【高考模拟】广东省2018届高三第一次模拟考试文数试题Word版含答案

合集下载

广东省惠州市2018届高三第一次调研考试数学(理)试题(WORD版,含解析)

广东省惠州市2018届高三第一次调研考试数学(理)试题(WORD版,含解析)

惠州市2018届高三第一次调研考试数 学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.(1)已知集合{|12}M x x =-≤≤,{|2}xN y y ==,则M N =I ( ) A .(0,2] B .(0,2) C .[0,2]D .[2,)+∞(2)已知a 是实数,i1i-+a 是纯虚数,则a =( ) A. 1 B. -D.(3)从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是( ) A .6 B .8C .10D .12(4)已知定义域为R 的偶函数()f x 在(,0]-∞上是减函数,且(1)2f =,则不等式2(log )2f x >的解集为( )A. (2,)+∞ B . 1(0,)(2,)2+∞U C. (0,)2+∞U D .)+∞ (5)点()y x P ,为不等式组⎪⎩⎪⎨⎧≥-+≤-+≥--012083022y x y x y x 所表示的平面区域上的动点,则x y 最小值为( )A .21- B . 2- C . 3- D . 31-(6)设命题p :若定义域为R 的函数()f x 不是偶函数,则x R ∀∈,()()f x f x -≠. 命题q :()||f x x x =在(,0)-∞上是减函数,在(0,)+∞上是增函数.则下列判断错误..的是( ) A .p 为假 B .q 为真 C .p ∨q为真 D. p ∧q 为假(7) 已知函数()3cos()(0)3f x x πωω=+>和()2sin(2)1g x x ϕ=++的图象的对称轴完全相同,若[0,]3∈x π,则()f x 的取值范围是( )A.[3,3]-B.3[,3]2- C.33[3,]2-D.3[3,]2-(8)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是1(0,0,0),(1,0,1,(0,1,1),(,1,0)2),绘制该四面体三视图时, 按照如下图所示的方向画正视图,则得到左视图可以为( )(9)三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用⨯2勾⨯股+()2勾—股⨯=4朱实+黄实=弦实,化简得:勾+股=弦.设勾股形中勾股比为3:1,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )()732.13≈A .866B .500C .300D .134(10)已知函数()x f y =的定义域为R ,且满足下列三个条件:① 对任意的[]84,21,∈x x ,当21x x <时,都有()()02121>--x x x f x f 恒成立;② ()()x f x f -=+4③ ()4+=x f y 是偶函数;若()()()2017116f c f b f a ===,,,则c b a ,,的大小关系正确的是( ) A. c b a << B. c a b << C. b c a << D. a b c <<(11)已知三棱锥S ABC -,ABC ∆是直角三角形,其斜边8,AB SC =⊥平面,6ABC SC =,则三棱锥的外接球的表面积为( )A . 64πB .68π C. 72π D .100π(12)已知12,F F 分别是双曲线22221(,0)y x a b a b-=>的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段12F F 为直径的圆内,则双曲线离心率的取值范围是( )A .(1, 2)B .(2, +∞)C .(1,2)D .(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分。

广东省揭阳市2018届高三高考第一次模拟考试数学理

广东省揭阳市2018届高三高考第一次模拟考试数学理
绝密★启用前
揭阳市 2018 年高中毕业班高考第一次模拟考试
数学 (理科 )
本试卷共 4 页,满分 150 分.考试用时 120 分钟.
注意事项:
1. 本试卷分第 Ⅰ 卷(选择题)和第 Ⅱ 卷(非选择题)两部分 . 答题前,考生务必将自己的姓名、
准考证号填写在答题卡上 .
2. 回答第 Ⅰ 卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改
· 2·
2
x 3} ,则 A I B
( A ) ( , 3)
(B ) (3, )
2
( 2)已知复数 z 3 i ,则 z
( C) [ 3 , 3 )
(D) ( , 6 )
(A )4
(B)6
( C) 8
(D ) 10
( 3)已知向量 a x ,1 , b 1, 2 ,若 a b ,则 a b
(A) (2, 0)
(B ) (3, 1)
( C) (3,1)
(D ) ( 1, 3 )
( 4)一个圆柱形水桶,底面圆半径与高都为 2(桶底和桶壁厚度不计) ,装满水后,发现桶中有一个
随处悬浮的颗粒,用一个半径为 1 的半球形水瓢(瓢壁厚度不计)从水桶中舀满水,则该颗粒
被捞出的概率为
1
(A)
12
1
(B)
6
1
( C)
4
1
-1 1 x
-1 1 x
-1 1 x
-1 1 x
(A) ( 8)已知两条直线 l 1 : x
面积为
(B)( C)Fra bibliotek(D )
3 y 2 0 与 l 2 : x 3 y 6 0 被圆 C 截得的线段长均为 2 ,则圆 C 的

广东省化州市2018届高三上学期第一次高考模拟考试数学(理)试题含答案

广东省化州市2018届高三上学期第一次高考模拟考试数学(理)试题含答案

广东省化州市2018届高三第一次高考模拟考试理 科 数 学本试卷6页,23小题,满分150分。

考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

将条形码横贴在答题卡相应的“条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效. 4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数231i i -⎛⎫= ⎪+⎝⎭A. 34i -- B 。

34i -+ C 。

34i - D 。

34i +(2)设集合(){}2log 2A x y x ==-,{}2|320B x x x =-+<,则AB =A 。

(,1)-∞B. (,1]-∞ C 。

(2,)+∞ D. [2,)+∞(3)下列有关命题的说法正确的是A 。

命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠"。

B 。

“1x =-"是“2560x x --=”的必要不充分条件.C 。

命题“x ∃∈R ,使得210x x ++<”的否定是:“x ∀∈R ,均有210x x ++<"。

D 。

命题“若x y =,则sin sin x y =”的逆否命题为真命题. (4)已知等比数列{}n a 的公比q =,316,a =则其前2017项和2017S =A 。

