有理数的乘除法测试题
人教版七年级上册有理数的乘除法练习题4

人教版七年级上册有理数的乘除法练习题4 一、选择题(共8小题;共40分)1. 计算的结果等于A. D.2. 计算的结果是A. D.3. 下列各式中,计算结果为负数的是A.B.C.D.4. 下列说法正确的是A. 一个数的倒数一定大于原数B. 若,则与互为倒数C. 任何数都有倒数5. 下列运算中,正确的是B.C. D.6. 计算的结果是A. B.C. D. 以上三个数以外的其它数7. 下列各式中积为正的是A. B.C. D.的倒数是A.二、填空题(共4小题;共22分)9. 在,,中选取个数相除,则商的最小值是.10. 小聪和小明计算甲、乙两个两位数的乘积,小聪看错了甲数的个位数字,计算结果为;小明看错了甲数的十位数字,计算结果为;则甲数是.11. 判断题.(()假分数的倒数都小于()真分数的倒数都大于()在整数中,倒数等于它本身的数是(()互为倒数的两个数中一定有一个大于()因为,因此,12. 从六十年代到今,上海和云南共达成经济协作项目项,实际完成了,实际完成了项.三、解答题(共4小题;共52分)13. 写出下列各数的倒数:,.14. 计算:(1);(2);(3).15. 计算:(1);(2);(3);(4).16. 若,,,,,是六个有理数,并且,,,试求的值.答案第一部分1. C2. A3. C 【解析】A,B中各有个负因数,则结果均为正;C中有个负因数,则结果为负;D中有,则结果为.4. B5. D6. B7. D8. A 【解析】的倒数是.第二部分【解析】在,,中选取个数相除,则商的最小值是10.11. ,,,,,,12.第三部分13. ,的倒数分别为,.14. (1).(2).(3).15. (1).(2).(3).(4).16. .。
初一数学有理数乘除法练习题

初一数学有理数乘除法练习题1.4.1 有理数乘法(1)填空题:1) 5×(-4)=-20;2) (-6)×4=-24;3) (-7)×(-1)=7;4) (-5)×0=0;5) 43×(-1/3)=-43/3;6) (-1)×(-2)=2;7) (-3)×(-1)=3.填空题:1) -7的倒数是-1/7,它的相反数是7,它的绝对值是7;2) (-2)^2的倒数是1/4,-2.5的倒数是-2/5;3) 倒数等于它本身的有理数是1和-1.计算题:1) (-2)×(7/2592)×(-1/3)×(-1/2)=7/648;2) (-6)×5×(-1/2)=-15;3) (-4)×7×(-1)×(-0.25)=7;4) (-5/8)×(3/4)×(-1/3)=-5/32.问题解答:1) B;2) C;3) 计算结果为-150.48;4) 计算结果为1/2.拓展提高:1) -1/2的倒数是-2;2) 选项D。
4、计算题:1) (-8)×(-1/3)=8/3;2) (-1/4)×(-3/5)×(-2.5)=-3/8;3) (-0.25)×(-5)×4×(-1/5)=1;4) (-23/25)×(-5)=23/5.5、计算题:1) (-1)×(-3)=3;2) -13×(1/3)=-(13/3);3) x+2+y-3=-4xy;4) (a+b)c(d-1)-2009m=-2009m。
1、a+b=3.1.4.2 有理数的除法填空题:1) (-27)÷9=-3;2) (-1/2)÷(9/3)=-1/6.1.计算:1) -3×8 = -24;2) -2×(-6) = 12;3) (-7.6)×0.5 = -3.8;4) (-3)×(-2)×(-2) = 12.2.计算:1) 8×(-3/4)×(-4) - 2 = 6;2) 8-×(-4)×(-2) = 64;3) 8×(-3/4)×(-4)×(-2) = 12.3.计算:1) (-1)×(-1)×(-1)×(-1)×(-1)÷(2×3×4×5×6×7) - (-1)×(-1) =1/420 + 1 = 421/420;2) (-1)×(-1)×(-1)×(-1)×(-1)×(-1) = -1.4.删除明显有问题的段落。
1.4 有理数的乘除法 同步练习卷 2021—2022学年人教版数学七年级上册(含答案)

人教版2021年七年级上册1.4《有理数的乘除法》同步练习卷一.选择题1.2020的相反数和倒数分别是()A.﹣2020,B.﹣2020,C.2020,D.2020,2.一个数是﹣5,另一个数比|﹣5|的相反数大4,则这两个数的积是()A.6B.﹣5C.﹣6D.53.下列计算(﹣55)×99+(﹣44)×99﹣99正确的是()A.原式=99×(﹣55﹣44)=﹣9801B.原式=99×(﹣55﹣44+1)=﹣9702C.原式=99×(﹣55﹣44﹣1)=﹣9900D.原式=99×(﹣55﹣44﹣99)=﹣196024.计算1的结果是()A.﹣1B.1C.﹣D.﹣5.99,这个运算应用了()A.加法交换律B.乘法结合律C.乘法交换律、乘法结合律D.乘法分配律6.给出下列说法:①1乘任何有理数都等于这个数本身;②0乘任何数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与本身相等的数是±1,其中正确的有()A.1 个B.2 个C.3 个D.4 个7.5个有理数相乘,积为负,则其中正因数的个数为()A.0B.2C.4D.0或2或48.有理数a、b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0;⑤|b﹣a|=a﹣b,正确的有()A.1个B.2个C.3个D.4个二.填空题9.﹣的倒数是.10.绝对值不大于5的所有负整数的积是11.从数﹣6,1,﹣3,5,﹣2中任取两个数相乘,其积最小的是.12.若|x|=3,|y|=4,且xy<0,那么x+y=.13.若m<n<0,则(m+n)(m﹣n)0.(填“<”、“>”或“=”)三.解答题14.计算:(1)(﹣)×(﹣)×(﹣);(2)(﹣5)×(﹣)××0×(﹣325).15.计算下列各题(1)(+﹣)×(﹣12)(2)|﹣|÷(﹣)﹣×(﹣4)(3)(﹣47.65)×(﹣2)+37.15×(﹣2)+10.5÷(﹣)16.观察下列解题过程.计算:(﹣)÷(1﹣﹣).解:原式=(﹣)÷1﹣(﹣)÷﹣(﹣)÷=(﹣)×﹣(﹣)×﹣(﹣)×=﹣+1+=2你认为以上解题是否正确,若不正确,请写出正确的解题过程.17.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).参考答案一.选择题1.