最新高中数学北师大版必修5《解三角形的实际应用》导学案
高中数学 必修5 5.解三角形应用举例1(测距测高)

5.解三角形的实际应用举例教学目标班级:_____ 姓名:____________1.掌握利用正、余弦定理及其推论测距、测高的几种方法.2.了解数学建模思想,培养利用数学知识解决实际问题的能力.教学过程知识要点1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.仰角和俯角:在同一铅垂平面内,水平视线和目标视线的夹角,当目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.技能点拨一、测量可到达点A与不可到达点B之间的距离.方法:1.在可到达点A一侧再取一个点C,构造;2.测量AC距离,及AC的两个邻角的度数;(“角角边”型问题)3.利用正弦定理计算_____________________例1:海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成的视角,从B岛望C 岛和A岛成的视角,则B、C的距离为多少海里?练1:为了测量河的宽度,在一岸边选定两点A和B,望对岸的标记物C,测得,,m.求河的宽度CD.二、测量两个不可到达的点A 、B 之间的距离. 方法:1.在可到达一侧取两点C 、D ,构造三个三角形:;2.在中,测边CD 、、,“角边角”问题,利用正弦定理求AC.3.在中,测、,“角边角”问题,利用正弦定理求BC.4.在中,测,“边角边”问题, 利用余弦定理求AB.例2:如图,在四边形ABCD 中,已知CD AD ⊥,,,,,求BC 的长.三、测量俯仰角求底部不可到达的建筑的高度.方法:1.分别测量在C 、D 观测A 点的仰角ACB ∠、ADB ∠,及边CD.“角角边”问题,利用正弦定理求AC ; 2.在ABC Rt ∆中,求AB.例3:如图,在山根A 处测得山顶B 的仰角,沿倾斜角为的山坡向山顶走1000m 到达S 点,又测得山顶仰角,则山高BC 为______m.作业如图,在地面上点D 处,测量某建筑物的高度,测得此建筑物顶端A 与底部B 的仰角分别为,已知建筑物底部高出地面D 点20m (即OB=20),求建筑物高度AB.DDA CDOBS。
高中数学第二章解三角形2.1.1正弦定理课件北师大版必修5

中,
sin
=
sin
=
.
sin
【做一做1】
在△ABC 中,若 3a=2bsin A,则角 B 等于
.
解析:根据已知条件及正弦定理可知 3sin A=2sin Bsin A⇔
3
π
2π
3=2sin B⇔sin B= 2 ,所以角 B 为3 或 3 .
π
2π
答案:3 或 3
知识拓展1.正弦定理的证明
Bcos A,又 sin B≠0,则 sin A= 3cos A,即 tan A= 3,又△ABC 为锐角三
π
角形,所以 A= .
3
答案:(1)7∶5∶3 (2)A
探究一
探究二
探究三
探究二
探究四
思维辨析
利用正弦定理解三角形
【例2】 在△ABC中,
(1)若A=45°,B=30°,a=2,求b,c与C.
(2)若B=30°,b=5, c=5 3 ,求A,C与a.
分析:先根据三角形中解的个数的判断方法得出解的情况,再求
出各元素的值.
解:(1)由三角形内角和定理得,
C=180°-(A+B)=180°-(45°+30°)=105°.
sin
由正弦定理得,b=
sin
1
=
sin 105°=sin(60°+45°)=
(5)在△ABC中,若 cos = 1 + cos2 ,则△ABC为等腰三角形或直
角三角形. (
)
答案:(1)
(2)
(3)× (4)× (5)
探究一
探究二
探究一
探究三
探究四
思维辨析
高中数学必修5导学案

§1.1.1 正弦定理学习目标1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题. 学习过程一、课前准备CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而.能否用一个等式把这种关系精确地表示出来?二、新课导学 ※学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c=,又sin 1cC c ==,从而在直角三角形ABC 中,sin sin sin a b cA B C==.(探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a bA B=, 同理可得sin sin c bC B =, 从而sin sin a b A B =sin c C =.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的的比相等,即sin sin a b A B =sin cC =. 试试:(1)在ABC ∆中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B = C . sin sin a B b A = D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于.[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin aA =sin c C . (3)正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b =.②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin aA B b=;sin C =.(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.三、总结提升 ※学习小结1. 正弦定理:sin sin a b A B =sin cC= 2. 正弦定理的证明方法:①三角函数的定义, 还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;②已知两边和其中一边的对角.※知识拓展 a b =2cR ==,其中2R 为外接圆直径.※自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,若cos cos A bB a=,则ABC ∆是( ).A .等腰三角形B .等腰三角形或直角三角形C .直角三角形D .等边三角形 2. 已知△ABC 中,A ∶B ∶C =1∶1∶4, 则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ). A. A B > B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c =.5. 已知∆ABC 中,∠A 60=︒,a =sin sin sin a b cA B C ++++=.1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),XX 数k 的取值X 围为.§1.1.2 余弦定理1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.==.复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学 ※探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC =,∴AC AC •=同理可得: 2222cos a b c bc A =+-, 2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=,, .[理解定理](1)若C =90︒,则cos C =,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角. 试试:(1)△ABC中,a=B=,求b.c=,150(2)△ABC中,2c=+,求A.a=,b=,1※典型例题例1. 在△ABC中,已知a=b=,45B=,求,A C和c.,则BC=________.变式:在△ABC中,若AB,AC=5,且cos C=910例2. 在△ABC中,已知三边长3b=,c,求三角形的最大内角.a=,4变式:在∆ABC中,若222=++,求角A.a b c bc三、总结提升※学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用X围:①已知三边,求三角;②已知两边及它们的夹角,求第三边.※知识拓展在△ABC中,若222+=,则角C是直角;a b c若222+<,则角C是钝角;a b c222是锐角.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:c=2,B=150°,则边b的长为().1. 已知aA. B. C. D.2. 已知三角形的三边长分别为3、5、7,则最大角为().A.60B.75C.120D.1503. 已知锐角三角形的边长分别为2、3、x,则x的取值X围是().A x<B x<5D.5<x<5C.2<x4. 在△ABC中,|AB|=3,|AC|=2,AB与AC的夹角为60°,则|AB-AC|=________.5. 在△ABC中,已知三边a、b、c满足222+-=,则∠C等于.b ac ab,求最大角的余弦值.1. 在△ABC中,已知a=7,b=8,cos C=13142. 在△ABC中,AB=5,BC=7,AC=8,求AB BC⋅的值.§1.1 正弦定理和余弦定理(练习)1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.已知三边求角,用定理;已知两边和夹角,求第三边,用定理;已知两角和一边,用定理.π,a=,b=复习2:在△ABC中,已知A=6二、新课导学※学习探究探究:在△ABC中,已知下列条件,解三角形.π,a=25,b=;①A=6π,a,b=;②A=6π,a=50,b=.③A=6思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A为锐角时).已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA试试:1. 用图示分析(A为直角时)解的情况?2.用图示分析(A为钝角时)解的情况?※典型例题例1. 在∆ABC中,已知80a=,100b=,45A∠=︒,试判断此三角形的解的情况.变式:在∆ABC中,若1a=,12c=,40C∠=︒,则符合题意的b的值有_____个.例2. 在∆ABC中,60A=︒,1b=,2c=,求sin sin sina b cA B C++++的值.变式:在∆ABC中,若55a=,16b=,且1sin2ab C=C.三、总结提升※学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※知识拓展在∆ABC中,已知,,a b A,讨论三角形解的情况:①当A为钝角或直角时,必须a b>才能有且只有一解;否则无解;②当A为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解;※自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟 满分:10分)计分:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a bb +的值=( ). A.13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ). A .135° B .90° C .120° D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ). A .锐角三角形 B .直角三角形C .钝角三角形D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B =.5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状.1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值X 围.2. 