光电检测技术实验设计

合集下载

光发射机指标测试__光纤实验

光发射机指标测试__光纤实验

河南理工大学光电检测技术实验报告一、实验目的1.了解数字光发射机平均输出光功率的指标要求。

2.掌握数字光发射机平均输出光功率的测试方法。

3.了解数字光发射机的消光比的指标要求。

4.掌握数字光发射机的消光比的测试方法。

二、实验内容1.测试数字光发射机的平均光功率。

2.测试数字光发射机的消光比。

3.绘制数字光发射机的P-I特性曲线。

三、实验仪器1.光纤通信实验系统1台。

2.示波器1台。

3.光功率计1台。

4.万用表1部。

5.FC/PC光纤跳线1根。

四、实验原理光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平均光功率的测试。

下面对这三个方面进行详细的说明:1.半导体光源的P-I特性曲线测试半导体激光器的输出光功率与驱动电流的关系如下图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用Ith表示。

在门限电流以下,激光器工作于自发发射,输出荧光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。

激光器的电流与电压的关系相似于正向二极管的特性。

P-I特性是选择半导体激光器的重要依据。

在选择时,应选阈值电流Ith 尽可能小,Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。

且要求P-I 曲线的斜率适当。

斜率太小,则要求驱动信号太大,给驱动电路带米麻烦:斜率太大,则会山现光反射噪声及使自动光功率控制环路调整困难。

半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放人机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。

将开始出现净增益的条什称为阈值条件。

一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出光,当电流大于Ith时,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I的线性关系.I(mA)图11-1 LD 半导体激光器P-I 曲线示意图2.消光比(EXT )的测试消光比定义为:001110lg PEXT P ,式中P00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。

光电技术实验

光电技术实验

光电技术实验实验报告目录一、光源与光辐射度参数的测量(必做) (3)二、PWM调光控实验 (5)三、LED色温控制实验 (8)四、光敏电阻伏安特性实验 (11)五、线阵CCD驱动电路及特性测试(必做) (13)六、相关器的研究及其主要参数的测量(必做) (15)七、多点信号平均器(必做) (19)八、考试内容 (23)实验一 光源与光度辐射度参数的测量一、实验目的1.熟悉进行光电实验过程中所用数字仪表使用方法2.了解LED 发光二极管3.研究影响LED 光照度的参数二、实验仪器光电综合实验平台主机系统 1 台、发白光的 LED 平行光源(远心照明光源)及其夹持装置各 1 个三、实验原理(1)LED 发光原理:LED 发光二极管为 PN 结在正向偏置下发光的特性。

有些材料构成的 PN 结在正向电场的作用下,电子与空穴在扩散过程中要产生复合。

复合过程中电子从高能级的“导带”跌落至低能级的“价带”, 电子在跌落过程中若以辐射的形式释放出多余的能量,则将产生发光或发辐射的现象。

并且,可以通过控制电流来控制(或调整)发光二极管的亮度,即可以通过改变发光管的电流改变投射到探测器表面上的照度,这就是 LED 光源具有的易调整性。

(2)光度参数与辐射度参数:光源发出的光或物体反射光的能量计算通常是用“通量”、“强度”、“出射度”和“亮度”等参数,而对于探测器而言,常用“照度”参数。

辐照度或光照度均为单位探测器表面所接收的辐射通量或光通量。

即)/(2m W SeEe φ=或 )(lx SvEv φ=式中S 为探测器面积。

(3)点光源照度与发光强度的关系:各向同性的点光源发出的光所产生的照度与发光强度 I v 成正比,与方向角的余弦(COS φ)成正比,与距离光源的距离平方(l^2)成反比,即)(cos 2lx lIv Ev φ=四、实验内容(1)安装LED 发光装置与照度探测器装置,并在电路中接入电流表、限流电阻和可调电阻测量发光LED 的电流。