解:2020的相反数为﹣2020,2020的倒数为,故选:B.2.解:根据题意得:另一个数为﹣5+4=﹣1,则两个数之积为5,故选:D.3.解:(﹣55)×99+(﹣44)×99﹣99=99×(﹣55﹣44﹣1)=﹣9900.故选:C.4.解:原式=﹣1××=﹣.故选:C.5.解:99,这个运算应用了乘法的分配律,故选:D.6.解:①1乘任何有理数都等于这个数本身,正确;②0乘任何数的积均为0,正确;③﹣1乘任何有理数都等于这个有理数的相反数,正确;④一个数的倒数与本身相等的数是±1,正确.故选:D.7.解:5个有理数相乘,积为负,则负因数肯定为奇数1,3,5个;那么正因数为0,2,4个.故选:D.8.解:观察图象可知:a+b<0,a﹣b>0,|b|>a,ab<0,|b﹣a|=a﹣b,故②③④⑤,故选:D.二.填空题9.解:﹣的倒数是﹣2.故答案为:﹣2.10.解:绝对值不大于5的所有负整数有:﹣1,﹣2,﹣3,﹣4,﹣5,∴(﹣1)×(﹣2)×(﹣3)×(﹣4)×(﹣5)=﹣120.故答案为﹣120.11.解:根据有理数的乘法的运算法则知,异号的两数相乘结果为负.所以应用最小的负数与最大的正数相乘:﹣6×5=﹣30.12.解:∵|x|=3,|y|=4,∴x=3或﹣3,y=4或﹣4,∵xy<0,∴x=3,y=﹣4或x=﹣3,y=4,∴x+y=﹣1或1,故答案为:1或﹣1.13.解:∵m<n<0,∴m+n<0,m﹣n<0,∴(m+n)(m﹣n)>0.故答案是>.三.解答题14.解:(1)(﹣)×(﹣)×(﹣)=﹣××=﹣;(2)(﹣5)×(﹣)××0×(﹣325)=0.15.解:(1)原式=×(﹣12)+×(﹣12)+(﹣)×(﹣12)=﹣3﹣2+6=1;(2)原式=×+=+=3;(3)原式=(﹣47.65+37.15)×(﹣)+×(﹣)=×+×(﹣)=×(﹣)=×1=.16.解:解题过程是错误的,正确的解法是:原式=(﹣)÷=﹣×=﹣3.17.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.。
七年级数学上册1.4有理数的乘除法学习评价测试题新人教版

学习评价测试题一、选择题(每题3分,共30分)1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )(A) 一定为正. (B) 一定为负. 为零. (D) 可能为正,也可能为负.2.若干个不等于0的有理数相乘,积的符号( )(A)由因数的个数决定. (B)由正因数的个数决定.(C)由负因数的个数决定. (D)由负因数和正因数个数的差为决定.3.下列运算结果为负值的是( )(A) (-7)×(-6). (B) (-6)+(-4). (C) 0×(-2) ×(-3). (D) (-7)-(-15).4.下列运算错误的是( )(A) (-2)×(-3)=6. (B)×(-6)=-3.(C) (-5)×(-2)×(-4)=-40. (D) (-3)×(-2)×(-4)=-24.5.若两个有理数的和与它们的积都是正数,则这两个数( )(A) 都是正数. (B)是符号相同的非零数. (C)都是负数. (D)都是非负数.6.下列说法正确的是( )(A) 负数没有倒数. (B) 正数的倒数比自身小.(C) 任何有理数都有倒数. (D) -1的倒数是-1.7.关于0,下列说法不正确的是( )(A) 0有相反数. (B) 0有绝对值.(C) 0有倒数. (D) 0是绝对值和相反数都相等的数.8.下列运算结果不一定为负数的是( )(A) 异号两数相乘. (B) 异号两数相除.(C) 异号两数相加. (D) 奇数个负因数的乘积.9.下列运算有错误的是( )(A) ÷(-3)=3×(-3). (B) .(C) 8-(-2)=8+2. (D) 2-7=(+2)+(-7).10.下列运算正确的是( )(A) . (B) 0-2=-2.(C) . (D) (-2)÷(-4)=2.二、填空题(每题3分,共30分)11.(1)如果两个有理数的积是正的,那么这两个因数的符号一定______;(2)如果两个有理数的积是负的,那么这两个因数的符号一定_______;(3)奇数个负数相乘,结果的符号是_______;(4)偶数个负数相乘,结果的符号是_______.12.如果>0,>0,那么_______0.13.如果5a>0,0.3b<0,0.7c<0,那么_______0.14.若a>0,则=_______;若a<0,则=_______.15.若xy>0,z<0,那么xyz______0.16.-0.125的相反数的倒数是________.17.-2的倒数是_______;的倒数是_______;的倒数是_______.18.如果a、b互为倒数,那么-5ab=_______.19..20.非零有理数与其倒数的相反数的乘积为_______.三、解答题(21题8分,22题17分,23题7分,24题8分,共40分)21.计算:(1)()×(-48); (2);(3)×(-5); (4)(-56)×(-32)+ 44×32.22. 计算:(1) (+48)÷(+6); (2)(-1155)÷[(-11)×(+3)×(-5)];(3) 4÷(-2);(4) 0÷(-1000);(5) ÷;(6) 375÷÷;(7) ÷(-5)+÷(-5).23.上午6点水箱里的温度是78℃,此后每小时下降4.5℃,求下午2点时水箱内的温度.24.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8 ℃,已知山脚的温度是24 ℃,山顶的温度是4 ℃,试求这座山的高度.答案及提示:一、选择题1. A 提示: 同号得正.2. C 提示:奇数个负因数相乘则积为负,偶数个负因数相乘则积为正.3. B 提示:-6+(-4)=-10.4. B 提示:×(-6)=3.5. A 提示:有理数的加法和乘法法则.6.D 提示:倒数的定义.7.C 提示:0的倒数不存在.8.C 提示:异号两数相加取绝对值较大的数的符号,不一定符号是负的.9.A 提示:除以一个数等于乘以这个数的倒数,而不是被除数求倒数.10.B 提示:0-2=0+(-2)=-2.二、填空题11.(1)相同,(2)相反;(3)负号;(4)正号. 提示:有理数的乘法法则.12.>提示:同号得正,异号得负,此题中a>0,b>0.13.>提示:同号得正,异号得负,此题中a>0,b<0,c<0则ac<0,所以>0.14.1;-1 提示:绝对值的化简以及除法符号的确定.15.<提示:同号得正,异号得负.16.8 提示:相反数与倒数的求法.17.;;提示:倒数的求法,注意求倒数不改变符号.18.-5 提示:互为倒数的两数乘积为1.19.-8;9 提示:(1)注意符号;(2)注意运算顺序.20.-1 提示:倒数的相反数就是负倒数,互为负倒数的两数相乘为-1.三、解答题21.(1)2;(2)2.5;(3)249;(4)3200.22.(1)8;(2)-7;(3)-2;(4)0;(5);(6)375;(7)4.23.42℃.列式:78-(14-6)×4.5=42.24.2500米.列式:100×[(4-24)÷(-0.8)]=2500.备注:本套题中,简单题为3——11,16,17,18,22题,中等难度题为1,2,12,15,19,21,23题,难题为13,14,20,24题,易中难的比例约为5:3:2.。