201824- B 。

201822- C 。

广东省高三第一次模拟考试理数试题Word版含答案

广东省高三第一次模拟考试理数试题Word版含答案

2018年普通高等学校招生全国统一考试广东省理科数学模拟试卷(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|111,|1A x x B x x =-<-<=<,则AB =( )A .{}|1x 1x -<<B .{}|01x x <<C .{}|1x x <D .{}|02x x << 2.设复数()4z a i a R =+∈,且()2i z -为纯虚数,则a = ( ) A .-1 B . 1 C . 2 D .-23. 下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )A .320 B .325π C .325 D .20π4. 已知函数()f x 满足332x f x x ⎛⎫=- ⎪⎝⎭,则函数()f x 的图象在1x =处的切线斜率为( )A .0B . 9 C. 18 D .275. 已知F 是双曲线()2222:10,0x y C a b a b-=>>的一个焦点,点F 到C 的一条渐近线的距离为2a ,则双曲线C 的离心率为( )A ..2 6. ()5112x x x ⎛⎫++ ⎪⎝⎭的展开式中,3x 的系数为( ) A . 120 B .160 C. 100 D .807. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .488π+B .968π+ C. 9616π+ D .4816π+ 8.已知曲线:sin 23C y x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是 ( ) A .把C 向左平移512π个单位长度,得到的曲线关于原点对称 B .把C 向右平移6π个单位长度,得到的曲线关于y 轴对称 C. 把C 向左平移3π个单位长度,得到的曲线关于原点对称D .把C 向右平移12π个单位长度,得到的曲线关于y 轴对称9. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入( )A .n 是偶数,100n ≥B .n 是奇数,100n ≥ C. n 是偶数,100n > D .n 是奇数,100n > 10.在ABC ∆中,角,,C A B 所对的边分别为,,a b c ,若3A π=,且2sin 2sin b B c C bc +=,则ABC ∆的面积的最大值为( )A11.已知抛物线2:,C y x M =为x 轴负半轴上的动点,,MA MB 为抛物线的切线,,A B 分别为切点,则MA MB 的最小值为 ( ) A .116-B .18- C. 14- D .12- 12.设函数()1222,21130,2x x f x x x x +⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数,,,a b c d 满足()()()()f a f b f c f d ===,则2222a b c d +++的取值范围是 ( )A.()2,146 B .()98,146C. ()2,266 D .()98,266 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知单位向量12,e e 的夹角为30°,则123e e -= .14.设,x y 满足约束条件6456543x y x y x y -≤⎧⎪+≤⎨⎪+≥⎩,则z x y =+的最大值为 .15.已知000sin10cos102cos140m +=,则m = .16.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为,,,,O E F G H 为圆O 上的点,,,,ABE BCF CDG ADH ∆∆∆∆分别是以,,,AB BC CD DA 为底边的等腰三角形.沿虚线剪开后,分别以,,,AB BC CD DA 为折痕折起,,CDG,ADH ABE BCF ∆∆∆∆,使得,,,E F G H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知公差不为零的等差数列{}n a 满足15a =,且3611,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设13n n n b a -=,求数列{}n b 的前n 项和n S .18.“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下: 3000 6000800010000 1规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”. (1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X 表示随机抽取3人中被系统评为“积极性”的人数,求()2P X ≤和X 的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x ;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y ;求x y >的概率.19.如图,在直角梯形ABCD 中,//,AD BC AB BC ⊥,且24,,B C A D E F==分别为线段,AB DC 的中点,沿EF 把AEFD 折起,使AE CF ⊥,得到如下的立体图形.(1)证明:平面AEFD ⊥平面EBCF ;(2)若BD EC ⊥,求二面角F BD C --的余弦值.20.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且C过点⎛ ⎝⎭. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于,P Q 两点(点,P Q 均在第一象限),l 与x 轴,y 轴分别交于,M N 两点,且满足2222PMO QMOPNO QNOPMO QMOPNO QNOS S S S S S S S ∆∆∆∆∆∆∆∆++=(其中O 为坐标原点).证明:直线l 的斜率为定值.21. 已知函数()()()2ln 1xf x x e a x x =-+-+.(1)讨论()f x 的导函数()f x '零点的个数; (2)若函数()f x 的最小值为e -,求a 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆()()221:2420C x y -+-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,()2:3C R πθρ=∈.(1)求1C 的极坐标方程和2C 的平面直角坐标系方程; (2)若直线3C 的极坐标方程为()6R πθρ=∈,设2C 与1C 的交点为O M 、,3C 与1C 的交点为O N 、,求OMN ∆的面积. 23.【选修4-5:不等式选讲】已知函数()()331,412f x x a x g x x x =-++=--+. (1)求不等式()6g x <的解集;(2)若存在13,x x R ∈,使得()1f x 和()2g x 互为相反数,求a 的取值范围.试卷答案一、选择题1-5:BDACC 6-10: ABDDC 11、12:AB 二、填空题13. 1 14. 2 15.三、解答题17.解:(1)设等差数列{}n a 的公差为d ,因为3611,,a a a 成等比数列,所以26311a a a =,即()()()21115210a d a d a d +=++,化简得1520d a -=,又15a =,所以2d =,从而23n a n =+. (2)因为()1233n n b n -=+,所以()0121537393233n n S n -=⨯+⨯+⨯+++, 所以()1233537393233n n S n =⨯+⨯+⨯+++, 以上两个等式相减得()()133********n n n S n ---=+⨯-+,化简得()131nn S n =+-.18.解:(1)被系统评为“积极性”的概率为3033,3,5055X B ⎛⎫= ⎪⎝⎭.故()3398215125P X ⎛⎫≤=-= ⎪⎝⎭,X 的数学期望()39355E X =⨯=; (2)“x y >”包含“3,2x y ==”,“ 3,1x y ==”,“ 3,0x y ==”,“ 2,1x y ==”,“ 2,0x y ==”,“ 1,0x y ==”,()3242326413,y 230C C P x C C ===⨯=,()311422326423,115C C C P x y C C ===⨯=,()3042326413,130C C P x y C C ===⨯=,()210422326412,110C C C P x y C C ===⨯=,()210422326412,010C C C P x y C C ===⨯=,()122422326411,030C C C P x y C C ===⨯=,所以()121211113015305103015P x y >=+++++=. 19.(1)证明:由题可得//EF AD ,则AE EF ⊥, 又AE CF ⊥,且EFCF F =,所以AE ⊥平面EBCF .因为AE ⊂平面AEFD ,所以平面AEFD ⊥平面EBCF ; (2)解:过点D 作//DG AE 交EF 于点G ,连结BG ,则DG ⊥平面EBCF ,DG EC ⊥, 又,BD EC BD DG D ⊥=,所以EC ⊥平面,BDG EC BG ⊥,易证EGBBEC ∆∆,则EG EBEB BC=,得EB = 以E 为坐标原点,EB 的方向为x 轴的正方向,建立如图所示的空间直角坐标系E xyz -,,则()(()(()0,3,0,,,A ,F D C B .故()()()(22,2,22,0,1,22,0,4,0,22,BD FD BCCD =-=-==--,设(),,n x y z =是平面FBD 的法向量,则22200n BD x y n FD y ⎧=-++=⎪⎨=-+=⎪⎩,令1z =,得()3,22,1n =,设(),,m a b c =是平面BCD 的法向量,则40220m BC b m CD b ⎧==⎪⎨=--+=⎪⎩,令1a =,则()1,0,1m =, 因为2cos ,318n m n m n m===,所以二面角F BD C --的余弦值为23.20.解:(1)由题意可得2221314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得21a b =⎧⎨=⎩,故椭圆C 的方程为2214x y +=; (2)由题意可知直线l 的斜率存在且不为0,故可设直线l 的方程为()0y kx m m =+≠,点,P Q 的坐标分别为()()1122,,,x y x y , 由12121111,,,2222PMO QMO PNO QNO S MO y S MO y S NO x S NO x ∆∆∆∆====, 化简得222212121212y y x x y y x x ++=,()()222222121212121212121222,y y x x y y x x y y x x y y x x --++-=-=,即21212y yk x x =, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得()()222148410k x kmx m +++-=,则()()()222222641614116410k m kmk m ∆=-+-=-+>,且()2121222418,1414m kmx x x x k k--+==++, 故()()()2212121212y y kx m kx m k x x km x x m =++=+++,因此()2212122121212k x x km x x m y y k x x x x +++==,即22228014k m m k -+=+, 又0m ≠,所以214k =,又结合图象可知,12k =-,所以直线l 的斜率为定值.21.解:(1)()()()()()11110xxx xe a f x x e a x x x --⎛⎫'=-+-=> ⎪⎝⎭,令()()()()0,10xxg x xe a x g x x e '=->=+>,故()g x 在()0,+∞上单调递增,则()()0g x g a >=-,因此,当0a ≤或a e =时,()f x '只有一个零点; 当0a e <<或a e >时,()f x '有两个零点;(2)当0a ≤时,0x xe a ->,则函数()f x 在1x =处取得最小值()1f e =-, 当0a >时,则函数x y xe a =-在()0,+∞上单调递增,则必存在正数0x , 使得000x x e a -=,若a e >,则01x >,函数()f x 在()0,1与()0,x +∞上单调递增,在()01,x 上单调递减, 又()1f e =-,故不符合题意.若a e =,则()01,0x f x '=≥,函数()f x 在()0,+∞上单调递增, 又()1f e =-,故不符合题意.若0a e <<,则001x <<,设正数()10,1eab e--=∈,则()()()12ln 1ln 1e ba e fb b e a b b a e b a b e ab e a --⎛⎫⎛⎫=-+-+<-+=--=--<- ⎪ ⎪⎝⎭⎝⎭,与函数()f x 的最小值为e -矛盾, 综上所述,0a ≤,即(],0a ∈-∞.22.解:(1)因为圆1C 的普通方程为22480x y x y +--=, 把cos ,sin x y ρθρθ==代入方程得24cos 8sin 0ρρθρθ--=, 所以1C 的极坐标方程为4cos 8sin ρθθ=+,2C 的平面直角坐标系方程为y ;(2)分别将,36ππθθ==代入4cos 8sin ρθθ=+,得1224ρρ=+=+则OMN ∆的面积为((124sin 8236ππ⎛⎫⨯+⨯+⨯-=+ ⎪⎝⎭23.解:(1)由题意可得()33,2151,24133,4x x g x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩,当2x ≤-时,336x -+<,得1x >-,无解;当124x -<<时,516x --<,得75x >-,即7154x -<<; 当14x ≥时,336x -<,得134x ≤<,综上,()6g x <的解集为7|35x x ⎧⎫-<<⎨⎬⎩⎭. (2)因为存在12,x x R ∈,使得()()12f x g x =-成立, 所以(){}(){}|,|y g ,y y f x x Ry x x R =∈=-∈≠∅,又()()()331333131f x x a x x a x a =-++≥--+=+, 由(1)可知()9,4g x ⎡⎫∈-+∞⎪⎢⎣⎭,则()9,4g x ⎛⎤-∈-∞ ⎥⎝⎦,所以9314a +≤,解得1351212a -≤≤. 故a 的取值范围为135,1212⎡⎤-⎢⎥⎣⎦.。