在∆ABC 中,其三边分别为a 、b 、c ,且满足2221sin 24a b c ab C +-=,求角C .§1.2应用举例—①测量距离能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题C =60°,a +b =2+,c =A 为.复习2:在△ABC 中,sin A =sin sin cos cos B CB C++,判断三角形的形状.二、新课导学 ※典型例题例1. 如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC =51︒,∠ACB =75︒. 求A 、B 两点的距离(精确到0.1m ).提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题 题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角, 应用正弦定理算出AB 边.知1:基线在测量上,根据测量需要适当确定的叫基线.例2. 如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题. 首先需要构造三角形,所以需要确定C 、D 两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离.变式:若在河岸选取相距40米的C 、D 两点,测得∠BCA =60°,∠ACD =30°,∠CDB =45°,∠BDA =60°.练:两灯塔A 、B 与海洋观察站C 的距离都等于akm ,灯塔A 在观察站C 的北偏东30°,灯塔B 在观察站C 南偏东60°,则A 、B 之间的距离为多少?三、总结提升 ※学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解. 2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.※自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟 满分:10分)计分: 1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得PA =5cm ,则球的半径等于( ). A .5cm B .C .1)cmD .6cm2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .0.5小时B .1小时C .1.5小时D .2小时3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC ∆中,已知4a =,6b =,120C =,则sin A 的值是.5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为km .1.隔河可以看到两个目标,但不能到达,的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离.2. 某船在海面A 处测得灯塔C 与A 相距103海里,且在北偏东30︒方向;测得灯塔B 与A 相距156海里,且在北偏西75︒方向. 船由A 向正北方向航行到D 处,测得灯塔B 在南偏西60︒方向. 这时灯塔C 与D 相距多少海里?§1.2应用举例—②测量高度学习目标1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称. 学习过程一、课前准备复习1:在∆ABC 中,cos 5cos 3A bB a ==,则∆ABC 的形状是怎样? 复习2:在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若::a b c =1:1:3,求A:B:C 的值.二、新课导学 ※学习探究新知:坡度、仰角、俯角、方位角方位角---从指北方向顺时针转到目标方向线的水平转角 ;坡度---沿余坡向上的方向与水平方向的夹角;仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角.探究:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:选择基线HG ,使H 、G 、B 三点共线,要求AB ,先求AE在ACE ∆中,可测得角,关键求AC 在ACD ∆中,可测得角,线段,又有α 故可求得AC※典型例题例1.如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440'︒,在塔底C 处测得A 处的俯角β=501'︒. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m )例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD . 问题1:欲求出CD ,思考在哪个三角形中研究比较适合呢?问题2:在∆BCD 中,已知BD 或BC 都可求出CD ,根据条件,易计算出哪条边的长?变式:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.三、总结提升 ※学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.※知识拓展在湖面上高h 处,测得云之仰角为α,湖中云之影的俯角为β,则云高为sin()sin()h αβαβ+-.学习评价※自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟 满分:10分)计分: 1. 在∆ABC 中,下列关系中一定成立的是( ). A .sin a b A > B .sin a b A = C .sin a b A < D .sin a b A ≥2. 在∆ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ).A .32B .33C .32D .333. D 、C 、B 在地面同一直线上,DC =100米,从D 、C 两地测得A 的仰角分别为30和45,则A 点离地面的高AB 等于( )米.A .100B .503C .50(31)-D .50(31)+4. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔基B 高出地面20m ,则塔身AB 的高为_________m .5. 在∆ABC 中,22b =,2a =,且三角形有两解,则A 的取值X 围是. 课后作业1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高.§1.2应用举例—③测量角度学习目标能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题. 学习过程一、课前准备复习1:在ABC △中,已知2c =,3C π=,且1sin 32ab C =,求a b ,.复习2:设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,3c =,求ac的值.二、新课导学 ※典型例题例1. 如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile 后到达海岛B ,然后从B 出发,沿北偏东32︒的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C ,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)分析:首先由三角形的内角和定理求出角∠ABC , 然后用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB .例2. 某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?※动手试试练1. 甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.练2. 某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升 ※学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.※知识拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理数? 因为5C πθ=-,由余弦定理知222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.学习评价※自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟 满分:10分)计分:1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90D .α+β=1802. 已知两线段2a =,22b =,若以a 、b 为边作三角形,则边a 所对的角A 的取值X 围是( ).A .(,)63ππB .(0,]6πC .(0,)2πD .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=有相等实根,且A 、B 、C 是∆的三个内角,则三角形的三边a b c 、、满足( ). A .b ac = B .a bc = C .c ab = D .2b ac =4. △ABC 中,已知a :b :c .5. 在三角形中,已知:A ,a ,b 给出下列说法: (1)若A ≥90°,且a ≤b ,则此三角形不存在 (2)若A ≥90°,则此三角形最多有一解(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90° (4)当A <90°,a <b 时三角形一定存在(5)当A <90°,且b sin A <a <b 时,三角形有两解 其中正确说法的序号是.1. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?§1.2应用举例—④解三角形1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.(1)若1,120a b B ===︒,则A 等于.(2)若a =2b =,150C =︒,则c = _____.复习2:在ABC ∆中,a =2b =,150C =︒,则高BD =,三角形面积=.二、新课导学 ※学习探究探究:在∆ABC 中,边BC 上的高分别记为h a ,那么它如何用已知边和角表示?h a =b sin C =c sin B根据以前学过的三角形面积公式S =12ah ,代入可以推导出下面的三角形面积公式,S=12ab sin C,或S= ,同理S= .新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.※典型例题例1. 在∆ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2):(1)已知a=14.8cm,c=23.5cm,B=148.5︒;(2)已知B=62.7︒,C=65.8︒,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)例2. 在∆ABC中,求证:(1)222222sin sinsina b A Bc C++=;(2)2a+2b+2c=2(bc cos A+ca cos B+ab cos C).小结:证明三角形中恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※动手试试练1. 在∆ABC中,已知28a cm=,33c cm=,45B=,则∆ABC的面积是.练2. 在∆ABC中,求证:22(cos cos)c a B b A a b-=-.三、总结提升※学习小结1. 三角形面积公式:S=12ab sin C==.2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※知识拓展三角形面积S=,这里1()p a b c=++,这就是著名的海伦公式.