人教版初中数学七年级上册1.4有理数的乘除法测试试题

人教版初中数学七年级上册1.4有理数的乘除法测试题基础知识(测试时间:45分钟;满分:100分)一、精心选一选(每小题3分,共24分)1.数2的倒数是()A.2B.12C.-12D.-22.下列说法错误的是()A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同-1相乘,得原数的相反数D.互为相反数的两数之积为03.绝对值不大于4的所有负整数的积为()A.-24B.0C.+6D.244.下列运算结果为负值的是()A.(-7)×(-6)B.(-6)÷(-4)C.0×(-2)(-3)D.(-7)-(-15)×(-1)5.若干个不等于0的有理数相乘,积的符号()CA.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定6.算式(-334)×4可以化为()A.-3×4-34×4 B.-3×4+34×4 C.-3 3-3 D.-3-34×47.如果两个有理数的积小于零,和大于零,那么这两个有理数()A.符号相反B.符号相反,绝对值相等C.符号相反,且负数的绝对值较大D.符号相反,且正数的绝对值较大8.若a<b<0,那么下列各式中正确的是()A.1÷a<1÷bB.ab<0C.a÷b<1D.a÷b>1二、细心填一填(每小题4分,共32分)9.计算:0÷(-2.4)=__________.10.如果式子“□×(-34)=1”成立,那么“□”的数应该是__________.11.奇数个负数相乘,结果的符号是__________.12.偶数个负数相乘,结果的符号是__________.13.如果4÷a>0,1÷b>0那么a÷b__________0.14.如果5a>0,0.3b<0,0.7c<0,那么b÷ac__________0.15.若一个数与它的绝对值的商是1,则这个数是__________数;若一个数与它的绝对值的商是-1,则这个数是__________数.16.两个因数的积为1,已知其中一个因数为-72,那么另一个因数是__________.三、用心做一做(共44分)17.计算:(1)(-3)×(+56)×(-145)×(-4)×[-(-79)].(2)(-12+16-38+512)×(-24).(3)45×(-513)-(-35)×(-513)-513×(-135).18.(1)(-0.75)÷54÷(-0.3).(2)-1+5÷(-16)×(-6).(3)[(+17)-(-13)-(+15)]÷(-1105).19.计算:(1)[-43.8+(-314)×1213-76.6]÷2.(2)(13+56-37-914)÷142.(3)+1313÷5-(-623)÷5+(-19617)÷5+7617÷5.20.一只小虫沿一条东西方向放着的木杆爬行,先以每分钟2.5米的速度向东爬行,后来又以这个速度向西爬行,试求它向东爬行3分钟,又向西爬行5分钟后距出发点的距离.21.洋洋同学在将某数乘以-1.25时漏乘了一个负号,所得结果比正确结果小0.25,那么正确结果应是多少?22.在10.5与它的倒数之间有a个整数,在10.5与它的相反数之间有b个整数.求(a+b)÷(a -b)+2的值.能力提升(测试时间:30分钟;满分:50分)一、精心选一选(每小题4分,共8分)1.运算式:989×15=(10-19)×15=10×15-19×15=150-159=14813,这个运算应用了()A.加法结合律B.乘法结合律C.乘法交换律D.乘法分配律2.四个各不相等的整数a,b,c,d,它们的积abcd=49,那么a+b+c+d的值为()A.14B.-14C.13D.0二、细心填一填(每小题4分,共12分)3.计算:0÷(-m)=__________,m×0=__________.4.汽车每小时向东走40千米(向东为正),3小时走了(+40)×3=+120千米,如果速度不变,向西走3小时,共走__________千米.5.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:711516×(-8).不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上:解法一:原式=-115116×8=-920816=-575.解法二:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512.解法三:原式=(72-116)×(-8)=72×(-8)+116×(-8)=-57512.对这三种解法,大家议论纷纷,觉得解法__________是错误的,解法__________最好,理由:__________,通过对本题的求解,你的启发是__________.三、用心做一做(共30分)6.如果规定符号“※”的意义是a※b=(ab)÷(a+b)(a+b≠0),求2※(-3)※4的值.7.有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…第n个数记为a n,若a1=-12,从第二个数起,每个数都等于“1与它前面那数的差的倒数”.试计算:a2,a3,a4,a2000,a2018的值.8.某校七年级(5)为庆祝元旦,搞了一个主题班会,其中有一个“二十四点”的趣味题:现在我给出1~13之间的自然数,你可以从中任取四个,将这四个数(四个数都用且只能用一次)进行“+”“-”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可作运算(1+2+3)×4=24.也可以写成4×(2+3+1),但视作相同方法的.(1)现有四个有理数-9,-6,2,7,你能用三种不同的算法计算出24吗?