广东省2018届高三第一次模拟考试数学(理)试题 Word版含解析

广东省2018届高三第一次模拟考试数学(理)试题 Word版含解析

2018年普通高等学校招生全国统一考试广东省理科数学模拟试卷(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合)B. C.【答案】BB.2. ()A. -1B. 1C. 2D. -2【答案】D【解析】为纯虚数,,解得,故选D.3. 下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()【答案】A【解析】根据圆的面积公式以及几何概型概率公式可得,此点取自黑色部分的概率是A.4. 已知函数,则函数的图象在)A. 0B. 9C. 18D. 27【答案】C数的几何意义可得函数的图象在 C.5. 的一个焦点,则双的离心率为()【答案】C,C.6. 的展开式中,的系数为()A. 120B. 160C. 100D. 80【答案】A的展开式中含的项为的系数为故选A.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.7. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()【答案】B【解析】由三视图可知,该几何体为一个长方体截去了两个半圆柱而形成的,则该几何体的B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8. 已知曲线()A. 向左平移个单位长度,得到的曲线关于原点对称B. 个单位长度,得到的曲线关于C.D.【答案】D【解析】对于选项轴对称,故选D.9. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,中,可以先后填入()是偶数,是偶数,【答案】DD.10.的面积的最大值为()D.【答案】C,由余弦定理可得,解得,所以11. 轴负半轴上的动点,()【答案】A,根据导数的几何意义可得,故的最小值为 A.12. 设函数,若互不相等的实数满足,则的取值范围是()B. C.【答案】B【解析】,则,故选B.【方法点睛】本题主要考查分段函数的图象与性质、指数与对数的运算以及数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. .【答案】114. __________.【答案】2【解析】过点取得最大值,此时【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. .可得,案为.16..沿虚线剪为折痕折起个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【解析】如图,交,重合于点倍,设该四棱锥的外接球的球心,三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. .(1)求数列(2【答案】【解析】试题分析:(1;(2)结合(1.试题解析:(1(2.【方法点睛】本题主要考查等差数列的通项、等比数列的求和公式以及错位相减法求数列的项和,属于中档题.一般地,如果数列是等差数列,求数列作差求解,”的表达式.18. “微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,抽取3.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到.【答案】【解析】试题分析:(1)根据古典概型概率公式可得被系统评为“积极性”的概率为(2“”,“ ”,“ ”,“ ”,“分别根据独立事件的概率公式求出六个互斥事件的概率,然后求和即可得到.试题解析:(1.的数学期望(2”包含“,,所以.19. 如图,在直角梯形中,折起,使.(1(2.【答案】(1)见解析【解析】试题分析:(1)由因(2)为坐标原点,.试题解析:(1,所以,所以平面(2)解:的方向为轴的正方向,建立如图所示的空间直角坐标系【方法点晴】本题主要考查利用空间向量求二面角,以及面面垂直的证明,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 已知椭圆(1)求椭圆的方程;(2)若直线均在第一象限)(其中.. 【答案】(1) ;(2)见解析.【解析】试题分析:(1、的方程组,求出、,即可得椭圆的方程;(2)达定理可得,进而可得结果.试题解析:(1,故椭圆(2)由题意可知直线的斜率存在且不为0,的方程为化简得,,即,消去,,所以,又结合图象可知,,所以直线.21. 已知函数.(1(2)若函数的最小值为.【答案】(1)见解析【解析】试题分析:(1)先求出,则至少存在一个零点,讨论的范围,利用导数研究函数的单调性,结合单调性与函数图象可得结果;(2)求出,分五种情况讨论的范围,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用函数的单调性,结合函数图象可排除不合题意的的范围,筛选出符合题意的的范围.试题解析:(1,故在上单调递增,,(2,则函数,则.,故不符合题意.与函数的最小值为矛盾,(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 【选修4-4:坐标系与参数方程】(1的极坐标方程和(2.【答案】(1)见解析【解析】试题分析:(1程;(2的几何意义,利用三角形面积公式可得结果.试题解析:(1(2)分别将的面积为23. 【选修4-5:不等式选讲】(1(2)若存在.【答案】【解析】试题分析:(1)对分三种情况讨论,取掉绝对值符号,分别求解不等式组,然后求(2集的定义列不等式求解即可.试题解析:(1,得,无解;,得,即时,,综上,(2,使得)可知,解得. 的取值范围为.。