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).A. B.C. D.322.三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是( ).A. 3和5B. 4和6C. 6和8D. 5和73. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形. A. 等腰 B. 直角 C. 等边 D. 等腰直角4.ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是.5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面积是.1.已知在∆ABC 中,∠B =30︒,b =6,c a 及∆ABC 的面积S .2. 在△ABC 中,若sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.§1.2应用举例(练习)1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;2.三角形的面积及有关恒等式.复习2:基本解题思路是:①分析此题属于哪种类型(距离、高度、角度); ②依题意画出示意图,把已知量和未知量标在图中; ③确定用哪个定理转化,哪个定理求解; ④进行作答,并注意近似计算的要求.二、新课导学 ※典型例题例1. 某观测站C 在目标A 的南偏西25方向,从A 出发有一条南偏东35走向的公路,在C 处测得与C 相距31km 的公路上有一人正沿着此公路向A 走去,走20km 到达D ,此时测得CD 距离为21km ,求此人在D 处距A 还有多远?2. 在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高.3. 如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =7,AD =6,S △ADCAB 的长.※动手试试练1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?练2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30°,灯塔B 在观察站C 南偏东60°,则A 、B 之间的距离为多少?三、总结提升 ※学习小结1. 解三角形应用题的基本思路,方法; 2.应用举例中测量问题的强化.※ 知识拓展秦九韶“三斜求积”公式:※自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟 满分:10分)计分:1.某人向正东方向走x km 后,向右转150,然后朝新方向走3km ,结果他离出发点恰好km ,则x 等于( ).AB . CD .32.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为30,60,则塔高为()米. A .2003 B C .4003D3. 在∆ABC 中,60A ∠=︒,16AC =,面积为BC 的长度为( ).A .25B .51C .D .494. 从200米高的山顶A 处测得地面上某两个景点B 、C 的俯角分别是30º和45º,且∠BAC =45º,则这两个景点B 、C 之间的距离.B C5. 一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°45︒,则货轮的速度.1. 3.5米长的棒斜靠在石堤旁,棒的一端在离堤足1.2米地面上,另一端在沿堤上2.8米的地方,求堤对地面的倾斜角.2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m 1-),n =(cos A ,sin A ). 若m ⊥n ,且a cos B +b cos A =c sin C ,求角B .第一章 解三角形(复习)能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题. (1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数). (2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___.二、新课导学 ※典型例题例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.例2. 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1)?北 2010A B•例3. 在∆ABC 中,设tan 2,tan A c bB b-= 求A 的值.※动手试试练1. 如图,某海轮以60 n mile/h 的速度航行,在A 点测得海面上油井P 在南偏东60°,向北航行40 min 后到达B 点,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再行驶80 min 到达C 点,求P 、C 间的距离.练2. 在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两个解?无解?三、总结提升 ※学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等); 3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).※知识拓展设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是※自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟 满分:10分)计分:1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ). A .9 B .18 C .9 D .2.在△ABC 中,若222c a b ab =++,则∠C =( ). A . 60° B . 90° C .150° D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是(). A .0个 B .1个 C .2个 D .不确定的4. 在△ABC 中,a =b =1cos 3C =,则ABC S =△_______5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,则A =_______.课后作业1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求A ;(2)若23,4a b c =+=,求ABC ∆的面积.2. 在△ABC 中,,,a b c 分别为角A 、B 、C 的对边,22285bca cb -=-,a =3, △ABC 的面积为6,(1)求角A 的正弦值; (2)求边b 、c .§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学 ※学习探究探究任务:数列的概念⒈ 数列的定义:的一列数叫做数列.⒉数列的项:数列中的都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第项.4.数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用来表示,那么就叫做这个数列的通项公式.反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?5.数列的分类:1)根据数列项数的多少分数列和数列;2)根据数列中项的大小变化情况分为数列,数列,数列和数列.※典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,-12,13,-14;⑵1,0,1,0.变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴12,45,910,1617;⑵1,-1,1,-1;小结:要由数列的若干项写出数列的一个通项公式,只需观察分析数列中的项的构成规律,将项表示为项数的函数关系.例2已知数列2,74,2,…的通项公式为2nan bacn+=,求这个数列的第四项和第五项.是它的第项.小结:已知数列的通项公式,只要将数列中的项代入通项公式,就可以求出项数和项.※动手试试练1. 写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,13,15,17;⑵1 2 .练2. 写出数列2{}n n-的第20项,第n+1项.。
高中数学第二章解三角形2.1.2余弦定理课件北师大版必修5

1
2
3
4
5
1.在△ABC 中,已知 a=5,b=4,C=120°,则 c 的长为(
A. 41
C. 41或 61
)
B. 61
D. 21
1
解析: 因为 c2=a2+b2-2abcos C,所以 c2=52+42-2×5×4× - 2 =61,即
c= 61.
答案:B
1
2
3
4
5
2.在△ABC中,若bcos A=acos B,则△ABC是(
角A,B,C的对边,且b2,c2是关于x的一元二次方程x2-(a2+bc)x+m=0的
两根.
(1)求角A的大小;
(2)若 a= 3 ,设B=θ,△ABC的周长为y,求y=f(θ)的最大值.
分析:(1)利用余弦定理求出角A;(2)先利用正弦定理将△ABC的周
长y表示成关于θ的函数,再结合三角函数的性质进行求解.
探究一
探究二
探究三
思维辨析
解:(1)在△ABC中,依题意有b2+c2=a2+bc,即b2+c2-a2=bc,
所以 cos
2
+2 -2
A=
2
1
2
= ,
π
3
又因为 A∈(0,π),所以 A= .
π
3
(2)由 a= 3,A= ,及正弦定理得
sin
=
所以 b=2sin B=2sin θ,c=2sin C=2sin
1 .2
余弦定理
学 习 目 标
1.掌握余弦定理及其证明.
2.会用余弦定理解决两类解三角形问题.
3.能综合应用正弦定理与余弦定理解决三角形
数学必修5导学案:2-3 第2课时角度和物理问题

第2课时 角度和物理问题知能目标解读1.能够运用正弦定理、余弦定理等知识和方法求解三角形的实际问题.2.学会处理测量角度问题等解三角形的实际问题.3.用解三角形的知识,解决有关的实际问题,目的是进一步巩固所学知识,提高分析和解决简单的实际问题的能力、动手操作能力以及用数学语言进行交流的能力,增强应用数学的意识,以达到学习数学的目的.重点难点点拨重点:构建数学模型探求角度测量方法. 难点:将实际问题抽象成数学模型.学习方法指导要测量角的大小,可利用测角仪或通过测量出距离计算角的大小,根据所测出的三角形中的量,运用正、余弦定理和三角形中的有关性质计算出所要求的角.在计算面积和航海问题中,也都与求角的问题相联系.要清楚问题中的角的含义,如方向角、方位角、仰角、俯角等,根据已知线段和角以及要求的角,选择有充分条件的三角形求解. 知能自主梳理1.测量角度就是在三角形内利用 和 求角的正弦值或余弦值,再根据需要求出所求的角.2.坡面和水平面的夹角叫做 .3.坡面的铅直高度与水平宽度之比(如图中的LH ),叫做 .[答案] 1.正弦定理 余弦定理 2.坡角 3.坡比思路方法技巧命题方向 测量角度问题[例1] 在南海伏季渔中,我渔政船甲在A 处观测到一外国偷渔船乙在我船北偏东60°的方向,相距a 海里,偷渔船正在向北行驶,若我船速度是渔船速度的3倍,问我船应沿什么方向前进才能追上渔船?此时渔船已行驶多少海里?[解析] 如图所示,设乙船沿B 点向北行驶的速度大小为v,则甲船行驶的速度大小为3v ,两船相遇的时间为t ,则BC =vt ,AC =3vt ,在△ABC 中,∠ABC =120°,AB =a , 由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos120°,即 3v 2t 2=a 2+v 2t 2+vat ,∴2v 2t 2-vat -a 2=0,解得t 1=v a ,t 2=-va2 (舍去).