光电综合实验报告

光电综合实验报告

光电综合实验报告
实验目的:通过光电综合实验,了解光电效应在光电器件中的应用,掌握光电检测技术和光电器件的使用方法。

实验仪器:光电综合实验箱、光电二极管、光电三极管、光电开关等光电器件。

实验原理:光电效应是指当光照射在半导体材料上时,电子受到能量激发而跃迁至导带,从而产生电流或电压的现象。

光电器件是利用光电效应制成的电子器件,如光电二极管、光电三极管和光电开关等。

实验步骤:
1.将光电二极管插入实验箱中,并连接好电路。

2.调节实验箱上的光强度调节钮,观察光电二极管的输出信号。

3.更换光电三极管,并重复步骤2。

4.使用光电开关进行实验,观察其在光照和无光照状态下的输出信号变化。

实验结果:
通过实验,我们观察到光电二极管在光照射下产生了电流信号,光照强度越大,输出信号越强。

光电三极管的输出信号也随着光照强度的变化而变化,但其灵敏度比光电二极管更高。

而光电开关在有光照时输出高电平,在无光照时输出低电平,可以用于光控开关等应用。

实验结论:
光电器件是利用光电效应制成的电子器件,能够将光信号转换为电信号,具有灵敏度高、响应速度快等优点,并且在光控开关、光电传感器等领域有着广泛的应用。

通过本次实验,我们成功掌握了光电器件的使用方法及其在光电检测技术中的应用。

总结:
光电综合实验让我们更加深入地了解了光电效应在光电器件中的应用,通过实验操作,我们掌握了光电器件的使用方法,为今后在光电检测技术领域的应用奠定了基础。

希望能够通过不断地实践和学习,进一步提高自己的实验技能和理论水平。

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案目录一、内容描述 (2)二、光电二极管基本知识 (3)1. 光电二极管的工作原理 (4)2. 光电二极管的特性与参数 (4)三、光电二极管检测电路的工作原理 (6)1. 光电检测电路的基本概念 (7)2. 光电检测电路的工作原理详解 (7)四、设计方案 (9)1. 设计目标及要求 (10)2. 电路设计 (11)(1)电路拓扑结构 (12)(2)元器件选择与参数设计 (13)3. 信号处理与放大电路 (15)(1)信号输入与处理电路 (16)(2)信号放大电路 (17)4. 电源及辅助电路设计 (18)(1)电源电路设计 (20)(2)保护及指示电路设计 (21)五、实验验证与优化 (22)1. 实验设备与工具准备 (23)2. 实验操作流程及步骤说明 (24)3. 数据记录与分析处理 (25)4. 电路性能评估与优化建议 (26)六、实际应用场景及推广价值 (27)1. 实际应用场景分析 (28)2. 推广价值及市场前景展望 (29)七、总结与展望 (30)一、内容描述光电二极管检测电路是一种基于光电效应工作的电子检测电路,主要用于检测光信号的强度或光照度。

该电路通过光电二极管将光信号转换为电信号,进而实现对光信号的测量、监控和控制。

本文将详细介绍光电二极管检测电路的工作原理及设计方案。

在光电二极管检测电路中,光电二极管作为核心元件,其工作原理主要基于光电效应。

当光线照射到光电二极管时,光子能量被材料中的电子吸收,从而使电子从价带跃迁到导带,形成电子空穴对,产生光生电流。

通过测量光生电流的大小,可以反映光照度的强弱。

根据不同的应用场景和需求,光电二极管检测电路的设计方案也有所不同。

常见的设计方案包括:直接测量法:通过测量光电二极管产生的光生电流来直接反映光照度。

这种方法简单直观,但受限于光电二极管的响应速度和灵敏度,适用于低光照度测量。

信号放大法:通过对光电二极管产生的光生电流进行放大处理,可以提高测量灵敏度和精度。

光电仪器设计课程设计

光电仪器设计课程设计

光电仪器设计课程设计一、教学目标本课程旨在让学生掌握光电仪器设计的基本原理和方法,培养学生运用光电知识解决实际问题的能力。

通过本课程的学习,学生将能够:1.了解光电仪器的基本原理和组成;2.掌握光电检测、信号处理和显示技术;3.学会光电仪器的设计方法和步骤;4.能够运用所学知识解决实际光电仪器设计问题。

同时,培养学生团队合作、创新意识和工程实践能力,提高学生对光电仪器的兴趣和热情。

二、教学内容本课程的教学内容主要包括光电仪器的基本原理、光电检测技术、信号处理和显示技术、光电仪器的设计方法和步骤。

具体包括以下几个部分:1.光电仪器的基本原理:光的传播、光电效应、光的检测;2.光电检测技术:光电探测器、信号处理电路、显示技术;3.光电仪器的设计方法和步骤:设计原理、设计方法、设计实践;4.光电仪器案例分析:分析实际光电仪器的工作原理和设计方法。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法、实验法等。