2018届高三上第一次月考数学试题(文)含答案

2018届高三上第一次月考数学试题(文)含答案

2018届高三年级第一次质量检测试卷文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数3ii +(i 为虚数单位)的虚部是( ) A .110 B .110i C .310i D .310 2.已知{}(){}2|13,|ln M x x N x y x x=-<<==-,则M N ⋂=( )A .φB .{}|01x x <<C .{}|11x x -<<D .{}|13x x -<< 3.若函数()f x 为奇函数,当0x >时,()2log f x x =,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .-2 B .0 C .-1 D . 14.已知实数,x y 满足约束条件202201x y x y x -+≥⎧⎪++≥⎨⎪≤⎩,则32z x y =-的最小值是( )A .-6B .-3 C. 3 D .6 5.下列双曲线中,渐近线方程不是34y x =±的是( ) A .22114481x y -= B .2211832y x -= C. 221916y x -= D .22143x y -= 6.利用如图所示的程序框图在直角坐标平面上打印一系列的点,则打印的点落在坐标轴上的个数是( )A .0B .1 C. 2 D .37.三个数0.30.60.36,3,log 0.6a b c ===的大小顺序是( )A .b a c <<B .b c a << C. c b a << D .c a b << 8.如图是一个几何体的三视图,则该几何体的体积为( )A .14B .323C.16 D .8 9.将函数()()sin 22f x x πφφ⎛⎫=+<⎪⎝⎭的图象向左平移6π个单位后的图形关于原点对称,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值为( )A B .12 C. 12- D .10.已知0a b >>,则412a a b a b+++-的最小值为( )A . 6B . 4 C. .11.已知函数()210,2,x x af x x x x a+<⎧=⎨-≥⎩,若对任意的实数b ,总存在实数0x ,使得()0f x b =,则实数a 的取值范围是( )A .(]11,5-B .[]11,5- C. []11,4- D .(]11,4- 12.三个数,,a b c 成等比数列,若有1a b c ++=成立,则b 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦ B . 11,3⎡⎤--⎢⎥⎣⎦ C. [)11,00,3⎛⎤-⋃ ⎥⎝⎦ D .10,3⎡⎫⎪⎢⎣⎭二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题纸上)13.已知两个单位向量,a b的夹角为60°,()1c ta t b =+- ,若2b c = ,则t = . 14. ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知2cos cos cos a A a B b C =+.则A = .15.已知m R ∈,命题:p 对任意实数0x ≥,不等式233x e x m m +-≥-恒成立,若p ⌝为真命题,则m 的取值范围是 .16.设四面体的六条棱的长分别为1,1,1,1a ,且长为a 面,则a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知各项均为正数的等比数列{}n a 中,12314a a a ++=,34=64a a . (1)求数列{}n a 的通项公式;(2)设()21n n b n a =-,求数列{}n b 的前n 项和n T .18. 在某大学自主招生考试中,所有选报II 类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为,,,,A B C D E 五个等级,某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(1)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(2)若等级,,,,A B C D E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(3)已知参加本考查测试的考生中,恰有两人的两科成绩均为A ,在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率. 19. 已知四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为菱形,02,60AD DAB =∠=,E 为AB 的中点.(1)证明:平面PAB ⊥平面PED ;(2)若PD =,求E 到平面PBC 的距离.20. 过抛物线()2:20C x py p =>的焦点F 作直线l 与抛物线C 交于,A B 两点,当点A 的纵坐标为1时,2AF =. (1)求抛物线C 的方程;(2)若直线l 的斜率为2,问抛物线C 上是否存在一点M ,使得MA MB ⊥,并说明理由. 21.已知函数()()1,xf x ax e a R =-∈.(1)讨论()f x 的单调区间;(2)当0m n >>时,证明:n mme n ne m +<+.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,直线l的参数方程为1222x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),又以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 极坐标方程为:24sin 4ρρθ-=,直线l 与曲线C 交于,A B 两点.(1)求直线l 的普通方程及曲线C 的平面直角坐标方程; (2)求线段AB 的长. 23.已知函数()f x x a =-.(1)若不等式()3f x ≤的解集为{}|15x x -≤≤,求实数a 的值;(2)在(1)的条件下,若()()5f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.试卷答案一、选择题1-5:DBCAD 6-10: BDCDA 11、12:BC二、填空题13. -2 14.3π15. ()(),12,-∞+∞ 16. ( 三、解答题17.解:(1)设等比数列的公比为q ,且0q >, ∵243648a a a =⇒= ,∴218a q =,又12314a a a ++=, ∴()2344002q q q q --=>⇒=,∴2n n a =;(2)由(1)知()21n n b n a =-,得()212nn b n =- ,故()()121121232232212n n n n T b b b n n -=+++=+++-+- ①∴()()23121232232212nn n T n n +=+++-+- ②①-②得:()()123122222212nn n T n +-=++++--, ∴()12326n n T n +=-+18.(1)3 (2)2.9 (3)1619.(1)证明:∵PD ⊥底面ABCD ,∴PD AB ⊥,连接DB ,在菱形ABCD 中,060DAB ∠=,∴DAB ∆为等边三角形, 又∵E 为AB 的中点,∴AB DE ⊥, ∴AB ⊥底面PDE ;(2)∵2AD =,∴PD = 在Rt PDC ∆中,4PC =,同理4PB =,利用平面几何知识可得PBC S ∆=EBC S ∆=, 设E 到平面PBC 的距离为h , 由P EBC E PBC V V --=得,1133EBC PBC S PD S h ∆∆= ,∴5h =20.暑假作业原题21.解:(1)()f x 的定义域为R ,且()()1xf x ax a e '=+-,①当0a =时,()0xf x e '=-<,此时()f x 的单调递减区间为(),-∞+∞.②当0a >时,由()0f x '>,得1a x a->-; 由()0f x '<,得1a x a-<-. 此时()f x 的单调减区间为1,a a -⎛⎫-∞-⎪⎝⎭,单调增区间为1,a a -⎛⎫-+∞ ⎪⎝⎭. ③当0a <时,由()0f x '>,得1a x a-<-; 由()0f x '<,得1a x a->-. 此时()f x 的单调减区间为1,a a -⎛⎫-+∞ ⎪⎝⎭,单调增区间为1,a a -⎛⎫-∞- ⎪⎝⎭. (2)当0m n >>时,要证:n mme n ne m +<+,只要证:()()11nmm e n e -<-,即证:11m n e e m n-->,(*) 设()1,0x e g x x x -=>,则()()211,0x x e g x x x -+'=>,设()()11xh x x e =-+,由(1)知()h x 在[)0,+∞上单调递增,所以当0x >时,()()00h x h >=,于是()0g x '>,所以()g x 在()0,+∞上单调递增, 所以当0m n >>时,(*)式成立, 故当0m n >> 时,n m me n ne n +<+.22.解:(1)由1222x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数)消去t ,得:直线l的普通方程为20y -+=,又将222,sin x y y ρρθ=+=代入24sin 4ρρθ-=得曲线C 的平面直角坐标方程为()2228x y +-=;(2)将1222x t y ⎧=-+⎪⎪⎨⎪=⎪⎩代入()2228x y +-=得:2240t t --=,设,A B 对应的参数分别为12,t t ,则12122,4t t t t +==- , 所以12AB t t =-==23.【解析】(1)由()3f x ≤得3x a -≤,解得33a x x -≤≤+,又已知不等式()3f x ≤的解集为{}|15x x -≤≤,所以3135a a -=-⎧⎨+=⎩,解得2a =.(2)当2a =时,()2f x x =-,设()()()5g x f x f x =++,于是()21,3235,3221,2x x g x x x x x x --<-⎧⎪=-++=-≤≤⎨⎪+>⎩,所以当3x <-时,()5g x >;当32x -≤≤时,()5g x =;当2x >时,()5g x >.综上可得,()g x 的最小值为5,从而若()()5f x f x m ++≥,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(],5-∞.。