∴BC =a ,∴∠CAB =30°.即甲船应沿北偏东30°的方向去追赶乙船,在乙船行驶a 海里处相遇.[说明] 解答此类问题,首先应明确各个角的含义,然后分析题意,分清已知和所求,再根据题意画出正确的示意图,将图形中的已知量与未知量之间的关系转化为三角形的边与角的关系,运用正、余弦定理求解.. 变式应用1在地面上某处,测得塔顶的仰角为θ,由此处向塔走30米,测得塔顶仰角为2θ,再向塔走103米,测得塔顶仰角为4θ,试求角θ的度数.[分析] 如图所示,求角θ,必须把角θ、2θ、4θ和边长30、103尽量集中在一个三角形中,利用方程求解.[解析] 解法一:∵∠P AB =θ,∠PBC =2θ, ∴∠BP A =θ,∴BP=AB =30, 又∵∠PBC =2θ,∠PCD =4θ, ∴∠BPC =2θ,∴CP=BC =103,在△BPC 中,根据正弦定理得:()θπθ4sin 2sin -=PBPC ,即θ2sin 310=θ4sin 30, ∴310302sin 2cos 2sin 2=θθθ,由于sin2θ≠0,∴cos2θ=23, ∵0°<2θ<90°,∴2θ=30°, ∴θ=15°.解法二:在△BPC 中,根据余弦定理得:PC 2=PB 2+BC 2-2PB ·BC ·cos2θ 把PC=BC =103,PB =30代入上式得, 300=302+(103)2-2×30×103cos2θ 化简得:cos2θ=23, ∵0°<2θ<90°,∴2θ=30°, ∴θ=15°.解法三:如下图,过顶点C 作CE ⊥PB ,交PB 于E , ∵△BPC 为等腰三角形, ∴PE =BE =15, 在Rt △BEC 中, cos2θ=2331015==BC BE , ∵0°<2θ<90°, ∴2θ=30°, ∴θ=15°.命题方向 与角度有关的问题[例2] 某渔轮在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔轮在距A 处北偏东45°方向、距离为10n mile 的C 处,并测得渔轮正沿东偏南15°的方向,以9 n mile/h 的速度向小岛B 靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.[分析] 根据题意画出图形(如图),由题意知AC =10,设渔轮向小岛B 靠近,舰艇与渔轮相遇所用时间与渔轮由C 到B ′处相遇,则∠ACB ′=120°,利用舰艇与渔轮相遇所用时间与渔轮由C 到B ′所用时间相同这一条件,解△AB ′C 即可.[解析] 设舰艇与渔轮相遇所需时间为t h ,则AB ′=21 t, B ′C =9t.在△AB ′C 中,根据余弦定理,则有 AB ′2=AC 2+B ′C 2-2AC ·B ′C cos120°, 可得212t 2=102+81t 2+2×10×9t ×21,整理,得360t 2-90t-100=0. ∴362t-9t-10=0,∴(12t+5)(3t-2)=0. ∴t=32或t=-125(舍去), ∴舰艇靠近渔轮所需的时间为32h. 此时AB ′=14 n mile,B ′C =6 n mile.由正弦定理,得︒='∠120sin sin ABB CA BC , 则sin ∠CAB ′=14236⨯,∴∠CAB ′≈21.8°,∴ 舰艇航行的方位角为北偏东66.8°.[说明] 本题应首先理解方位角的概念(方位角指的是从指北方向线顺时针旋转到目标方向线的最小正角),然后作出示意图,利用等差关系列方程求解即可,最后回答行驶的方向时,要注意正确描述方位角. 变式应用2(2010·陕西高考)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?[分析] 利用正弦定理求BD →利用余弦定理求DC →结论 [解析] 由题意知AB =5(3+3), ∠DBA =90°-60°=30°,∠DAB =45°, ∴∠ADB =105°∴sin105°=sin45°·cos60°+sin60°·cos45°=46222232122+=⨯+⨯. 在△ABD 中,由正弦定理得,ADBABDAB BD ∠=∠sin sin∴BD=()︒︒+=∠∠105sin 45sin 335sin sin ADB DAB AB()46222·335++==().3103131310=++又∠DBC =180°-60°-60°=60°. BC =203,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2×BD ×BC ×cos60°=300+1200-2×103×203×21=900. ∴CD =30(海里), 则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.探索延拓创新命题方向 正、余弦定理在物理中的应用[例3] 图所示用两根分别长52米和10米的绳子,将100N 的物体吊在水平屋顶AB 上,平衡后,G 点距屋顶距离恰好为5米,求A 处所受力的大小(绳子的重量忽略不计).[分析] 决此类问题要先依据题意将物理向量用有向线段来表示,利用向量加法的平行四边形法则,将物理问题转化为数学中向量的加法,然后由已知条件进行计算.[解析] 图所示,由已知条件可知AG 与铅直线成45°角,BG 与铅直方向成60°角,A 处所受力为f a ,在△GED 中,∠EGD =45°,∠GED =60°, ∴∠GDE =180°-45°-60°=75°,由正弦定理,得︒=︒75sin 60sin GEGD ,∴GD =︒︒75sin 60sin GE =46223100+⨯=1502-506. ∴A 处所受力大小为(1502-506)N. 变式应用3地球与金星的公转轨道分别是直径为2.98×108km 和2.14×108km 的近似圆,圆心为太阳,某时刻,地球和金星的连线与地球和太阳的连线成18°的角,如图,求此时地球与金星之间的距离(地球、金星、太阳均视为点,结果保留3个有效数字).[解析] 此时刻太阳、地球、金星的位置分别在点O 、A 、B 处,则OA =2.98×108km,OB =2.14×108km,∠A =18°,由正弦定理,得sin ∠ABO =OBOA ︒18sin ≈0.4303,∵OA >OB ,∴∠ABO =25.49°或∠ABO =154.51°, 当∠ABO =25.49°时,∠AOB =136.51°, AB =︒∠18sin sin AOBOB ≈4.77×108(km ).当∠ABO =154.51°时,∠AOB =7.49°, AB =︒∠18sin sin AOBOB ≈9.03×107(km ).答:此时地球与金星之间的距离约为4.77×108km 或9.03×107km.名师辨误做答[例4] 海岸A 处,发现北偏东45°方向,距A 处(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 处2n mile 的C 处的缉私船奉命以103n mile/h 的速度追截走私船.此时,走私船正以10n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?[误解] 缉私船用t 小时,在D 处追上走私船,在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1) 2+22-2×(3-1)×2×cos120°=6,∴BC =6.在△BCD 中,BD =10t,CD =103t,由余弦定理,得CD 2=BC 2+BD 2-2BC ·BD ×cos ∠CBD , ∴(103t) 2=6+(10t) 2-2×6×10t ×(-21), 整理,得100t 2-56t-3=0,解得t =106. ∴BD =6,又BC =6,∠CBD =120°. ∴∠BCD =∠BDC =30°.故缉私船沿东偏北30°的方向能最快追上走私船.[辨析] 述解法错误的原因在于默认为∠CBD =120°,而没有给出证明,并且多余的求出时间t . [正解] 缉私船用t 小时在D 处追上走私船.在△ABC ,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1) 2+22-2×(3-1)×2×cos120°=6, ∴BC =6.在△BCD 中,由正弦定理,得 sin ∠ABC =BC AC sin ∠BAC =22, ∴∠ABC =45°,∴BC 与正北方向垂直. ∴∠CBD =120°.在△BCD 中,由正弦定理,得BCDBD CBD CD ∠=∠sin sin ,∴BCDt ∠=︒sin 10120sin 310, ∴sin ∠BCD =21,∴∠BCD =30°. 故缉私船沿东偏北30°的方向能最快追上走私船.课堂巩固训练一、选择题1.在某测量中,设A 在B 的南偏东34°27′,则B 在A 的( ) A.北偏西34°27′ B.北偏东55°33′ C.北偏西55°32′ D.南偏西55°33′ [答案] A2.如果在测量中,某渠道斜坡的坡比为43,设α为坡角,那么cos α等于( ) A.53 B. 54 C.43 D. 34 [答案] B[解析] 由题意,得tan α=43,∴43cos sin =αα, ∴169cos sin 22=αα,即169cos cos 122=-αα,∵α为锐角, ∴cos α=54. 3.一船以226km/h 的速度向正北航行,在A 处看灯塔S 在船的北偏东45°,1小时30分后航行到B 处,在B 处看灯塔S 在船的南偏东15°,则灯塔S 与B 之间的距离为 ( ) A.66 km B.132 km C.96 km D.33 km [答案] A[解析] 如图,∠ASB =180°-15°-45°=120°,AB =226×63323=, 由正弦定理,得︒=︒45sin 120sin 633SB, ∴SB =66km. 二、填空题4.一艘船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,则经过3h ,该船实际航程为 . [答案] 6 km[解析] 如图,水流速和船速的合速度为v ,在△OAB 中: OB 2=OA 2+AB 2-2OA ·AB ·cos60°,∴OB =v =23km/h.即船的实际速度为23km/h ,则经过3h ,其路程为23×3=6 km.5.一只蚂蚁沿东北方向爬行x cm 后,再向右转105°爬行20cm ,又向右转135°,这样继续爬行可回到出发点处,那么x = . [答案]3620cm [解析] 如图△ABC 中,∠A =45°+15°=60°,∠B =45°+30°=75°,∠ACB =45°,由正弦定理知AACB x sin 20sin =∠,∴x =3620. 课后强化作业一、选择题1.已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10° [答案] B[解析] 如图,由题意知∠ACB =180°-40°-60°=80°, ∵AC =BC ,∴∠ABC =50°, ∴α=60°-50°=10°.2.甲船在B 岛的正南A 处,AB =10km ,甲船以4 km/h 的速度向正北航行,同时,乙船自B 岛出发以6km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们航行的时间是 ( ) A.7150 min B. 715h C.21.5min D.2.15h [答案] A[解析] 如图,设经过x 小时时距离为s ,则在△BPQ 中,由余弦定理知:PQ 2=BP 2+BQ 2-2BP ·BQ ·cos120°, 即s 2=(10-4x ) 2+(6x ) 2-2(10-4x )×6x ×(-21)=28x 2-20x +100. 当x =-1452=a b 时,s 2最小,此时x =145h=7150min. 3.如图所示,B 、C 、D 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 点的仰角分别为β、α(α<β),则A 点离地面的高AB 等于( )A.()αββα-sin sin sin a B. ()αββα-cos sin sin aC.()αββα-sin cos sin a D. ()αββα-cos cos cos a[答案] A [解析] 由tan α=CB a AB +,tan β=CB AB ,联立解得AB =()αββα-sin sin sin a .4.