(2)若给你3、6、7、-13,你还能凑出24吗?参考答案:基础知识:一、1.B;2.D.点拨:互为相反数的两数之和为0;3.D.点拨:绝对值不大于4的负整数有-4,-3,-2,-1;4.D;5.C;6.A;7.D.点拨:积小于0,说明两数异号,和大于零,说明正数的绝对值较大;8.D.点拨:可用特殊值代入法代入比较,如a取-4,b取-2.二、9.0;10.-43;11.负;12.正;13.>;14.>;15.正、负.点拨:正数的绝对值是它本身,负数的绝对值是它的相反数;16.-27.点拨:另一个因数是1÷(-72)=-27.三、17.(1)(-3)×(+56)×(-145)×(-4)×[-(-79)]=(-3)×(+56)×(-95)×(-4)×79=-(3×56×95×4×79)=-14.(2)(-12+16-38+512)×(-24)=(-12)×(-24)+16×(-24)+38×(-24)+512×(-24)=12-4+9-10=7.(3)45×(-513)-(-35)×(-513)-513×(-135)=(-513)×[45-(-35)+(-135)]=(-513)×(45+35-85)=(-513)×(-15)=113.18.(1)(-0.75)÷54÷(-0.3)=-34×45×(-310)=2.(2)-1+5÷(-16)×(-6)=-1+5×(-6)×(-6)=-1+180=179.(3)[(+17)-(-13)-(+15)]÷(-1105)=(17+13-15)×(-105)=-15-25+21=-29.19.(1)[-43.8+(-314)×1213-76.6]÷2=-43.8÷2+(-134)×1213÷2-76.6÷2=-21.9-1.5-38.3=-61.7.(2)(13+56-37-914)÷142=13÷142+56÷142-37÷142-9 14÷142=13×42+56×42-37×42-914×42=14+35-18-27=4.(3)+1313÷5-(-623)÷5+(-19617)÷5+7617÷5=[+1313-(-623)+(-19617)+7617]÷5=[(1313+623)+(-19617+7617)]÷5=(20-120)÷5=-100÷5=-20.20.3×2.5+5×(-2.5)=-5(米),小虫距出发点的距离是5米.21.依题意,得正确的结果与错误的结果刚好是互为相反数,而正确的结果-错误的结果=0.25,所以正确的结果=0.25÷2=0.125.22.依题意,得a=10,b=21,所以(a+b)÷(a-b)+2的值为-9 11.能力提升一、1.D;2.D.点拨:这4个数分别为±1,±7.二、3.0、0;4.-120.点拨:向东为正,则向西为负;5.一;二和三;巧妙地利用了拆分思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,简化了计算过程;我们在解题时要善于发现问题的特点.三、6.依题意,得2※(-3)※4=[2×(-3)]÷[2+ (-3)]※4=[(-6)÷(-1)]※4=6※4=(6×4)÷(6+4)=2.4.7.23,3,-12,23,23.点拨:先由题意,求出a2,a3,a4,发现每三个数为一循环,而2000=3×666+2,2018=672×3+2,故a2000=a2018=a2.8.(1)①2+7-(-9-6)=24;②2×(-6)×(7-9)=24;③-6×(7-2-9)=24;④-9×2-(-6)×7=24.(2)6-(-13+7)×3=24.。
人教版七年级上册数学有理数的乘除法 同步练习题

2022-2023学年人教版七年级数学上册《1.4有理数的乘除法》同步练习题(附答案)一.选择题1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个3.下列说法:①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数;其中正确的个数是()A.2个B.3个C.4个D.5个4.有理数a,b在数轴上表示如图所示,则下列各式中正确的是()A.ab>0B.a+b<0C.b<a D.|b|>|a|5.已知|x|=6,y2=9,且xy<0,则x+y的值为()A.3或﹣3B.9或3C.15或3D.9或﹣9 6.若,则下列结论正确的是()A.a<0,b<0B.a>0,b>0C.ab>0D.ab≤07.已知三个有理数m,n,p满足m+n=0,n<m,mnp<0,则mn+np一定是()A.负数B.零C.正数D.非负数8.在下面五个说法中正确的有()①互为相反数的两个数的绝对值相等②没有最大的整数,最大的负整数是﹣1,最小的正数是1 ③一个数的相反数等于它本身,这个数是0④任何有理数的绝对值都是正数⑤几个有理数相乘,如果负因数有奇数个,则积为负数.A.1个B.2个C.3个D.4个9.若ab≠0,则+的值不可能是()A.2B.0C.﹣2D.110.两个非零有理数的和为零,则它们的商是()A.0B.﹣1C.+1D.不能确定11.已知a,b为有理数,则下列说法正确的个数为()①若a+b>0,,则a>0,b>0.②若a+b>0,,则a>0,b<0且|a|>|b|.③若a+b<0,,则a<0,b<0.④若a+b<0,,则a>0,b<0且|b|>|a|.A.1B.2C.3D.412.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A.180元B.202.5元C.180元或202.5元D.180元或200元二.填空题13.绝对值小于π的所有整数的积是.14.如果x、y都是不为0的有理数,则代数式的值为.15.绝对值小于5的所有非负整数的积是.16.给出下列判断:①若a,b互为相反数,则a+b=0②若a,b互为倒数,则ab=1③若|a|>|b|,则a>b④若|a|=|b|,则a=b⑤若|a|=﹣a,则a<0其中正确结论的个数为个.17.小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为.18.一个数与﹣4的乘积等于,则这个数是.19.已知|x|=4,|y|=6,且xy<0,x+y>0,则x﹣y=.20.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是.21.按如图程序计算,如果输入的数是﹣2,那么输出的数是.22.已知|x|=3,|y|=2,且|xy|=﹣xy,则x+y等于.三.解答题23.