2018年高三最新 广东省广州市2018届高三第一次模拟考

试卷类型:A广东省广州市2018届高三第一次模拟考试数学(理科)2018.3 本试卷共4页,21小题, 满分150分. 考试用时120分钟. 参考公式:球的体积公式343V R π=,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数()3i 1i - 的共轭复数....是 A .3i -+ B .3i -- C .3i + D .3i -2.设一地球仪的球心为空间直角坐标系的原点O ﹐球面上有两个点A ,B 的坐标分别为()1,2,2A ,()2,2,1B -,则AB =A .18B .12C.D.3.已知集合{}1,1A =-,{}10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为A .{}1-B .{}1C .{}1,1-D .{}1,0,1-4.若关于x 的不等式1x a -<的解集为()1,3,则实数a 的值为A .2B .1C .1-D .2- 5.已知p :直线a 与平面α内无数条直线垂直,q :直线a 与平面α垂直.则p 是q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2018年8月15日至 8月28日,全国查处酒后驾车和醉酒驾车共28800人,如图1是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为A .2160B .2880C .4320D .86407.在ABC △中,点P 在BC 上,且2BP PC =,点Q 是AC 的中点,若()4,3PA =,()1,5PQ =,则BC =A .()2,7-B .()6,21-C .()2,7-D .()6,21-8.如图2所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n()2n ≥,每个数是它下一行左右相邻两数 的和,如111122=+,111236=+,1113412=+,…,则第10行第4个数(从左往右数)为A .11260B .1840 C .1504D .1360二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.在等比数列{}n a 中,11a =,公比2q =,若{}n a 前n 项和127n S =,则n 的值为 .10.某算法的程序框如图3所示,若输出结果为12,则输入的实数x 的值 是________.(注:框图中的赋值符号“=”也可以写成 “←”或“:=”)11.有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为 .12.已知函数()()21,1,log , 1.aa x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为 .13.如图4,点O 为正方体ABCD A B C D ''''-的中心,点E 为面B BCC ''的中心,点F 为B C ''的中点,则空间四边形D OEF '在该正方体的面上的正投影可能是 (填出所有可能的序号).1112 1213 16 1314 112 112 1415 120 130 120 15图2(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图5,AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥,垂足为D ,且5AD DB =,设COD θ∠=, 则tan θ的值为 .15.(坐标系与参数方程选做题)在极坐标系中,已知两点A 、B 的极坐标分别为3,3π⎛⎫ ⎪⎝⎭,4,6π⎛⎫⎪⎝⎭,则△AOB (其中O 为极点)的面积 为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos cos sin f x x x ϕϕ=+(其中x ∈R ,0ϕπ<<). (1)求函数()f x 的最小正周期; (2)若函数24y f x π⎛⎫=+⎪⎝⎭的图像关于直线6x π=对称,求ϕ的值.17.(本小题满分12分)某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.18.(本小题满分14分)如图6,正方形ABCD 所在平面与圆O 所在平面相交于CD ,线段CD 为圆O 的弦,AE 垂直于圆O 所在平面,垂足E 是圆O 上异于C 、D 的点,3AE =,圆O 的直径为9. (1)求证:平面ABCD ⊥平面ADE ;(2)求二面角D BC E --的平面角的正切值.图5AB CDO ① ② ③ ④图4BCDE FOA 'B 'C 'D '19.(本小题满分14分)已知a ∈R ,函数()ln 1af x x x=+-,()()ln 1x g x x e x =-+(其中e 为自然对数的底数).(1)求函数()f x 在区间(]0,e 上的最小值;(2)是否存在实数(]00,x e ∈,使曲线()y g x =在点0x x =处的切线与y 轴垂直? 若存在,求出0x 的值;若不存在,请说明理由.20.(本小题满分14分)已知点()0,1F ,直线l :1y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP QF FP FQ =. (1)求动点P 的轨迹C 的方程;(2)已知圆M 过定点()0,2D ,圆心M 在轨迹C 上运动,且圆M 与x 轴交于A 、B两点,设1DA l =,2DB l =,求1221l l l l +的最大值.21.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且对任意的*n ∈N ,都有0n a >,n S =(1)求1a ,2a 的值;(2)求数列{}n a 的通项公式n a ;(3)证明:21221n n nn n n a a a +-+≥.2018年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.7 10 11.2312.(]2,3 13.①②③14.215.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵()()sin f x x ϕ=+,∴函数()f x 的最小正周期为2π. (2)解:∵函数2sin 244y f x x ππϕ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭, 又sin y x =的图像的对称轴为2x k ππ=+(k ∈Z ),令242x k ππϕπ++=+,将6x π=代入,得12k πϕπ=-(k ∈Z ).∵0ϕπ<<,∴1112πϕ=. 17.(本小题满分12分)(本小题主要考查随机变量的分布列、数学期望等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)解:设ξ表示摸球后所得的奖金数,由于参与者摸取的球上标有数字1000,800,600,0,当摸到球上标有数字0时,可以再摸一次,但奖金数减半,即分别为500,400,300,0.则ξ的所有可能取值为1000,800,600,500,400,300,0. 依题意得()()()110008006004P P P ξξξ======, ()()()()1500400300016P P P P ξξξξ========, 则ξ的分布列为所以所求期望值为()()1110008006005004003000416E ξ=++++++ 675=元.答:一个参与抽奖活动的人可得奖金的期望值是675元. 18.(本小题满分14分)(本小题主要考查空间线面关系、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:∵AE 垂直于圆O 所在平面,CD 在圆O 所在平面上,∴AE ⊥CD .在正方形ABCD 中,CD AD ⊥,∵AD AE A =,∴CD ⊥平面ADE . ∵CD ⊂平面ABCD ,∴平面ABCD ⊥平面ADE .(2)解法1:∵CD ⊥平面ADE ,DE ⊂平面ADE ,∴CD DE ⊥.∴CE 为圆O 的直径,即9CE =. 设正方形ABCD 的边长为a ,在Rt △CDE 中,222281DE CE CD a =-=-,在Rt △ADE 中,22229DE AD AE a =-=-,由22819a a -=-,解得,a =∴6DE ==.过点E 作EF AD ⊥于点F ,作FG AB 交BC 于点G ,连结GE ,由于AB ⊥平面ADE ,EF ⊂平面ADE , ∴EF AB ⊥. ∵AD AB A =,∴EF ⊥平面ABCD . ∵BC ⊂平面ABCD , ∴BC EF ⊥.∵BC FG ⊥,EF FG F =,∴BC ⊥平面EFG . ∵EG ⊂平面EFG , ∴BC EG ⊥.∴FGE ∠是二面角D BC E --的平面角.在Rt △ADE中,AD =3AE =,6DE =, ∵AD EF AE DE ⋅=⋅,∴AE DE EF AD ⋅===. 在Rt △EFG中,FG AB == ∴2tan 5EF EGF FG ∠==. 故二面角D BC E --的平面角的正切值为25. 解法2:∵CD ⊥平面ADE ,DE ⊂平面ADE , ∴CD DE ⊥.∴CE 为圆O 的直径,即9CE =. 设正方形ABCD 的边长为a ,在Rt △CDE 中,222281DE CE CD a =-=-,在Rt △ADE 中,22229DE AD AE a =-=-,由22819a a -=-,解得,a =∴6DE ==.以D 为坐标原点,分别以ED 、CD 所在的直线为x 轴、y轴建立如图所示的空间直角坐标系,则()0,0,0D ,()6,0,0E -,()0,C -,()6,0,3A -,[来源:]()6,B --.设平面ABCD 的法向量为()1111,,x y z =n ,GFxyz则110,0.DA DC ⎧=⎪⎨=⎪⎩n n即111630,0.x z -+=⎧⎪⎨-=⎪⎩ 取11x =,则()11,0,2=n 是平面ABCD 的一个法向量. 设平面BCE 的法向量为()2222,,x y z =n ,则220,0.EB EC ⎧=⎪⎨=⎪⎩n n即222230,60.z x ⎧-+=⎪⎨-=⎪⎩ 取22y =,则22,=n 是平面ABCD 的一个法向量.∵()(1212121,0,25,2,2cos ,===⋅n n n n n n , ∴12sin ,=n n . ∴122tan ,5=n n . 故二面角D BC E --的平面角的正切值为25.19.(本小题满分14分)(本小题主要考查函数与导数等知识,考查分类讨论,化归与转化的数学思想方法,以及推理论证能力和运算求解能力) (1)解:∵()ln 1a f x x x =+-,∴221()a x a f x x x x-'=-+=. 令()0f x '=,得x a =.①若a ≤0,则()0f x '>,()f x 在区间(]0,e 上单调递增,此时函数()f x 无最小值. ②若0a e <<,当()0,x a ∈时,()0f x '<,函数()f x 在区间()0,a 上单调递减, 当(],x a e ∈时,()0f x '>,函数()f x 在区间(],a e 上单调递增,所以当x a =时,函数()f x 取得最小值ln a .③若a e ≥,则()0f x '≤,函数()f x 在区间(]0,e 上单调递减, 所以当x e =时,函数()f x 取得最小值ae. 综上可知,当a ≤0时,函数()f x 在区间(]0,e 上无最小值;当0a e <<时,函数()f x 在区间(]0,e 上的最小值为ln a ; 当a e ≥时,函数()f x 在区间(]0,e 上的最小值为a e. (2)解:∵()()ln 1xg x x e x =-+,(]0,x e ∈,∴ ()()()()ln 1ln 11x xg x x e x e '''=-+-+()1ln 11ln 11x x x e x e x e x x ⎛⎫=+-+=+-+ ⎪⎝⎭. 由(1)可知,当1a =时,1()ln 1f x x x=+-. 此时()f x 在区间(]0,e 上的最小值为ln10=,即1ln 10x x+-≥. 当(]00,x e ∈,00x e>,001ln 10x x +-≥, ∴00001()ln 1110x g x x e x ⎛⎫'=+-+>⎪⎝⎭≥. 曲线()y g x =在点0x x =处的切线与y 轴垂直等价于方程0()0g x '=有实数解. 而()00g x '>,即方程0()0g x '=无实数解.故不存在(]00,x e ∈,使曲线()y g x =在点0x x =处的切线与y 轴垂直.20.(本小题满分14分)(本小题主要考查圆、抛物线、基本不等式等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1)解:设(),P x y ,则(),1Q x -,∵QP QF FP FQ =,∴()()()()0,1,2,1,2y x x y x +-=--. 即()()22121y x y +=--,即24x y =,所以动点P 的轨迹C 的方程24x y =.(2)解:设圆M 的圆心坐标为(),M a b ,则24a b =. ①圆M 的半径为MD =.圆M 的方程为()()()22222x a y b a b -+-=+-. 令0y =,则()()22222x a b a b -+=+-,整理得,22440x ax b -+-=. ② 由①、②解得,2x a =±. 不妨设()2,0A a -,()2,0B a +,∴1l =2l =∴22212122112l l l l l l l l ++==== ③当0a ≠时,由③得,1221l l l l +==.当且仅当a =± 当0a =时,由③得,12212l l l l +=. 故当a =±1221l l ll +的最大值为21.(本小题满分14分)(本小题主要考查数列、不等式、二项式定理等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识) (1)解:当1n =时,有11a S ==由于0n a >,所以11a =. 当2n =时,有2S=12a a +=,将11a =代入上式,由于0n a >,所以22a =.(2)解:由n S =得()23331212n n a a a a a a +++=+++, ①则有()23333121121n n n n a a a a a a a a ++++++=++++. ②②-①,得()()223112112n n n n a a a a a a a a ++=++++-+++,由于0n a >,所以()211212n n n a a a a a ++=++++. ③同样有()21212n n n a a a a a -=++++()2n ≥, ④③-④,得2211n n n n a a a a ++-=+.所以11n n a a +-=.由于211a a -=,即当n ≥1时都有11n n a a +-=,所以数列{}n a 是首项为1,公差为1的等差数列.故n a n =.(3)证明1:由于()0122331C C C C nn n n n x x x x +=++++, ()0122331C C C C nn n n n x x x x -=-+-+, 所以()()13355112C 2C 2C nnn n n x x x x x +--=+++.即()()33551122C 2C nnn n x x nx x x +---=++.令12x n =,则有11111022n nn n ⎛⎫⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭≥.即1111122n nn n ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭≥, 即()()()21221nnnn n n ++-≥故21221n n n n n n a a a +-+≥.证明2:要证21221n n n n n n a a a +-+≥,只需证()()()21221n n nn n n ++-≥,只需证1111122nnn n ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭≥,只需证1111122n nn n ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭≥.由于111122n nn n ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭23231230123111111C C C C C C C C 222222n n n n n n n n n n n n n n ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-++⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-- 351351112C C C 222n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦35351112C C 122n n n n ⎡⎤⎛⎫⎛⎫=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦≥. 因此原不等式成立.。