一质点受到平面上的三个力1F 、2F 、3F (单位:牛顿)的作用而处于平衡状态,已知 1F 、2F 成60°角,且1F 、2F 的大小分别为2和4,则3F 的大小为 ( ) A.6 B.2 C.25 D.27 [答案] D[解析] 由题意,得1F +2F +3F =0, ∴1F +2F 、3F =-3F , ∴(1F +2F )2=3F 2,∴1F +2F 2+21·2F ·=3F 2, ∴4+16+2×2×4×cos60°=3F 2, ∴3F 2=28, ∴|3F |=27.故选D.5.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( )A.5海里B.53海里C.10海里D.103海里 [答案] C[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD=CA =10, 在Rt △ABC 中,求得AB =5, ∴这艘船的速度是5.05=10(海里/小时). 6.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A.103米B.1003米C.203米D.30米 [答案] D[解析] 设炮台顶部为A ,两条船分别为B,C ,炮台底部为D ,可知∠BAD =45°,∠CAD =60°,∠BDC =30°,AD =30.分别在Rt △ADB ,Rt △ADC 中,求得BD =30,DC =303.在△DBC 中,由余弦定理得BC 2=DB 2+DC 2-2DB ·DC cos30°,解得BC =30.7.如图,在一幢20m 高的楼顶测得对面一塔吊顶的仰角为60°,底部的俯角为45°,那么这座塔吊的高是( )A.20(1+33)m B.20(1+3)m C.10(26+)m D.20(26+)m[答案] B[解析] 由仰角与俯角的意义可知, ∠DAE =60°,∠EAC =45°, 又EC =20m, ∴BC =AE =20m,在△AED 中,DE =AE tan60°=203m.∴塔吊的高度是20(1+3)m.8.如下图所示,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为( )A.2617海里/小时 B.346海里/小时 C.2217海里/小时 D.342海里/小时 [答案] A[解析] 由题意知PM =68,∠MPN =120°,∠N =45°, 由正弦定理知︒=︒120sin 45sin MN PM ⇒MN =68×23×2=346, ∴速度为26174634=(海里/小时). 二、填空题9.一角槽的横断面如图所示,四边形ABED 是矩形,已知∠DAC =50°,∠CBE =70°,AC =90,BC =150,则DE = .[答案] 210[解析] 由题意知∠ACB =120°, 在△ACB 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =902+1502-2×90×150×(-21)=44100. ∴AB =210,DE =210.10.在静水中划船的速度是每分钟40m ,水流的速度是每分钟20m ,如果船从岸边A 处出发,沿着与水流垂直的航线到达对岸,那么船前进的方向指向河流的上游并与河岸垂直的方向所成的角为 . [答案] 30°[解析] 水流速度与船速的合速度为v ,方向指向河岸,如图由题意可知sin α=214020==船水v v ∴α=30°.11.有一长为100米的斜坡,它的倾斜角为45°,现在要把倾斜角改成30°,则坡底要伸 米.[答案] 50(26-) [解析] 如图所示,在△ABC 中,∠C =90°, ∠ABC =45°, AB=100,∴AC =502.又在△ACD 中,∠ADC =30°, ∴∠DAB =45°-30°=15°. sin15°=sin(45°-30°)=426-. 在△ABD 中,由正弦定理,得ADBABDAB BD ∠=∠sin sin ,∴BD =2142610030sin 15sin 100-⨯=︒︒⨯=50(26-)(米). 12.在灯塔上面相距50米的两点A 、B ,测得海内一出事渔船的俯角分别为45°和60°,试计算该渔船离灯塔的距离 . [答案] 25(3+1)(米)[解析] 由题意,作出图形如图所示,设出事渔船在C 处,根据在A 处和B 处测得的俯角分别为45°和60°, 可知∠CBD =30°,∠BAC =45°+90°=135°,∴∠ACB =180°-135°-30°=15°, 又AB =50,在△ABC 中,由正弦定理,得︒=︒30sin 15sin ACAB ,∴AC =426215015sin 30sin -⨯=︒︒⨯AB =25(26-)(米). ∴出事渔船离灯塔的距离CD=()()132522·262522+=+=AC (米). 三、解答题13.甲船在A 处遇险,在甲船西南10海里B 处的乙船收到甲船的求救信号后,测得甲船正沿着北偏西15°的方向,以每小时9海里的速度向某岛靠近.如果乙船要在40分钟内追上甲船,问乙船应以多大速度、向何方向航行?(注:sin21°47′=1433) [分析] 解答本题可先画示意图,然后运用余弦定理求解速度,用正弦定理求乙船的航向. [解析] 设乙船速度为v 海里/时,在△ABC 中,由余弦定理可知: BC 2=AC 2+AB 2-2AC ·AB ·cos ∠CAB ,︒⨯⨯⨯⨯-+⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛120cos 1093221093232222v ,∴v =21海里/时. 又由正弦定理可知:BAC BAC BC sin sin =∠,∴sin B =1433120sin 2132932sin =︒⨯⨯⨯=∠⋅BC BAC AC , ∴∠B ≈21°47′,即乙船应按北偏东45°-21°47′=23°13′的方向航行.14.A 、B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD = 120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD .[解析] 如图,由于CD ⊥平面ABD ,∠CAD =45°,所以CD=AD .因此,只需在△ABD 中求出AD 即可.在△ABD 中,∠BDA =180°-45°-120°=15°,由()138004262280015sin 45sin 45sin 15sin +=-⨯=︒︒⋅=︒=︒AB AD ,AD AB 得(m ). ∵CD ⊥平面ABD ,∠CAD =45°, ∴CD=AD =800(3+1)≈2 186(m ). 答:山高CD 为2 186 m.15.如图所示,海中一小岛周围3.8 n mile 内有暗礁,一船从A 由西向东航行望见此岛在北75°东.船行8 n mile 后,望见此岛在北60°东,如果该船不改变航向继续前进,有没有触礁的危险.[解析] 在△ABC 中,AC =8,∠ACB =90°+60°=150°,∠CAB =90°-75°=15°, ∴∠ABC =15°.∴△ABC 为等腰三角形,BC=AC =8,在△BCD 中,∠BCD =30°,BC =8, ∴BD =BC ·sin30°=4>3.8.故该船没有触礁危险.16.如图所示,A 、B 两个小岛相距21n mile,B 岛在A 岛的正南方,现在甲船从A 岛出发,以9n mile/h 的速度向B 岛行驶,而乙船同时以6n mile/h 的速度离开B 岛向南偏东60°方向行驶,问行驶多少时间后,两船相距最近,并求出两船的最近距离.[解析] 行驶t 小时后,甲船行驶了9tn mile 到达C 处,乙船行驶了6tn mile 到达D 处.当9t <21,即t <37时,C 在线段AB 上,此时BC =21-9t ,在△BCD 中,BC =21-9t ,BD =6t , ∠CBD =180°-60°=120°,由余弦定理,得CD 2=BC 2+BD 2-2BC ·BD ·cos120° =(21-9t )2+(6t ) 2-2×(21-9t )·6t ·(-21) =63t 2-252t +441=63(t -2) 2+189.∴当t =2时,CD 取得最小值189=321. 当t =37时,C 与B 重合,此时CD =6×37=14>321. 当t >37时,BC =9t-21,则CD 2=(9t -21) 2+(6t) 2-2×(9t-21)×6t ×cos60°=63t 2-252t+441=63(t- 2) 2+189>189.综上可知,t =2时,CD 取最小值321,故行驶2h 后,甲、乙两船相距最近为321n mile.。
高中数学 必修5 6.解三角形应用举例2(航行面积)

6.解三角形的实际应用举例教学目标 班级:_____ 姓名:____________1.掌握利用正、余弦定理及其推论,掌握方位角,三角形面积计算等问题.2.了解数学建模思想,培养利用数学知识解决实际问题的能力.3.体会数学的实用性.教学过程一、航海问题.1.方位角的识别:(1)方位角:指从正北方向顺时针转到目标方向线的水平角.(2)方向角:从指定方向到目标方向线所成的角.例1:分别用方位角和方向角表示右图中A 、B 的方向.A 点:________________________________________B 点:________________________________________例2:甲船在A 点发现乙船在北偏东60的B 处,乙船以每小时10海里的速度向北行驶,已知甲船的速度是每小时310海里,问甲船应沿什么方向前进,才能最快与乙船相遇?练2:某渔船在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角 45,距离为10海里的C 处,并测得渔船正沿方位角为 105的方向,以10海里/小时的速度向小岛B 靠拢,我海军舰艇立即以310海里/小时的速度前去营救,求舰艇的航向和靠近渔船所需的时间.二、三角形的面积公式: 1.高底⨯⨯=21S ;(已知底和高). 2.B ac A bc C ab S sin 21sin 21sin 21===;(已知两边及夹角) 例3:已知的面积为,且,则A=_________.练3:在ABC ∆中,已知23=a ,31cos =C ,34=∆ABC S ,求边b 的长.作业 1.一艘海轮从A 处出发,以40海里/小时的速度沿南偏东40方向直线航行,30分钟后到达B 处,在C 处有座灯塔,海轮在A 处观察灯塔,其方向为南偏东 70,在B 处观察灯塔,其方向为北偏东 65,那么B 、C 之间的距离为多少?。
高中数学必修5导学案