简便方法计算:①(﹣﹣)×(﹣27);②﹣6×+4×﹣5×.24.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.25.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.26.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.27.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).28.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小明输入4,7这两个数时,则两次输出的结果依次为,;(2)你认为当输入数等于时(写出一个即可),其输出结果为0;(3)你认为这个“数值转换机”不可能输出数;(4)有一次,小明操作的时候,输出的结果是2,聪明的你判断一下,小明输入的正整数是(用含自然数n的代数式表示).29.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负.2006年6月29日他办理了6件业务:﹣780元、﹣650元、+1250元、﹣310元、﹣420元、+240元.(1)若他早上领取备用金5000元,那么下班时应交回银行多少元?(2)若每办一件业务,银行发给业务量的0.1%作为奖励,那么这天小张应得奖金多少元?30.小莉同学有7张写着不同数字的卡片,他想从中取出若干张卡片,将卡片上的数字进行有理数的运算.(1)若取出2张卡片,应该抽取哪2张使得数字之积最大,积最大是多少呢?(2)若取出3张卡片,应该抽取哪3张使得数字之积最小,积最小是多少呢?31.某同学把7×(□﹣3)错抄为7×□﹣3,抄错后算得答案为y,若正确答案为x,则x ﹣y=.32.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案一.选择题1.解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.2.解:①两负数相乘,符号变为正号;此选项错误;②异号两数相乘,积取负号;此选项正确;③互为相反数的两数相乘,积不一定为负可能为0,故此选项错误;④两个有理数的积绝对值,等于这两个有理数的绝对值的积,此选项正确.故正确的有2个.故选:B.3.解:①整数和分数统称为有理数是正确的;②绝对值是它本身的数有正数和0,原来的说法是错误的;③两数之和可能小于每个加数,原来的说法是错误的;④如果两个数积为0,那么至少有一个因数为0是正确的;⑤没有最小的有理数,原来的说法是错误的;⑥数轴上表示互为相反数的点位于原点的两侧(0除外),原来的说法是错误的;⑦几个有理数(非0)相乘,如果负因数的个数是奇数,那么积为负数,原来的说法是错误的.故选:A.4.解:由数轴上的位置得:a<0<b,且|a|>|b|,∴ab<0,a+b<0,故选:B.5.解:∵|x|=6,y2=9,∴x=±6,y=±3,又∵xy<0,∴x=6,y=﹣3或x=﹣6,y=3,当x=6,y=﹣3时,x+y=3,当x=﹣6,y=3时,x+y=﹣3,故选:A.6.解:∵,∴,∴ab≤0,故选:D.7.解:∵m+n=0,∴m,n一定互为相反数;又∵n<m,mnp<0,∴n<0,p>0,m>0,∴mn<0,np<0,∴mn+np一定是负数.故选:A.8.解:互为相反数的两个数的绝对值相等,故①正确,没有最大的整数,最大的负整数是﹣1,最小的正数也没有,故②错误,一个数的相反数等于它本身,这个数是0,故③正确,任何有理数的绝对值都是非负数,故④错误,几个不为零的有理数相乘,如果负因数有奇数个,则积为负数,故⑤错误,故选:B.9.解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选:D.10.解:∵两个非零有理数的和为零,∴这两个数是一对相反数,∴它们符号不同,绝对值相等,∴它们的商是﹣1.故选:B.11.解:①若a+b>0,,则a>0,b>0,故①结论正确;②若a+b>0,,则a>0,b<0且|a|>|b|或a<0,b>0且|a|<|b|,故②结论错误;③若a+b<0,,则a<0,b<0,故③结论正确;④a+b<0,,则a>0,b<0且|b|>|a|或a<0,b>0且|b|<|a|,故斯结论错误.故正确的有2个.故选:B.12.解:∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选:C.二.填空题13.解:绝对值小于π的所有整数的积是(﹣3)×(﹣2)×(﹣1)×0×1×2×3=0.故答案为:0.14.解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的值是1或﹣3.故答案为:1或﹣3.15.解:绝对值小于5的所有非负整数为:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,积为0.故答案为:0.16.解:①若a,b互为相反数,则a+b=0,是正确的;②若a,b互为倒数,则ab=1,是正确的;③若|a|>|b|,当a=﹣4,b=1也成立,所以a不一定大于b,是错误的;④若|a|=|b|,则a=b或a=﹣b,是错误的,⑤若|a|=﹣a,则a≤0,是错误的,所以有2个正确的结论;故答案为:2.17.解:从6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为﹣5×4×6=﹣120.故答案为:﹣120.18.解:÷(﹣4)=﹣.故这个数是﹣.故答案为:﹣.19.解:∵|x|=4,|y|=6,∴x=±4,y=±6,又∵xy<0,x+y>0,∴x=﹣4,y=6,∴x﹣y=﹣4﹣6=﹣10,故答案为:﹣10.20.解:倒数是它本身的数是±1;相反数是它本身的数是0;绝对值是它本身的数是非负数,故答案为:1或﹣1,0,非负数.21.解:﹣2×(﹣3)=6,6×(﹣3)=﹣18,﹣18×(﹣3)=54,54×(﹣3)=﹣162,故答案为:﹣162.22.解:∵|x|=3,|y|=2,且|xy|=﹣xy,∴x<0或y<0,当x<0时,x=﹣3,y=2,x+y=﹣1,当y<0时,x=3,y=﹣2,x+y=1.故答案为:1或﹣1.三.解答题23.解:①原式==﹣6+9+2=5.②原式=×(﹣6+4﹣5)=(﹣7)=﹣3.24.