最新-2018年高三第一次模拟考试答案 精品

2018—2018年高三第一次模拟考试 数学试题参考解答及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.第(14)小题的第一个空2分、第二个空3分. (11)0.82 (12)3(13)320 (14)030 三、解答题(15)本小题主要考查等比数列的概念、通项公式及前n 项和公式等基本知识,考查运算求解能力.满分12分.解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得 181162a =,解得 12a =. …9分将12a =代入②得()21324213n=--,即 3243n=,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. …12分 (16)本小题主要考查三角函数的图象和性质等基本知识以及利用三角公式进行恒等变换的技能,考查运算求解能力.满分14分.解:(Ⅰ)()f x =22sin 2cos sin x x x +-=sin 2cos 2x x +…3分sin 2cos 222x x ⎫+⎪⎪⎭sin 2cos cos 2sin44x x ππ⎫+⎪⎭)4x π+. …7分(Ⅱ)列表如下:…3分…6分…14分(17)本小题主要考查空间线面关系,考查空间想像能力和推理论证能力.满分14分.证明:(Ⅰ)∵底面ABCD是正方形,∴BD⊥AC.…2分∵C1C⊥底面ABCD,BD⊂底面ABCD,∴BD⊥C1C.∵AC ⊂平面A1ACC1,C1C⊂平面A1ACC1,且AC∩C1C=C,∴BD⊥平面A1ACC1.…5分∵BD⊂平面A1BD,∴平面1A BD⊥平面11A ACC.…7分(Ⅱ)连B1C.…9分在△1A BD中,∵O是BD的中点,M是BA1的中点,∴MO∥A1D.…10分∵A1 B1∥DC,且A1 B1=DC,∴四边形A1 DC B1为平行四边形.∴ A 1D ∥B 1C . …12分 ∴ MO ∥B 1C , 且B 1C ⊂平面11B BCC ,MO ⊄平面11B BCC ,∴ MO //平面11B BCC . …14分说明:直线在平面内,既可用符号“”表示,也可用符号“⊂”表示,而且应特别让学生知道后一种表示. (18)本小题主要考查运用数学知识解决实际问题的能力.满分12分.解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-≤<=时当时当时当50002000,1252032000500,251015000,201)(x x x x x x x f ……………6 分(2)∵ 17516525<<,∴ 老李2018年12月份的应纳税金额在500~2000元之间由16525101=-x ,得1900=x , ……………………9分∴ 老李12月份的工资总收入为3500元,∴ 老李2018年1月份的工资总收入为4200%)201(3500=+⋅(元),应纳税金额为260016004200=-=x (元), …………11分 ∴ 2651252600203)2600(=-⋅=f (元),即老李2018年1月份应缴纳个人所得税265元(12分) (19)本小题主要考查直线的方程、圆的方程、直线与圆的位置关系等基本知识,考查综合运用数学知识分析和 解决问题的能力.满分14分.解:(Ⅰ)依题意,可设圆C 的方程为()()222x a y b r -+-=,且a 、b 满足方程组()3330,2231 1.3a b b a --⎧++=⎪⎪⎨+⎪⨯-=-⎪+⎩由此解得 0a b ==. …5分 又因为点P (1,1)在圆C 上,所以()()()()222221110102r a b =-+-=+++=.故圆C 的方程为222x y +=. …7分 (Ⅱ)由题意可知,直线PA 和直线PB 的斜率存在且互为相反数,故可设PA 所在的直线方程为1(1)y k x -=-,PB 所在的直线方程为1(1)y k x -=--.由221(1),2y k x x y -=-⎧⎨+=⎩ 消去y ,并整理得222(1)2(1)(1)20k x k k x k ++-+--=. ① …10分 设()11,A x y ,又已知P (1,1),则1x 、1为方程①的两相异实数根,由根与系数的关系得()2121211k x k --=+,即212211k k x k --=+.同理,若设点B 22(,)x y ,则可得222211k k x k +-=+. …12分于是 12121212(1)(1)AB y y k x k x k x x x x --+-==--=1212()2k x x k x x +--=1. 而直线OP 的斜率也是1,且两直线不重合,因此,直线OP 与AB 平行. …14分 (20)本小题主要考查函数、方程、不等式等基本知识,考查综合运用数学知识分析和解决问题的能力.满分14 分.解:(Ⅰ)当0a =时,1()2f x x c =-+.由(1)0f =得:102c -+=,即12c =,∴ 11()22f x x =-+.显然x >1时,()f x <0,这与条件②相矛盾,不合题意. ∴ 0a ≠,函数21()2f x ax x c =-+是二次函数. …2分 由于对一切x ∈R ,都有()0f x ≥,于是由二次函数的性质可得20140.2a ac >⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,-- 即010.(*)16a ac >⎧⎪⎨≥>⎪⎩,…4分 由(1)0f =得 12a c +=,即12c a =-,代入(*)得 11216a a ⎛⎫-≥ ⎪⎝⎭. 整理得 2110216a a -+≤,即2104a ⎛⎫-≤ ⎪⎝⎭. 而2104a ⎛⎫-≥ ⎪⎝⎭,∴ 14a =.将14a =代入(*)得,14c =, ∴ 14a c ==. …7分另解:(Ⅰ)当0a =时,1()2f x x c =-+. 由(1)0f =得 102c -+=,即12c =, ∴ 11()22f x x =-+.显然x >1时,()f x <0,这与条件②相矛盾,∴ 0a ≠,因而函数21()2f x ax x c =-+是二次函数. …2分 由于对一切x ∈R ,都有()0f x ≥,于是由二次函数的性质可得20140.2a ac >⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,-- 即010.16a ac >⎧⎪⎨≥>⎪⎩, …4分由此可知 a c >>0,0,∴ 22a c ac +⎛⎫≤ ⎪⎝⎭.由(1)0f =,得 12a c +=,代入上式得 116ac ≤. 但前面已推得 116ac ≥, ∴ 116ac =. 由 1,161,2ac a c ⎧=⎪⎪⎨⎪+=⎪⎩ 解得 14a c ==. …7分(Ⅱ)∵ 14a c ==, ∴ 2111()424f x x x =-+. ∴ 2111()()424g x f x m x x m x ⎛⎫=-=-++ ⎪⎝⎭. 该函数图象开口向上,且对称轴为21x m =+. …8分 假设存在实数m 使函数2111()()424g x f x mx x m x ⎛⎫=-=-++ ⎪⎝⎭在区间[],2m m +上有最小值-5. ① 当m <-1时,21m +<m ,函数()g x 在区间[],2m m +上是递增的, ∴ ()g m =-5,即21115424m m m ⎛⎫-++=- ⎪⎝⎭, 解得 m =-3或m =73. ∵ 73>-1, ∴ m =73舍去. …10分② 当-1≤m <1时,m ≤21m +<m +1,函数()g x 在区间[],21m m +上是递减的,而在区间[]21,2m m ++上是递增的,∴ ()21g m +=-5,即()()211121215424m m m ⎛⎫+-+++=- ⎪⎝⎭.解得 m =12--m =12-+均应舍去. …12分 ③当m ≥1时,21m +≥m +2,函数()g x 在区间[],2m m +上是递减的, ∴ ()2g m +=-5,即()()2111225424m m m ⎛⎫+-+++=- ⎪⎝⎭.解得 m =1--m =1-+m =1--应舍去.综上可得,当m =-3或m =1-+()()g x f x mx =-在区间[],2m m +上有最小值-5. …14分。

