测量光敏电流随光强度的变化关系,记录数据。

4.利用已知波长和光敏电流的关系,测量普朗克常量。

四、数据处理与分析1.光敏电流随波长的变化关系如下表所示:波长/纳米,光敏电流/安培---,---400,0450,0500,0550,0600,0650,0700,0根据以上数据绘制光敏电流随波长的变化曲线,可以清楚地看到光敏电流在波长小于550纳米时逐渐增大,在波长大于550纳米时趋于平稳,符合光电效应的特点。

2.光敏电流随光强度的变化关系如下表所示:光强度/Lux ,光敏电流/安培---,---100,0200,0300,0400,0500,0600,0根据以上数据绘制光敏电流随光强度的变化曲线,可以发现光敏电流与光强度之间没有明显的关系,光敏电流基本保持在零值附近。

3. 根据实验结果,我们可以通过光敏电流和波长的关系来求解普朗克常量。

根据光电效应的经典方程:E = hv - ϕ,其中E为光子能量,h 为普朗克常量,v为光频率,ϕ为金属的逸出功。

可以将该方程转化为:E = hc/λ - ϕ,其中c为光速,λ为光波长。

由于光敏电流和光强度之间关系不明显,我们可以选取任意一个光强度进行计算。

假设光强度为300 Lux,根据波长与光频率之间的关系:v = c/λ,将上述方程转化为:E = h*c/λ - ϕ。

大物实验光电效应实验报告

大物实验光电效应实验报告

实验名称光电效应测定普朗克常数姓名学号专业班实验班组号教师成绩批阅教师签名批阅日期一、实验目的:1.了解光电效应基本规律2.学习利用光电管进行光电效应研究3.学习用电脑处理实验数据并且测量普朗克常数二、实验原理:光电效应实验原理如图所示。

其中S为真空光电管,K为阴极,A为阳极。

当无光照射阴极时,由于阳极与阴极是断路,所以检流计G中无电流流过,当用波长比较短的单色光照射到阴极K上时,形成光电流,光电流随加速电位差U变化的伏安特性曲线如图2所示。

图一为光电效应实验原理图从图二可以看出:①:光电流与入射光强的关系②:光电子初动能与入射频率之间的关系③:光电效应有光电阈存在确定遏止电压有两种方法,分别为:①:交点法②:拐点法三、实验仪器:光电管,光源(汞灯),滤波片组(577.0nm,546.1nm,435.8nm,404.7nm,365nm滤波片,50%、25%,10%的透光片)。

光电效应测试仪包括:直流电源、检流计(或微电流计)、直六、实验数据处理:1. 完整伏安特性曲线2.Origin拟合作图3.用365nm光计算普朗克常数和对应误差波长/nm 频率/Hz 频率(*10^14Hz)截止电压(V)斜率h E577 5.19584E+14 5.196 0.20 0.4579 7.33556E-34 11% 546.1 5.48984E+14 5.490 0.34435.8 6.8793E+14 6.879 0.92404.7 7.40796E+14 7.408 1.20365 8.2137E+14 8.214 1.604.入射光强和饱和光电流示意图七:思考题:1. 测定普朗克常数的关键是什么?怎样根据光电管的特性曲线选择合适的测定遏止电压的方法。

答:用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。

由于存在阳极光电效应所引起的反向电流和暗电流,所以测得的电流值,实际上包括上述两种电流和由阴极光电效应所产生的正向电流三个部分,所以伏安曲线并不与U轴相切。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为式中, 为普朗克常数,它的公认值是 =6.626。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:(1)式中,γ为入射光的频率,m 为电子的质量,v 为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)由上式可知,若光电子能量W h <γ,则不能产生光电子。

产生光电效应的最低频率是h W=0γ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而0γ也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为(4)上式表明,截止电压0U 是入射光频率γ的线性函数,如图2,当入射光的频率0γγ=时,截止电压00=U ,没有光电子逸出。

测量普朗克常数实验报告

测量普朗克常数实验报告

一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。

2. 通过实验测量,精确测定普朗克常数。

3. 掌握光电效应实验的操作方法和数据处理技巧。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会释放出电子的现象。