1.讲授法:通过讲解光电仪器的基本原理和设计方法,使学生掌握光电仪器的理论知识;2.讨论法:学生进行小组讨论,培养学生的团队合作能力和创新意识;3.案例分析法:分析实际光电仪器的设计案例,使学生了解光电仪器的实际应用;4.实验法:进行光电仪器的设计和实验,培养学生运用所学知识解决实际问题的能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用《光电仪器设计》作为主教材,系统介绍光电仪器的理论知识;2.参考书:推荐《光电检测技术》、《信号处理与显示》等参考书,供学生深入学习;3.多媒体资料:制作光电仪器设计的PPT、视频等多媒体资料,帮助学生更好地理解光电仪器的原理和设计方法;4.实验设备:准备光电仪器设计所需的实验设备和器材,进行实际操作和实验。

五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分,以保证评估的客观性和公正性,全面反映学生的学习成果。

硅光二极管光电检测电路的研究与设计_郑培超

硅光二极管光电检测电路的研究与设计_郑培超
[11 ]
文从硅光二极管光电检测电路线性响应和噪声特性 2 个方面, 对微弱光电检测中电路结构形式和器件 芯片选择的相关要求做了详细分析, 并应用新 PIN 型硅光二极管型探测器件 DET36A 搭配低噪声、 高 增益的 ICL7650 芯片, 设计测试了一种结构简单、 输 出特性优良的光电检测电路, 且实验测试表明, 在搭 该检测电路可方便应 配一个凸透镜做聚光处理后, 用于微弱光检测工程环境。
[9 ]

图1 Fig. 1
硅光二极管等效检测电路结构
载尽量满足 R L = 0 才能保证检测电路输出端具有良 好的线性响应。因此, 根据运放电路正常工作时输 “虚短” 特性, 可将硅光二极管跨接于运放电路 入端 正反相输入端, 其检测电路原理图如图 2 所示。 图 2 中, R f 为反馈电阻; C f 为反馈电容, 并联在 R f 两 端, 可有效防止因 R f 过大而引起的检测电路自激,
Abstract: In order to meet the requirement of light signal detection with higher precision, the linear response and noise characteristics of photoelectric detection circuit using silicon photodiode was analyzed,and the basic requirements of the related devices selection and the form of circuit design was suggested. The silicon photodiode detector( DET36A) and operational amplifier chip with low noise and high precision ( ICL7650 ) were used to design a simple photoelectric detection circuit for weak light environment. The experiment result shows that the circuit has the characteristics of low noise and good linear response with the weak light intensity in the ranger of 0. 1 ~ 10Lux. Key words: silicon photodiode; low noise; linearity; ICL7650

最新光电实验报告.

最新光电实验报告.