高三数学-2018年广东省高考数学模拟试题 精品

2018年广东省高考数学模拟试题第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1 已知cos θ=cos30°,则θ等于 ( )A 30°B k ²360°+30°(k ∈Z )C k ²360°±30°(k ∈Z )D k ²180°+30°(k ∈Z )2.已知b a ,0,0>> b 的等差中项是111,,,2m a n b m n a b=+=++且则的最小值是( C ) A .3B .4C .5D .63 设曲线y =1x 2和曲线y =1x 在它们交点处的两切线的夹角为θ,则tan θ= ( )A .1B .12C .13D .234 袋中有不同的白球5只,不同的黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为 ( ) A29 B 322 C 334 D 3355 下列命题不正确...的是 ( ) (A) 如果 f (x ) =1x,则 lim x →+ ∞ f (x ) = 0 (B) 如果 f (x ) = 2 x -1,则 lim x →0 f (x ) = 0(C) 如果 f (n ) = n 2-2nn + 2 ,则 lim n →∞f (n ) 不存在(D) 如果 f (x ) = ⎩⎨⎧ x , x ≥0x + 1,x < 0,则 lim x →0 f (x ) = 06 已知点)0,2(-A ,)0,3(B ,动点2),(x PB PA y x P =⋅满足,则点P 的轨迹是( )A 圆B 椭圆C 双曲线D 抛物线7 若D 点在三角形的BC 边上,且4CD DB r AB sAC ==+,则3r s +的值为 ( ) A165 B 125 C 85 D 458. 若一条曲线既是轴对称图形又是中心对称图形,则我们称此曲线为双重对称曲线.下列四条曲线中,双重对称曲线的条数是 ( )(1)4212516x y -=(2)221y x x =-+-(3)5sin 23y x π⎛⎫=+ ⎪⎝⎭(4)31y x =+ A .1 B . 2 C .3 D .4 9.有一条信息, 若1人得知后用1小时将其传给2人, 这2人又用1小时分别传给未知此信息的另外2人, 如此继续下去, 要传遍100万人口的城市, 所需的时间大约是 ( ) A .10天 B . 2天 C .1天 D . 半天10 函数2312x y e π-=的部分图象大致是( )A B C D第二部分(非选择题 共100分)二、填空题:本大题共4小题,每题5分,共20分.11 将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为若两个向量与的夹角为x ,则称向量“³”为“向量积”,其长度|a ³b |=|a |•|b |•sinx 今已知|a |=1,|b |=5,a •b =-4,则|a ³b |=13 有一组数据:1231,,,(n x x x x x <2x <…<n x )的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9;若去掉其中最小的一个,余下数据的算术平均值为11,第一个数1x 关于的表达式是___ ,第个数n x 关于的表达式是____14.已知()f x 是定义在R 上的函数,且[](1)1()1(),(1)3f x f x f x f +-=+=则(2)f =________;(2005)f =___3_____三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.15.(本小题满分12分)设函数)(cos sin 322cos )(R x x x x x f ∈+=的最大值为M ,最小正周期为T (1)求M T ;(2)若有10个互不相等的正数i x 满足M x f i =)(,且)10,,2,1(10 =<i x i π, 求1021x x x +++ 的值16.(本小题满分12分)某市出租车的起步价为6元,行驶路程不超过3km 时,租车费为6 元,若行驶路程过3km ,则按每超出1km (不足1km 也按1km 计程)收费3元计费 设出租车一天行驶的路程数ξ(按整km 数计算,不足1km 的自动计为1km )是一个随机 变量,则其收费数η也是一个随机变量 已知一个司机在某个月中每次出车都超过了3km ,且一天的总路程数可能的取值是200 220 240260280 300(km ),它们出 现的概率依次是0 12 0 18 0 200 20 100a 2+3a 4a(1)求作这一个月中一天行驶路程ξ的分布列,并求ξ的数学期望和方差; (2)求这一个月中一天所收租车费η的数学期望和方差17 (本小题满分14分)正四面体A-BCD 的棱长为1,(Ⅰ)如图(1)M 为CD 中点,求异面直线AM 与BC 所成的角; (Ⅱ)将正四面体沿AB BD DC BC 剪开,作为正四棱锥的侧面如图(2),求二面角M-AB-E 的大小;(Ⅲ)若将图(1)与图(2)面ACD 重合,问该几何体是几面体 (不需要证明),并求这几何体的体积DCBA M图(1)NEDCBAM图(2)P QH18.(本小题满分14分)对于任意实数x ,符号[]x 表示x 的整数部分,即[]x 是不超过x 的最大整数 在实数轴(箭头向右)上[]x 是在点x 左侧的第一个整数点,当x 是整数时[]x 就是 这个函数[]x 叫做“取整函数”也叫高斯(Gauss )函数从[]x 的定义可得下列性质:1x -<[]x ≤x <[1x +与[]x 有关的另一个函数是{}x ,它的定义是{}x =x -[]x ,{}x 称为x 的“小数部分”(1)根据上文,求{}x 的取值范围和[]5.2-的值; (2)求的和19 (本小题满分14分)过椭圆)0(12222>>=+b a by a x 的左焦点F 任作一条与两坐标轴都不垂直的弦AB ,若点M 在x 轴上,且使得MF 为AMB ∆的一条内角平分线,则称点M 为该椭圆的“左特征点”.①求椭圆1522=+y x 的“左特征点”M 的坐标; ②试根据①中的结论猜测:椭圆)0(12222>>=+b a by a x 的“左特征点”M 是一个怎样的点?并证明你的结论20(本小题满分14分)有一块边长为4的正方形钢板,现对其进行切割焊接成一个长方体无盖容器(切焊损耗忽略不计),有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b),;(I)请你求出这种切割焊接而成的长方体的最大容积V1(II)由于上述设计存在缺陷(材料有所浪费),请你重新设计切焊方法,使材料浪费减少,.而且所得长方体容器的容积V2>V1图(a)图(b)。

2018届高三第一次高考模拟考试数学试题

一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分) 1. 已知集合,若,则_____. 【答案】 【解析】因为集合,且,所以,故答案为. 2. 抛物线的焦点坐标为_____. 【答案】 【解析】抛物线的焦点在轴上,且,所以抛物线的焦点坐标为,故答案为. 3. 不等式的解是_____. 【答案】 【解析】由可得, ,所以不等式的解是,故答案为. 4. 若复数满足为虚数单位),则_____. 【答案】 【解析】试题分析:因为,所以本题也可设,因为由复数相等得: 考点:复数的四则运算.