根据爱因斯坦的光电效应方程,光电子的动能Ek与入射光的频率ν、金属的逸出功W和普朗克常数h有关,即Ek = hν - W。

其中,Ek为光电子的最大动能,h为普朗克常数,ν为入射光的频率,W为金属的逸出功。

通过改变入射光的频率,测量对应的截止电压U0,即可得到一系列Ek和ν的数据。

根据Ek = eU0,其中e为电子电量,将Ek和ν的关系图化后,斜率即为普朗克常数h/e。

三、实验仪器与设备1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测量显微镜7. 直尺8. 计算器四、实验步骤1. 将光电管安装到光电效应测试仪上,调整光电管的位置,使其与汞灯的出光口平行。

2. 选择合适的滤色片,调整光阑,使光束照射到光电管上。

3. 打开汞灯及电源,调节电压,使光电管工作在饱和状态。

4. 改变滤色片的颜色,分别测量不同频率的光照射到光电管上时的截止电压U0。

5. 记录实验数据,包括入射光的频率ν、截止电压U0和对应的金属材料。

五、实验数据与处理1. 根据实验数据,绘制Ek~ν的关系图。

2. 利用线性回归方法,计算Ek~ν关系的斜率k。

3. 根据公式k = h/e,计算普朗克常数h的值。

六、实验结果与分析1. 根据实验数据,绘制Ek~ν的关系图,得到斜率k的值为x。

2. 根据公式k = h/e,计算普朗克常数h的值为y。

3. 将计算得到的普朗克常数h与理论值进行比较,分析误差产生的原因。

七、实验结论通过本次实验,我们成功验证了爱因斯坦光电效应方程,并精确测量了普朗克常数。

实验结果表明,普朗克常数h的测量值与理论值较为接近,说明实验方法可靠,数据处理方法正确。

光电效应测普朗克常量实验报告-普朗克常量-光电

光电效应测普朗克常量实验报告-普朗克常量-光电

光电效应测普朗克常量实验报告-普朗克常量-光电实验目的:通过光电效应实验,测量普朗克常量,并了解光电效应的基本原理和应用。

实验仪器:1.光电效应实验装置2.数字多用表实验原理:光电效应是指在一些金属或半导体表面,当被光照射时,由电子被激发而跃出表面,这种现象叫做光电效应。

光子作为能量的微粒,具有一定的能量和频率,当光子的能量大于金属的功函数时,光子与金属表面相交作用,使金属中的自由电子受到激发而跃出,形成光电子。

当光子能量高于功函数时,电子可以跃出金属表面,这种现象叫做外光电效应或费米面以下的光电效应,而当光子能量低于功函数时,电子无法跃出金属表面,这种现象叫做内光电效应或费米面以上的光电效应。

符号说明:V:加速电压I:光电管输出电流f:光的频率h:普朗克常量e:元电荷K:逸出功h/e:比值实验步骤:1.打开实验室电源,并打开实验箱。

2.将吸收电压V0设为0。

3.用计时器和万用表分别测量导线的电位和当前的电流。

4.调节汞灯的极间距离,在一定距离范围内改变电压V,测量需要满足条件:I<I饱和,且I随V的增大呈线性变化。

5.采取多点法,测量下表中不同频率下的V。

f(Hz) V(V) I(mA)5.0*10^146.0*10^147.0*10^148.0*10^149.0*10^1410.0*10^146.根据数据作出电流随电压变化的连接线。

7.读取截距,算出逸出功。

I-V直线方程:I=K/h*(V-V0)8.根据逸出功和电压差,计算出普朗克常量。

h=f(K/e+V0/e)/I=f*(K/e+V0/e)/I实验结果记录:根据实验得到的数据,通过计算绘制I-V曲线,求出逸出功K,进而计算普朗克常量h,数据记录如上表。

实验误差分析:实验误差来源主要有电压、电流与频率的测量误差。

在实验过程中,可能存在测量设备的误差,增加了实验的误差。

实验结论与意义:本次实验通过测量光电效应,在一定范围内对金属的光电效应进行了测量,求出逸出功K和普朗克常量h。

光电效应测普朗克常量实验报告-普朗克常量 光电

光电效应测普朗克常量实验报告-普朗克常量 光电

光电效应测普朗克常量实验报告一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为式中,为普朗克常数,它的公认值是=6.626 。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:(1)式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)由上式可知,若光电子能量W h <γ,则不能产生光电子。

产生光电效应的最低频率是h W=0γ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而0γ也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为(4)上式表明,截止电压0U 是入射光频率γ的线性函数,如图2,当入射光的频率0γγ=时,截止电压00=U ,没有光电子逸出。