最新光电实验报告.
在本次光电实验中,我们探究了光电效应的基本原理及其在现代科技中的应用。

实验的主要目的是验证爱因斯坦的光电效应理论,并测量光电子的动能与入射光频率之间的关系。

实验开始前,我们首先搭建了光电实验装置,包括光电管、光源、电压源和电流计。

光电管内部涂有高灵敏度的光电材料,能够将入射光子的能量转换为电子的动能。

光源选用了一系列不同波长的单色光,以便我们能够观察不同频率光对光电效应的影响。

实验过程中,我们调整了光源的强度和电压源的偏压,记录了不同条件下的电流计读数。

通过改变入射光的频率,并保持其他条件不变,我们得到了一系列的电流-电压(I-V)特性曲线。

数据分析阶段,我们将实验数据与爱因斯坦的光电效应公式进行了对比。

根据公式,光电子的最大动能应与入射光的频率成正比,与光强度无关。

我们的实验结果与理论预测相符,证明了光电效应的量子性质。

此外,我们还观察到,在一定的偏压下,电流随光强度的增加而增加,这表明了光电效应的饱和现象。

在实验的最后部分,我们探讨了光电效应在实际应用中的潜力,例如在太阳能电池和光电探测器中的作用。

我们还讨论了如何通过改进光电材料和设计来提高光电转换效率。

总结来说,本次实验不仅加深了我们对光电效应理论的理解,而且通过实践操作提高了我们的实验技能。

通过分析和讨论,我们也对光电技术的未来发展趋势有了更清晰的认识。

光电检测与显示实验六 面阵CCD应用实验:总结 计划 汇报 设计 可编辑

光电检测与显示实验六 面阵CCD应用实验:总结 计划 汇报 设计 可编辑
(一)面阵CCD原理及驱动实验
一、实验目的
1.掌握面阵CCD实验仪的基本操作和各个部件的功能;
2.掌握隔列转移型面阵CCD的基本工作原理;
3.掌握面阵CCD各路驱动脉冲波形及其所涉及部分的功能;
4.掌握面阵CCD输出的视频信号与PAL电视制式的关系。
二、实验仪器
1.带宽50MHz以上双踪迹(或四踪迹)同步示波器一台;
实验6面阵CCD应用技术实验
面阵CCD图像传感器主要用于采集物体图像信息。它所包含的内容很多,其中能够按PAL电视制式(或其他电视制式)形成视频电视信号的常被称为面阵CCD摄像头。面阵CCD实验指导主要针对面阵CCD摄像头展开的,通过对它的驱动波形分析使学生掌握面阵CCD的基本工作原理和特性。然后展开它的应用实验和如何与现代的计算机技术结合起来为机器安装“眼睛”与“大脑”。为达到利用面阵CCD完成“电眼”功能,还需要掌握有关《图像数字处理》方面的有关内容,为此实验指导增设了一些图像数字处理最为基础的实验内容。通过这些内容的学习能够使学生大体了解如何将面阵CCD摄像头输出的视频信号转变为数字图像,又如何从数字图像中提取出有用的信息。
2.YHACCD-Ⅲ型彩色面阵CCD多功能实验仪一台。
三、实验内容及步骤
1、开机过程
1)将被测的标准图片如图3-1所示,安装在“被测物夹持架”上,将USB接口线正确连接到计算机上;
2)打开计算机的电源开关,并确认YHACCD-Ⅲ型彩色面阵CCD实验仪的“面阵CCD尺寸测量实验”软件已经安装;
3)将外置面阵CCD摄像机的镜头盖打开;
3.面阵CCD行、场自扫描电视制式的测量;
4.视频输出信号的测量。
四、实验步骤
1)实验准备
①首先将示波器地线与实验仪上的地线连接好,并确认示波器的电源和实验仪的电源插头均已插在交流220V插座上;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电检测技术
实验报告
题目:光电报警系统的设计和制作学院:仪器科学与光电工程学院专业:测控技术与仪器
班级:
学生姓名:
指导老师:
实验三 光电报警系统的设计和制作
一、设计任务
红外报警器系统的原理框图如图1所示。

由红外光源发出的红外辐射被红外探测器接收,红外辐射信号变为电信号,经信号放大和处理电路后送报警电路。

系统分成发送和接收两部分,分开放置。

当没有人和物体进入这两部分之间,红外辐射没有被阻挡时,报警处于不报警状态。

一旦有人或物体进入这两部分之间。

红外辐射被阻挡,报警器立即翻转到报警状态。

图1 红外报警器系统原理框图
二、设计方案
(1)发射端电路
用NE555组成振荡器来驱动发光管,NE555构成多谐振荡器原题图如图2所示。

下面对照电路图简述其工作原理及参数选择。

图2 多谐振荡器
注:1地 GND 2触发 3输出 4复位 5控制电压 6门限(阈值) 7放电 8电源电压Vc
当3脚为高电平(略低于Vc 时),输出电压将通过R1对C1充电。