5. 在代数式的展开式中,一次项的系数是_____.(用数字作答) 【答案】 【解析】展开式的通项为,令,得,,故答案为. 【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用. 6. 若函数的最小正周期是,则_____. 【答案】 【解析】因为函数的最小正周期是,所以,解得,故答案为. 7. 若函数的反函数的图象经过点,则_____. 【答案】 【解析】函数的反函数的图象经过点,所以,函数的图象经过点,,,故答案为. 8. 将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为,则该几何体的侧面积为_____. 【答案】 【解析】将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为,设正方体的边长为,则,解得该圆柱的侧面积为,故答案为. 9. 已知函数是奇函数,当时,,且,则_____. 【答案】 【解析】是奇函数,且当时,,,解得,故答案为. 10. 若无穷等比数列的各项和为,首项 ,公比为,且 ,则_____. 【答案】 【解析】无穷等比数列的前项和为,首项为,公比,且,

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试 广东省文科数学模拟试卷(一) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数z满足11iz,则复数z的虚部为( ) A.12i B.12 C.12i D.12 2.已知集合2|0,|1AxxBxx,则AB ( ) A.0, B. 0,1 C. 1, D.1,0 3. “常数m是2与8的等比中项”是“4m”的( ) A.充分不必要条件 B. 必要不充分条件 C. 充要条件 D.既不充分也不必要条件 4.下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )

A.320 B.325 C.325 D.20 5. 已知F是双曲线2222:10,0xyCabab的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为( ) A.22 B.3 C. 5 D.2 6. 等差数列333log2,log3,log42,xxx的第四项等于( ) A.3 B.4 C. 3log18 D.3log24 7. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( ) A.488 B.968 C. 9616 D.4816 8.已知曲线:sin23Cyx,则下列结论正确的是 ( ) A.把C向左平移512个单位长度,得到的曲线关于原点对称 B.把C向右平移12个单位长度,得到的曲线关于y轴对称 C. 把C向左平移3个单位长度,得到的曲线关于原点对称 D.把C向右平移6个单位长度,得到的曲线关于y轴对称 9. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入( )

A.n是偶数,100n B.n是奇数,100n C. n是偶数,100n D.n是奇数,100n

10.已知函数xfxe在其定义域上单调递减,则函数fx的图象可能是( ) A. B. C. D. 11.已知抛物线2:,CyxM为x轴负半轴上的动点,,MAMB为抛物线的切线,,AB分别

为切点,则MAMB的最小值为 ( ) A.14 B.18 C. 116 D.12

12.设函数121,25,2xxfxxx,若互不相等的实数,,abc满足fafbfc,则222abc的取值范围是 ( ) A.16,32 B.18,34 C. 17,35 D.6,7 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知单位向量12,ee的夹角为30°,则123ee .

14.设,xy满足约束条件6456543xyxyxy,则zxy的最大值为 . 15.已知数列na的前n项和为nS,且23122nSnn,则5a . 16.如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为,,,,OEFGH为圆O上的点,,,,ABEBCFCDGADH分别是以,,,ABBCCDDA为底边的等腰三角形.沿虚线剪开后,分别以,,,ABBCCDDA为折痕折起,,CDG,ADHABEBCF,使得,,,EFGH重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.

17.在ABC中,角,,ABC所对的边分别为,,abc,已知2233bcabca.

(1)证明:23cosaA; (2)若,36AB,求ABC的面积. 18.“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下: 步数/步 03000 30016000 60018000 800110000 10000以上 男生人数/人 1 2 7 15 5

女性人数/人 0 3 7 9 1 规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”. (1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”; 积极性 懈怠性 总计 男 女 总计 附: 2

0PKk

0.10 0.05 0.010 0.005 0.001

0k 2.706 3.841 6.635 7.879 10.828 2

2nadbcKabcdacbd



(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在30016000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率. 19.如图,在直角梯形ABCD中,//,ADBCABBC,且24,,BCADEF分别为线段

,ABDC的中点,沿EF把AEFD折起,使AECF,得到如下的立体图形. (1)证明:平面AEFD平面EBCF; (2)若BDEC,求点F到平面ABCD的距离.

20.已知椭圆2222:10xyCabab的离心率为32,且C过点31,2. (1)求椭圆C的方程; (2)若直线l与椭圆C交于,PQ两点(点,PQ均在第一象限),且直线,,OPlOQ的斜率成等比数列,证明:直线l的斜率为定值. 21. 已知函数2xfxexax. (1)证明:当22ln2a时,函数fx在R上是单调函数; (2)当0x时,1fxx恒成立,求实数a的取值范围. (二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【选修4-4:坐标系与参数方程】 在直角坐标系xOy中,圆221:2420Cxy,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,2:3CR. (1)求1C的极坐标方程和2C的平面直角坐标系方程; (2)若直线3C的极坐标方程为6R,设2C与1C的交点为OM、,3C与1C的交点为ON、,求OMN的面积. 23.【选修4-5:不等式选讲】 已知函数331,412fxxaxgxxx. (1)求不等式6gx的解集; (2)若存在12,xxR,使得1fx和2gx互为相反数,求a的取值范围.

试卷答案 一、选择题 1-5:DCBAC 6-10: ABBDA 11、12:CB 二、填空题

13. 1 14. 2 15. 14 16. 500327 三、解答题 17.解:(1)因为22233bcabca,所以22233bcaabc, 又因为2222cosbcabcA, 所以32cos3bcAabc, 即23cosaA. (2)因为3A,所以23cos3aA, 由正弦定理sinsinabAB,可得1b,

2CAB,

所以13sin22ABCSabC. 18.解:(1)根据题意完成下面的列联表: 积极性 懈怠性 总计 男 20 10 30 女 12 8 20 总计 32 18 50

根据列联表中的数据,得到225020810120.2312.70630203218K, 所以没有90%的把握认为“评定类型与性别有关”; (2)设步行数在30016000中的男性的编号为1,2,女性的编号为,,abc. 选取三位的所有情况为:1,2,,1,2,,1,2,c,1,,,1,,,1,,,2,,,2,,,2,,,,,ababacbcabacbcabc共有

10种情形, 符合条件的情况有:1,2,,1,2,,1,2,abc共3种情形. 故所求概率为310. 19.(1)证明:由题可得//EFAD,则AEEF, 又AECF,且EFCFF,所以AE平面EBCF. 因为AE平面AEFD,所以平面AEFD平面EBCF; (2)解:

过点D作//DGAE交EF于点G,连结BG,则DG平面EBCF,DGEC, 又,BDECBDDGD,所以EC平面,BDGECBG, 易得EGBBEC,则EGEBEBBC,得22EB, 设点F到平面ABCD的距离为h, 因为14482FABCABCFVV, 又因为,,BCAEBCEBAEEB于E,所以BC平面AEB,故ABBC,

相关文档
最新文档