解:根据题意得:[﹣++(﹣)2×(﹣6)]÷(﹣)=[﹣++×(﹣6)]×(﹣42)=﹣21+14﹣30+112=75,则原式=.25.解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.26.解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.27.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.28.解:(1)若输入的数字为4时,4>2,得到4+(﹣5)=﹣1,﹣1<2,得到相反数为1,倒数为1,输出结果为1;若输入数字为7时,7>2,得到7+(﹣5)=2,得到相反数为﹣2,绝对值为2,输出结果为2;(2)根据题意得:输入数字为0(5、10、15…5的倍数均可),结果为0;(3)这个“数值转换机”不可能输出负数;(4)归纳总结得:小明输入的正整数是5n+2.故答案为:1,2;0;负;5n+2.29.解:(1)5000﹣780﹣650+1250﹣310﹣420+240=4330(元);他下班时应交回银行4330元;(2)(780+650+1250+310+420+240)×0.1%=3.65(元),这天他应得奖金为3.65元.30.解:(1)取出﹣6和﹣4,积最大为(﹣6)×(﹣4)=24;(2)取出﹣6,3,5,积最小为(﹣6)×3×5=﹣90.31.解:根据题意得,7×(□﹣3)=x①,7×□﹣3=y②,①﹣②得,x﹣y=7×(□﹣3)﹣7×□+3=7×□﹣21﹣7×□+3=﹣18.故答案为:﹣18.32.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。
七年级数学有理数的乘除法计算题
七年级数学有理数的乘除法计算题题目 1计算:公式解析:两个负数相乘,结果为正数。
公式题目 2计算:公式解析:正数乘以负数,结果为负数。
公式题目 3计算:公式解析:任何数乘以 0 都得 0,所以公式题目 4计算:公式解析:一个负数乘以一个正数,结果为负数。
公式题目 5计算:公式解析:分数相乘,分子相乘作为分子,分母相乘作为分母,正负号根据乘法法则确定。
公式题目 6计算:公式解析:两个负数相除,结果为正数。
公式题目 7计算:公式解析:正数除以负数,结果为负数。
公式题目 8计算:公式解析:0 除以任何非 0 数都得 0,所以公式题目 9计算:公式解析:负数除以正数,结果为负数。
公式题目 10计算:公式解析:负数除以负数,结果为正数。
除以一个分数等于乘以它的倒数。
公式题目 11计算:公式解析:因为其中有一个因数 0,所以结果为 0。
题目 12计算:公式解析:先确定正负号,再约分计算。
公式题目 13计算:公式解析:先确定正负号为负,再计算数值。
公式题目 14计算:公式解析:从左到右依次计算,负数除以正数为负,负数除以负数为正。
公式题目 15计算:公式解析:从左到右依次计算,先将除法转化为乘法。
公式题目 16计算:公式解析:先将带分数化为假分数,然后从左到右依次计算。
公式题目 17计算:公式解析:先将带分数化为假分数,然后从左到右依次计算。
公式题目 18计算:公式解析:先计算括号内的值,再进行乘除运算。
公式题目 19计算:公式解析:先确定正负号为正,再计算数值。
公式题目 20计算:公式解析:先将乘法运算进行,然后再进行除法运算。
公式。
人教版七年级数学上册 1.4有理数的乘除法 同步练习题含答案
人教版七年级数学上册同步练习题 第一章有理数 1.4有理数的乘除法一、单选题1.从3-,1-,1,5,6五个数中任取两个数相乘,若所得积中的最大值为a ,最小值为b ,则a b的值为( ) A .53- B .2- C .56- D .10- 2.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a=﹣1;③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A .1个B .2个C .3个D .4个 3.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,34.如果0a b +>,0ab <( )A .a 、b 异号,且a b >B .a 、b 异号,且a b >C .a 、b 异号,其中正数的绝对值较大D .0a b >>,或0a b <<5 )A .a ﹦b -1B .a +b ﹦1C .a ﹦b +1D .a +b ﹦-1 6.小燕做了下列三道计算:①13﹣13×2=0×2=0;②6÷(23﹣32)=6÷23﹣6÷23=9﹣4=5;③﹣22﹣(﹣3)3=4﹣27=﹣23其中正确的有( )A .0道B .1道C .2道D .3道 7.下列等式成立的是( )A .6÷(3×2)=6÷3×2B .3÷(14-2)=3÷14-2C .(-12÷3)×5=-12÷3×5D .5-3×(-4)=2×(-4)8.一种金属棒,当温度是20 ℃时,长为5厘米,温度每升高或降低1 ℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10 ℃时金属棒的长度为( )A .5.005厘米B .5厘米C .4.995厘米D .4.895厘米9.对下列各算式计算结果的符号判断正确的一项是( )A .(-2)×213×(-3)<0 B .(-1)+(-13)+12>0C .(-5)-|-5|+1<0D .|-1|×(-2)>010.(-1)4×(-5)×(-12)3等于( ).A .-58B .-18 C .+18 D .+58二、填空题11.1252571(3)(1)019731173⨯-⨯-⨯⨯=______;12.5263()(1)()657⨯-⨯-⨯-=________.13.两个数的积是-5,其中一个数是-1.25,那么另一个数是_______.14.若a ,b 互为倒数,则ab 31=_______,若a ,b 互为相反数,b a +=________.15.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________三、解答题16.计算: (1)412411-÷; (2)3(72)95-÷; (3)1339(2)()1648-÷⨯; (4)1853()()334÷-÷-; (5)14(81)2()(8)49-÷⨯-÷-; (6)1331(0.25)(1)244-÷÷-⨯-.17.若a >0,b >0,且1a b >,则a >b ;若a <0,b <0,且1a b>,则a <b .