A 点电压按指数规律上升,时间常数为R1C1。

当A 点电压上升到上限阙值电压(约2Vc/3时),定时器输出翻转成低电平
555振荡电路红外发射信号放大红外接收比较报警输出
红外光
(略大于0V)。

这时,A点电压将随C1放电而按指数规律下降。

当A点下降到下限阙值电压(约Vc/3)时,定时器输出变成高电平,调整R2的阻值得到严格的方波输出。

用NE555组成振荡器来驱动发光管时,要注意发光管上串联一个限流电阻。

使输出电流小于或等于发光管的最大正向电流
F
I。

若振荡器输出电压为Vo,则
限流电阻R取值为F F
O I V
V R -
≥。

如果限流电阻低于上述公式所得值,或未加限流电阻,则会造成发光管和定时器烧毁。

D2
LED
图3 振荡发射电路原理图
(2)光电检测、比较报警电路
D4
LED
R8
500
图4 光电检测放大器电路原理图比较报警电路的设计利用光敏二极管的反向特性,当接收到光信号时,光敏二极管导通良好,产生电压,放大器即可对信号处理;当没有接收到光信号时,光敏二极管截止,放大器的同相端电压几乎为0。

利用1/2LF353构成的光放大器,如图所示。

用1/2LF353构成一个比较放大器。

放大器的正端加2V左右偏压,负端加信号电压。

当光线未阻断时,从主放大器来的交流信号经二极管检波电路,再经低通滤波器后得到直流电压,使后面的放大器负载输入端电位大于(或等于)正输入端电位。

则放大器输出电压近似为0,LED管截止,不发光。

当光线被阻断时,信号消失,光放大器只有正端加正电压,输出为正电压,LED指示管导通发出黄色光以示报警。

电阻R8是LED限流电阻。

三、调试过程及结果
(1)调试的过程
①检查用到的集成电路的电源端的电压是否正常(+5V、-5V、GND)注意面包板的是否接收良好,如果断路,用导线连接。

②测量NE555电路的输出端(第3脚为输出端),看是否有振荡波形输出(矩形波),如果没有,说明振荡电路有故障。

③测量光电二极管的两端看是否接收到信号(用示波器查看LF353的第2脚和第5脚信号),如果发射正常时没有信号,检查光电二极管是否处于反向偏置状态或者损坏。

④检测光电放大器的输出波形,确定这级的正确性。

⑤看比较报警电路的反向端的电压在光线阻挡和无阻挡的时候是否正常。

⑥测量输出是否正常。

(2)调试结果
根据各关键节点的理论计算,逐步判断各关键节点的参数是否符合设计要求。

本设计中的关键节点有如下几个:555芯片3脚电压(输出电压)、放大器输出电压、比较器输出电压。

以上各关键节点的电压测试数据分别如图5-图8所示。

图5 NE555芯片3脚输出波形图图6 放大器输出电压波形图
图7 比较器输出电压1 图8 比较器输出电压2
四、实验总结
通过本次光电设计实验,使我对光电知识的实际应用有了更深刻的理解和体会,这次课程设计,不仅提高了我的动手能力,使我对设计的整个流程有了一定的了解,更使我了解光电知识应用的广泛性和前景。

此次设计使得我清楚了一项设计的整体流程:明确设计要求,功能及功能模块的设计,查阅相关资料和确定元器件,电路连接、调试、调整改进与检查,电路成型,总结。

电路的连接和调试极大的提高了我的动手实践能力,这也是目前我最缺乏的。

调试过程中,使我明白动手的重要性,实践出真知。

总之,这次设计,使我认识到了自己知识的局限性,培养了我们的动手能力,并使我们体会到了成功的感觉,对我们今后的学习起到了极大的促进作用。

四、附录
(1)光电报警原理图
U1NE555
OUT
3
RST 4VCC 8G N D
1
CV 5TRG 2THR 6DSCHG 7
C3104
+5V
C1104
R1
5.7K
R25.7K
R3
100
-
+U2A LF353
321
8
4
-+U2B LF353
56
78
4
+5V
-5V
-5V
R7
1K
R4100K
C2104
R52.2K
R65.7K
+5V
D32CU2B
-5V
+5V
D14007
附图 1
(2)课程设计实物图
红外发射电路红外接收及报警电路
附图 2
(3)元器件清单
器件名称规格单位数量
NE555 NE555 个 1
LF353 LF353 个 1 红外发光二极管BT401 个 1
光电二极管2CU2B 个 1
整流二极管4007 个 1 电容104 个 2 发光二极管LED 普遍发光二极管LED 个 1 电阻 5.6K 个 3
电阻100 个 1
电阻 2.2K 个 1
电阻100K 个 1
电阻1K 个 1
电阻500 个 1
附表 1。

相关文档
最新文档