§1.1.1 正弦定理 学习目标 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.学习过程一、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c==, 从而在直角三角形ABC 中,sin sin sin a b c A B C==.(探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a b A B=, 同理可得sin sin c b C B=, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin c C=.试试:(1)在ABC ∆中,一定成立的等式是( ).A .sin sin a A bB = B .cos cos a A b B =C . sin sin a B b A =D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C. (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b=;sin C = . (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※ 典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.三、总结提升※ 学习小结1. 正弦定理:sin sin a b A B =sin c C= 2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法.3.应用正弦定理解三角形:①已知两角和一边;②已知两边和其中一边的对角.※ 知识拓展 a b =2c R ==,其中2R 为外接圆直径.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,若cos cos A b B a=,则ABC ∆是( ). A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a =sin sin sin a b c A B C++++= .课后作业1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.§1.1.2 余弦定理1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.一、课前准备复习1:在一个三角形中,各和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学※ 探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC = ,∴AC AC •=同理可得: 2222cos a b c bc A =+-,2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , .[理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.试试:(1)△ABC 中,a =2c =,150B =,求b .(2)△ABC 中,2a =,b ,1c ,求A .※ 典型例题例1. 在△ABC 中,已知a b =,45B =,求,A C 和c .变式:在△ABC中,若AB,AC=5,且cos C=910,则BC=________.例2. 在△ABC中,已知三边长3a=,4b=,c=,求三角形的最大内角.变式:在∆ABC中,若222a b c bc=++,求角A.三、总结提升※学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:①已知三边,求三角;②已知两边及它们的夹角,求第三边.※知识拓展在△ABC中,若222+=,则角C是直角;a b c若222+<,则角C是钝角;a b c222是锐角.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 已知a c=2,B=150°,则边b的长为().A. B. C. D.2. 已知三角形的三边长分别为3、5、7,则最大角为().A.60B.75C.120D.1503. 已知锐角三角形的边长分别为2、3、x,则x的取值范围是().A x<B x<5C.2<x D.5<x<54. 在△ABC中,|AB|=3,|AC|=2,AB与AC的夹角为60°,则|AB-AC|=________.5. 在△ABC中,已知三边a、b、c满足222+-=,则∠C等于.b ac ab1. 在△ABC中,已知a=7,b=8,cos C=1314,求最大角的余弦值.2. 在△ABC中,AB=5,BC=7,AC=8,求AB BC的值.§1.1 正弦定理和余弦定理(练习)1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.一、课前准备复习1:在解三角形时已知三边求角,用定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理.复习2:在△ABC 中,已知 A =6π,a =,b =二、新课导学※ 学习探究探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =;② A =6π,a ,b =③ A =6π,a =50,b =.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A 为锐角时).试试:1. 用图示分析(A为直角时)解的情况?2.用图示分析(A为钝角时)解的情况?※典型例题例1. 在∆ABC中,已知80a=,100b=,45A∠=︒,试判断此三角形的解的情况.变式:在∆ABC中,若1a=,12c=,40C∠=︒,则符合题意的b的值有_____个.已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA例2. 在∆ABC 中,60A =︒,1b =,2c =,求sin sin sin a b c A B C++++的值.变式:在∆ABC 中,若55a =,16b =,且1sin 2ab C =C .三、总结提升※ 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※ 知识拓展在∆ABC 中,已知,,a b A ,讨论三角形解的情况 :①当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解;②当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解; sin a b A <,则无解.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a b b +的值=( ). A. 13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ).A .135°B .90°C .120°D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = .5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 .1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值范围.2. 在∆ABC中,其三边分别为a、b、c,且满足2221sin24a b cab C+-=,求角C.§1.2应用举例—①测量距离能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题一、课前准备复习1:在△ABC中,∠C=60°,a+b=2+,c=A为.复习2:在△ABC中,sin A=sin sincos cosB CB C++,判断三角形的形状.二、新课导学※典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51︒,∠ACB=75︒. 求A、B两点的距离(精确到0.1m).提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.新知1:基线在测量上,根据测量需要适当确定的叫基线.例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC,再利用余弦定理可以计算出AB的距离.变式:若在河岸选取相距40米的C、D两点,测得∠BCA=60°,∠ACD=30°,∠CDB=45°,∠BDA =60°.练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升※ 学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得PA =5cm ,则球的半径等于( ).A .5cmB .52cmC .5(21)cm +D .6cm2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .0.5小时B .1小时C .1.5小时D .2小时3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC ∆中,已知4a =,6b =,120C =,则sin A 的值是 .5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km . P A C1. 的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,A、B、C、D在同一个平面,求两目标A、B间的距离.2. 某船在海面A处测得灯塔C与A相距且在北偏东30︒方向;测得灯塔B与A相距75︒方向. 船由A向正北方向航行到D处,测得灯塔B在南偏西60︒方向. 这时灯塔C与D相距多少海里?§1.2应用举例—②测量高度1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称.一、课前准备复习1:在∆ABC中,cos5cos3A bB a==,则∆ABC的形状是怎样?复习2:在∆ABC中,a、b、c分别为∠A、∠B、∠C的对边,若::a b c=1:1:3,求A:B:C 的值.二、新课导学※学习探究新知:坡度、仰角、俯角、方位角方位角---从指北方向顺时针转到目标方向线的水平转角;坡度---沿余坡向上的方向与水平方向的夹角;仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角.探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在ACE∆中,可测得角,关键求AC在ACD∆中,可测得角,线段,又有α故可求得AC※典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角α=5440'︒,在塔底C处测得A处的俯角β=501'︒. 已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.问题1:欲求出CD,思考在哪个三角形中研究比较适合呢?问题2:在∆BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?变式:某人在山顶观察到地面上有相距2500米的A、B两个目标,测得目标A在南偏西57°,俯角是60°,测得目标B在南偏东78°,俯角是45°,试求山高.三、总结提升※ 学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.※ 知识拓展在湖面上高h 处,测得云之仰角为α,湖中云之影的俯角为β,则云高为sin()sin()h αβαβ+-.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在∆ABC 中,下列关系中一定成立的是( ).A .sin a b A >B .sin a b A =C .sin a b A <D .sin a b A ≥2. 在∆ABC 中,AB =3,BC AC =4,则边AC 上的高为( ).A .2BC .32D .3. D 、C 、B 在地面同一直线上,DC =100米,从D 、C 两地测得A 的仰角分别为30和45,则A 点离地面的高AB 等于( )米.A .100B .C .501)D .501)4. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔基B 高出地面20m ,则塔身AB 的高为_________m .5. 在∆ABC 中,b =2a =,且三角形有两解,则A 的取值范围是 .1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高.§1.2应用举例—③测量角度能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.一、课前准备复习1:在ABC △中,已知2c =,3C π=,且1sin 2ab C =a b ,.复习2:设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,3c =,求a c的值.二、新课导学※ 典型例题例1. 如图,一艘海轮从A出发,沿北偏东75︒的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32︒的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)分析:首先由三角形的内角和定理求出角∠ABC,然后用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB.例2. 某巡逻艇在A处发现北偏东45︒相距9海里的C处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?※动手试试练1. 甲、乙两船同时从B点出发,甲船以每小时1)km的速度向正东航行,乙船以每小时20km的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.练2. 某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升※ 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.※ 知识拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理数? 因为5C πθ=-,由余弦定理知222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90D .α+β=1802. 已知两线段2a =,b =若以a 、b 为边作三角形,则边a 所对的角A 的取值范围是( ).A .(,)63ππB .(0,]6π C .(0,)2π D .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=有相等实根,且A 、B 、C 是∆的三个内角,则三角形的三边a b c 、、满足( ).A .b ac =B .a bc =C .c ab =D .2b ac =4. △ABC 中,已知a :b :c ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A ,a ,b 给出下列说法:(1)若A ≥90°,且a ≤b ,则此三角形不存在(2)若A ≥90°,则此三角形最多有一解(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90°(4)当A <90°,a <b 时三角形一定存在(5)当A <90°,且b sin A <a <b 时,三角形有两解其中正确说法的序号是 .1. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2.§1.2应用举例—④解三角形1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.一、课前准备复习1:在∆ABC 中(1)若1,120a b B ===︒,则A 等于 .(2)若a =2b =,150C =︒,则c = _____.复习2:在ABC∆中,a=2b=,150C=︒,则高BD= ,三角形面积= .二、新课导学※学习探究探究:在∆ABC中,边BC上的高分别记为ha,那么它如何用已知边和角表示?ha=b sin C=c sin B根据以前学过的三角形面积公式S=12 ah,代入可以推导出下面的三角形面积公式,S=12ab sin C,或S= ,同理S= .新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.※典型例题例1. 在∆ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2):(1)已知a=14.8cm,c=23.5cm,B=148.5︒;(2)已知B=62.7︒,C=65.8︒,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)例2. 在∆ABC中,求证:(1)222222sin sinsina b A Bc C++=;(2)2a+2b+2c=2(bc cos A+ca cos B+ab cos C).小结:证明三角形中恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※动手试试练1. 在∆ABC中,已知28a cm=,33c cm=,45B=,则∆ABC的面积是.练2. 在∆ABC中,求证:22(cos cos)c a B b A a b-=-.三、总结提升※ 学习小结1. 三角形面积公式:S =12ab sin C = = . 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 知识拓展三角形面积S = 这里1()p a b c =++,这就是著名的海伦公式.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).A. B. C. D. 322. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是( ).A. 3和5B. 4和6C. 6和8D. 5和73. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形.A. 等腰B. 直角C. 等边D. 等腰直角4. ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是 .5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面积是 .课后作业2. 已知在∆ABC 中,∠B =30︒,b =6,c a 及∆ABC 的面积S .2. 在△ABC 中,若sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.§1.2应用举例(练习)1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;2.三角形的面积及有关恒等式.一、课前准备复习1:解三角形应用题的关键:将实际问题转化为解三角形问题来解决.复习2:基本解题思路是:①分析此题属于哪种类型(距离、高度、角度);②依题意画出示意图,把已知量和未知量标在图中;③确定用哪个定理转化,哪个定理求解;④进行作答,并注意近似计算的要求.二、新课导学※典型例题例1. 某观测站C在目标A的南偏西25方向,从A出发有一条南偏东35走向的公路,在C 处测得与C相距31km的公路上有一人正沿着此公路向A走去,走20km到达D,此时测得CD距离为21km,求此人在D处距A还有多远?例2. 在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30m,至点C处测得顶端A的仰角为2θ,再继续前进103m至D点,测得顶端A的仰角为4θ,求θ的大小和建筑物AE的高.例3. 如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=1532,求AB的长.D※动手试试练1. 为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,则塔AB的高度为多少m?练2. 两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升※学习小结1. 解三角形应用题的基本思路,方法;2.应用举例中测量问题的强化.※知识拓展秦九韶“三斜求积”公式:※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 某人向正东方向走x km后,向右转150,然后朝新方向走3km,结果他离出发点恰好km,则x等于().A B.C D.32.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为30,60,则塔高为( )米.A .2003BC .4003D3. 在∆ABC 中,60A ∠=︒,16AC =,面积为BC 的长度为( ).A .25B .51C .D .494. 从200米高的山顶A 处测得地面上某两个景点B 、C 的俯角分别是30º和45º,且∠BAC =45º,则这两个景点B 、C 之间的距离 .5. 一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45︒,则货轮的速度 .1. 3.5米长的棒斜靠在石堤旁,棒的一端在离堤足1.2米地面上,另一端在沿堤上2.8米的地方,求堤对地面的倾斜角.2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m 1-),n =(cos A ,sin A ). 若m ⊥n ,且a cos B +b cos A =c sin C ,求角B .第一章 解三角形(复习)能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题.一、课前准备 复习1: 正弦定理和余弦定理 (1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数).(2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .二、新课导学※ 典型例题例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.例2. 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?例3. 在∆ABC中,设tan2,tanA c bB b-=求A的值.※ 动手试试练1. 如图,某海轮以60 n mile/h 的速度航行,在A 点测得海面上油井P 在南偏东60°,向北航行40 min 后到达B 点,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再行驶80 min 到达C 点,求P 、C 间的距离.练2. 在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两个解?无解?60°30°60°A BC P北三、总结提升※学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等);3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).※知识拓展设在ABC∆中,已知三边a,b,c,那么用已知边表示外接圆半径R的公式是※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 已知△ABC中,AB=6,∠A=30°,∠B=120︒,则△ABC的面积为().A.9 B.18 C.9D.2.在△ABC中,若222c a b ab=++,则∠C=().A.60°B.90°C.150°D.120°3. 在∆ABC中,80a=,100b=,A=30°,则B的解的个数是().A.0个B.1个C.2个D.不确定的4. 在△ABC中,a=b=1cos3C=,则ABCS=△_______5. 在∆ABC中,a、b、c分别为∠A、∠B、∠C的对边,若2222sina b c bc A=+-,则A=___ ____.1. 已知A、B、C为ABC∆的三内角,且其对边分别为a、b、c,若1 cos cos sin sin2B C B C-=.(1)求A;(2)若4a b c=+=,求ABC∆的面积.2. 在△ABC中,,,a b c分别为角A、B、C的对边,2228 5 bca c b-=-,a=3,△ABC的面积为6,(1)求角A的正弦值;(2)求边b、c.§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P28 ~ P30 ,找出疑惑之处)复习1:函数,当x依次取1,2,3,…时,其函数值有什么特点?复习2:函数y=7x+9,当x依次取1,2,3,…时,其函数值有什么特点?二、新课导学※学习探究探究任务:数列的概念⒈数列的定义:的一列数叫做数列.⒉数列的项:数列中的都叫做这个数列的项.反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 来表示,那么 就叫做这个数列的通项公式. 反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?5.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.※ 典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴ 1,-12,13,-14;⑵ 1, 0, 1, 0.。