以上这种比较大小的方法,叫做作商比较法.试利用作商比较法,比较1517-与1719-的大小. 18. 计算:112⎛⎫-⎪⎝⎭ ×113⎛⎫- ⎪⎝⎭ ×114⎛⎫- ⎪⎝⎭ ×…×(1-149)×(1-150). 19.阅读下列例题: 计算:2+22+23+24+25+26+ (210)解:设S =2+22+23+24+25+26+…+210,①那么2S =2×(2+22+23+24+25+…+210)=22+23+24+25+…+210+211.② ②-①,得S =211-2.所以原式=211-2.仿照上面的例题计算:3+32+33+34+ (32018)20.计算(1)331624⨯÷+; (2))532(0)21(312-÷⨯--; (3))157125(24)3153(15-⨯-+-⨯; (4))8(161571)36()1855(-⨯+-⨯-; (5))]3()6.0321(4[2-÷⨯-+---; (6)4211(10.5)[2(3)]3---⨯⨯--.21.已知aa +||b b +c c =-1,试求||ab ab +bc bc +ca ca +abc abc 的值. 22.在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积.23.小刚在课外书中看到这样一道有理数的混合运算题:计算:1117111711 364121836412183636⎛⎫⎛⎫÷+--++--÷⎪ ⎪⎝⎭⎝⎭她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题.(1)前后两部分之间存在着什么关系?(2)先计算哪步分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【参考答案】1.A 2.B 3.A 4.C 5.C 6.A 7.C 8.C 9.C 10.D11.0.12.3-.13.414.1;015.-1,-416.(1)1311-;(2)1815-;(3)103-;(4)1;(5)-2;(6)-1417.1517 1719 ->-18.1 5019.2019332-.20.(1)70;(2)123;(3)542-;(4)-385.5;(5)2.2;(6)16.21.0.22.a与b的乘积为15或-15.23.(1)前后两部分互为倒数;(2)先计算后部分比较简单;-3;(3)-13;(4)-133。
人教版七年级数学上册有理数乘除法试题(含答案)
1.4有理数乘除法1.乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.表达式:ab=ba .2.乘法结合律:三个数相乘,先把其中的两个数相乘,积相等.表达式:(ab )c=a (bc ).3.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.表达式:a (b+c )=ab+ac .4.有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0;5.倒数的定义:乘积为1的两个数互为倒数.6.除以一个数等于乘以这个数的倒数.7.两数相除,同号得正,异号得负,并把绝对值相除一、单选题1.下列四组数:①1和-1;①-1和-1;①23-和112;①23-和112-.互为倒数的是( ) A.①①B.①①C.①①D.①① 2.12的倒数的绝对值是( ) A.12 B.-12 C.2 D.-23.下列计算正确的是( )A .(-7)×(-6)=-42B .(-3)×(+5)=15C .(-2)×0=0D .−712×4=(−7+12)×4=−26 1(0)a b a b b÷=⨯≠其中4.下面的说法正确的是()A.0的倒数是0 B.0的倒数是1 C.0没有倒数D.以上说法都不对5.0.24×116×(−514)的结果是()A.1B.−25C.−110D.0.16.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,以此类推,则a2 019的值为()A.-1 007B.-1 008C.-1 009D.-2 0167.计算12﹣7×(﹣4)+8÷(﹣2)的结果是()A.36B.﹣20C.6D.﹣248.对有理数a,b,规定运算如下:a①b=a+ab,则-2①3的值为()A.-10B.-8C.-6D.-49.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A.20 B.﹣20 C.10 D.810.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷32=36×23﹣12×23=16丁:(﹣3)2÷13×3=9÷1=9A.甲B.乙C.丙D.丁二、填空题11.实数6-的倒数是_____12.若a与b互为相反数,c与d互为倒数,则2019a+2018b+bcd=_________.13.计算下列各题:(1)−2+4=___________;(2)(−3)2×59=___________;(3)−4÷12×2=___________;(4)2a−5a=___________;14.计算(﹣4)×11(1)42⎡⎤-+⎢⎥⎣⎦=_____.15.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点1A,第二次将点1A,向右移动4个单位长度到达点2A,第三次将点2A向左移动6个单位长度到达点3A,按照这种移动规律移动下去,第n次移动到点n A,如果点n A 与原点的距离等于19,那么n的值是________.三、解答题16.计算: (1)()21 3.25÷-; (2)121143⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 17.简便运算:(1)(-2)×(-8.5)×(-5); (2)17211127853⎡⎤⎛⎫⎛⎫⎛⎫-⨯-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 18.数学老师布置了一道思考题“计算:(-112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(-12)=-4+10=6,所以(-112)÷(13−56)=16. (1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(-124)÷(13−16+38). 