运用光电效应测量普朗克常数实验报告

运用光电效应测量普朗克常数实验报告

运用光电效应测量普朗克常数实验报告以运用光电效应测量普朗克常数实验报告为标题摘要:本实验通过测量光电效应中的最大动能以及光的频率,利用普朗克的光子假设,从而计算出普朗克常数h。

实验结果与理论值较为接近,验证了光电效应和普朗克理论的可靠性和准确性。

引言:光电效应是物质受到光照射后所产生的电子发射现象。

根据经典物理学,光的能量应该是连续分布的,然而实验结果却显示出电子的动能与光的频率有关,而与光的强度无关。

为了解释这一现象,普朗克提出了光子假设,即光的能量是由一束束离散的光子组成的,每个光子的能量为E = hf,其中h为普朗克常数,f为光的频率。

本实验旨在通过测量光电效应中的最大动能和光的频率,来计算普朗克常数h。

实验装置和原理:本实验主要使用的装置有:光电效应实验仪、光源、电压源、微电流计等。

实验中,通过改变光源的频率和电压源的电压,测量出光电效应的最大动能和光的频率,然后利用光子假设的公式E = hf,计算出普朗克常数h。

实验步骤:1. 搭建实验装置:将光电效应实验仪连接好,并调节光源的位置和光强度。

2. 测量光的频率:通过光的干涉和衍射实验,测量出光的频率f。

3. 测量光电效应的最大动能:调节电压源的电压,使得微电流计指针达到最大值,记录此时的电压值U。

4. 数据处理:利用光子假设的公式E = hf,将测得的光的频率f和最大动能K,代入计算普朗克常数h。

实验结果和讨论:通过实验测量得到的最大动能和光的频率,计算得到普朗克常数h 的值为x。

该值与理论值相比较接近,误差在可接受范围内。

实验结果验证了光电效应和普朗克理论的可靠性和准确性。

结论:通过本实验,我们成功利用光电效应测量了普朗克常数h,并得到了与理论值较为接近的结果。

光电效应实验是验证普朗克理论的重要实验之一,其结果对于理解光的本质和光子假设的正确性具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应测普朗克常数实验报告
实验目的:
通过测量光电效应中光电流与光强度的关系,计算得到普朗克常数。

实验原理:
光电效应是指光照射到金属表面时,当光的频率高于临界频率时,能将光子的能量转化为电子的动能,使电子从金属中逸出,形成光电流。

根据光电效应的原理,光电流的强度与光强度和光的频率有关,可以用以下公式来表示:
I = k * Φ * f
其中I表示光电流的强度,k是一个与试验条件有关的常量,
Φ表示光强度,f表示光的频率。

将公式改写为对数形式,得到:
ln(I) = ln(k) + ln(Φ) + ln(f)
实验装置:
1. 光电效应实验装置
2. 电流测量仪
3. 电压源
4. 不同频率的单色光源
5. 金属阴极
实验步骤:
1. 搭建光电效应实验装置,将金属阴极与电流测量仪连接。

2. 将电压源接入电路,使得金属阴极和电流测量仪之间形成电流通路。

3. 选取不同频率的单色光源,照射到金属阴极上,通过调节电压源的电压,使得电流稳定在一个可测的范围内。

4. 测量光电流强度I和对应的光强度Φ,并记录下光的频率f。

5. 将测得的数据代入公式ln(I) = ln(k) + ln(Φ) + ln(f)中,进行
数据处理和分析。

6. 使用线性回归方法,计算得到斜率k的值,并根据公式k =
h/e推导出普朗克常数h的值。

实验结果:
根据实验所得的数据,利用线性回归方法计算得到斜率k的值为x,根据公式k = h/e计算得到普朗克常数h的值为y。

实验讨论与结论:
通过实验测量得到的普朗克常数与理论值的差异进行分析和讨论,对实验的准确性和误差进行评估,并给出可能的改进方法。

实验中可能存在的误差来源:
1. 光电流的测量误差,可能会对实验结果产生影响。

2. 实验装置的性能限制,如电流测量仪的灵敏度等,也可能会引入误差。

3. 光线的散射和反射等因素,可能会导致光线没有完全照射到金属阴极上,从而影响实验结果的准确性。

改进方法:
1. 优化实验装置,提高其灵敏度和稳定性。

2. 使用更精确的测量仪器,减小测量误差。

3. 优化光线的照射方式,使其充分照射到金属阴极上,减小光线散射和反射的影响。

相关文档
最新文档