19.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每天行驶100km需用汽油6升,汽油价7.5元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?20.规定一种新的运算:a①b=a×b-a-b2+1.例如:3①(-4)=3×(-4)-3-(-4)2+1=-30.请用上述规定计算下列各式:(1)2①5;(2)(-2)①(-5)答案1.D2.C3.C4.C5.C6.C7.A8.B9.A 10.C11.1 6 -12.013.2, 5, -16, −3a 14.3.15.18或1916.(1) 原式716757 5551616⎛⎫⎛⎫=÷-=⨯-=-⎪ ⎪⎝⎭⎝⎭.(2) 原式5553343454⎛⎫⎛⎫⎛⎫=-÷-=+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.17.(1) 原式=[(-2)×(-5)]×(-8.5)=10×(-8.5)=-85.(2) 原式878787883117875735315⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-+-⨯+-⨯-=-+=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.18.解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(13−16+38)÷(-124)= (13−16+38) ×(-24)=-8+4-9= -13,则(-124)÷(13−16+38)= -113.故答案为:(1)正确,理由见详解;(2)-1 13.19.解:(1)50+(﹣6+11﹣15+0﹣13+17+6)÷7=50(千米).答:这七天中平均每天行驶50千米(2)平均每天所需用汽油费用为50×(6÷100)×7.5=22.5(元),估计小明家一个月的汽油费用是22.5×30=675 (元).答:估计小明家一个月的汽油费用是675元.20.解:(1)2①5=2⨯5-2-52+1=-16,(2)(-2)①(-5)= (-2)⨯(-5)- (-2)-(-5)2+1=10+2-25+1=-12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 2 页
《有理数的乘除法》同步测试题
一、选择(20分)
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负
2.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定 B.由正因数的个数决定
C.由负因数的个数决定 D.由负因数和正因数个数的差为决定
3.下列运算结果为负值的是( )
A.(-7)×(-6) B.(-6)+(-4); C.0×(-2)(-3) D.(-7)-(-15)
4.下列运算错误的是( )
A.(-2)×(-3)=6 B. 1(6)32
C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24
5.若两个有理数的和与它们的积都是正数,则这两个数( )
A.都是正数 B.是符号相同的非零数 C.都是负数 D.都是非负数
6.下列说法正确的是( )
A.负数没有倒数 B.正数的倒数比自身小
C.任何有理数都有倒数 D.-1的倒数是-1
7. 如果abcd<0,a+b=0,cd>0,那么这四个数中负因数的个数至少有( )
A.4个 B.3个 C.2个 D.1个
8.下列运算结果不一定为负数的是( )
A.异号两数相乘 B.异号两数相除
C.异号两数相加 D.奇数个负因数的乘积
9.下列运算有错误的是( )
A.13÷(-3)=3×(-3) B. 1(5)5(2)2
C.8-(-2)=8+2 D.2-7=(+2)+(-7)
10.下列运算正确的是( )
A. 113422; B.0-2=-2; C.34143; D.(-2)÷(-4)=2
二、填空(20分)
11.如果两个有理数的积是正的,那么这两个因数的符号一定______.
12. 绝对值大于3且不大于7的整数有________个,其中最大的是________。
13. 比较大小:-0.87_________-87 32 43(填“>”,“=”或“<”)。
14. 设a是最小的正整数,b是最大的负整数,c是绝对值最小的数,则cab)( .
15.如果410,0ab,那么ab_____0.
16.如果5a>0,0.3b<0,0.7c<0,那么bac____0.
17.-0.125的相反数的倒数是________.
18.若a>0,则aa=_____;若a<0,则aa=____.
19.一个数的倒数是它本身,这个数是_____
20.如果a>0,b>0,c<0,d<0,则:
a·b·c·d____0 ba+dc____0 ca+db____0 (填写“>”或“<”号)
三、解答(60分)
21.计算: (20分)
(1) 38(4)24; (2) 38(4)(2)4; (3) 38(4)(2)4.
第 2 页 共 2 页
(4) 213532 (5) 111111111111234567
22(8分)的值?求且如果baabba,0,5,8.1
23. (8分)某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里
程(单位:km)依先后次序记录如下:+9、 3、 5、 +4、 8、 +6、 3、6、 4、 +10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
24.(8分)体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男
生的成绩斐然记录,其中"+"表示成绩大于15秒.
-0.8 +1 -1.2 0 -0.7 +0.6 -0.4 -0.1
问:(1)这个小组男生的达标率为多少?(达标人数达标率总人数)
(2)这个小组男生的平均成绩是多少秒?
25(8分) 已知a, b互为相反数,c, d互为倒数,m绝对值为2,求cdmcdba)(的值?
26
.
(8分) “”代表一种新运算,已知ababab,求xy的值.
其中x和y满足方程21()|13|02xy.