高中数学必修5导学案
§1.1.1 正弦定理学习目标1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.学习过程一、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c==, 从而在直角三角形ABC 中,sin sin sin a b c A B C==.(探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a b A B=, 同理可得sin sin c b C B=, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin c C=.试试:(1)在ABC ∆中,一定成立的等式是( ).A .sin sin a A bB = B .cos cos a A b B =C . sin sin a B b A =D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C. (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b=;sin C = . (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※ 典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.三、总结提升※ 学习小结1. 正弦定理:sin sin a b A B =sin c C= 2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法.3.应用正弦定理解三角形:①已知两角和一边;②已知两边和其中一边的对角.※ 知识拓展 a b =2c R ==,其中2R 为外接圆直径.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,若cos cos A b B a=,则ABC ∆是( ). A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a =sin sin sin a b c A B C++++= .1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.§1.1.2 余弦定理1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学※ 探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC = ,∴AC AC •=同理可得: 2222cos a b c bc A =+-,2222cos c a bab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , .[理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.试试:(1)△ABC 中,a =2c =,150B =,求b .(2)△ABC 中,2a =,b ,1c ,求A .※ 典型例题例1. 在△ABC 中,已知a b =,45B =,求,A C 和c .变式:在△ABC中,若AB,AC=5,且cos C=910,则BC=________.例2. 在△ABC中,已知三边长3a=,4b=,c=,求三角形的最大内角.变式:在∆ABC中,若222a b c bc=++,求角A.三、总结提升※ 学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:① 已知三边,求三角;② 已知两边及它们的夹角,求第三边.※ 知识拓展在△ABC 中,若222a b c +=,则角C 是直角;若222a b c +<,则角C 是钝角; 222是锐角.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a c =2,B =150°,则边b 的长为( ).A. 2B.C. 2D. 2. 已知三角形的三边长分别为3、5、7,则最大角为( ).A .60B .75C .120D .1503. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).A x <<B x <5C . 2<xD .5<x <54. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________.5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .1. 在△ABC中,已知a=7,b=8,cos C=1314,求最大角的余弦值.2. 在△ABC中,AB=5,BC=7,AC=8,求AB BC的值.§1.1 正弦定理和余弦定理(练习)1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.一、课前准备复习1:在解三角形时已知三边求角,用定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理.复习2:在△ABC 中,已知 A =6π,a =,b =二、新课导学※ 学习探究探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =;② A =6π,a ,b =③ A =6π,a =50,b =.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A 为锐角时).已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA试试:1. 用图示分析(A为直角时)解的情况?2.用图示分析(A为钝角时)解的情况?※典型例题例1. 在∆ABC中,已知80a=,100b=,45A∠=︒,试判断此三角形的解的情况.变式:在∆ABC中,若1a=,12c=,40C∠=︒,则符合题意的b的值有_____个.例2. 在∆ABC 中,60A =︒,1b =,2c =,求sin sin sin a b c A B C++++的值.变式:在∆ABC 中,若55a =,16b =,且1sin 2ab C =C .三、总结提升※ 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※ 知识拓展在∆ABC 中,已知,,a b A ,讨论三角形解的情况 :①当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解;②当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a b b +的值=( ). A. 13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ).A .135°B .90°C .120°D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = .5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 .1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值范围.2. 在∆ABC中,其三边分别为a、b、c,且满足2221sin24a b cab C+-=,求角C.§1.2应用举例—①测量距离能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题一、课前准备复习1:在△ABC中,∠C=60°,a+b=2+,c=A为.复习2:在△ABC中,sin A=sin sincos cosB CB C++,判断三角形的形状.二、新课导学※典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51︒,∠ACB=75︒. 求A、B两点的距离(精确到0.1m).提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.新知1:基线在测量上,根据测量需要适当确定的叫基线.例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC,再利用余弦定理可以计算出AB的距离.变式:若在河岸选取相距40米的C、D两点,测得∠BCA=60°,∠ACD=30°,∠CDB=45°,∠BDA =60°.练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升※ 学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得PA =5cm ,则球的半径等于( ).A .5cm B .C .1)cmD .6cm2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .0.5小时B .1小时C .1.5小时D .2小时3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC ∆中,已知4a =,6b =,120C =,则sin A 的值是 .5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .1. 的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,A、B、C、D在同一个平面,求两目标A、B间的距离.2. 某船在海面A处测得灯塔C与A相距且在北偏东30︒方向;测得灯塔B与A相距75︒方向. 船由A向正北方向航行到D处,测得灯塔B在南偏西60︒方向. 这时灯塔C与D相距多少海里?§1.2应用举例—②测量高度1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称.一、课前准备复习1:在∆ABC中,cos5cos3A bB a==,则∆ABC的形状是怎样?复习2:在∆ABC中,a、b、c分别为∠A、∠B、∠C的对边,若::a b c=1:1:3,求A:B:C 的值.二、新课导学※学习探究新知:坡度、仰角、俯角、方位角方位角---从指北方向顺时针转到目标方向线的水平转角;坡度---沿余坡向上的方向与水平方向的夹角;仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角.探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在ACE∆中,可测得角,关键求AC在ACD∆中,可测得角,线段,又有α故可求得AC※典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角α=5440'︒,在塔底C处测得A处的俯角β=501'︒. 已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.问题1:欲求出CD,思考在哪个三角形中研究比较适合呢?问题2:在∆BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?变式:某人在山顶观察到地面上有相距2500米的A、B两个目标,测得目标A在南偏西57°,俯角是60°,测得目标B在南偏东78°,俯角是45°,试求山高.三、总结提升※ 学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.※ 知识拓展在湖面上高h 处,测得云之仰角为α,湖中云之影的俯角为β,则云高为sin()sin()h αβαβ+-.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在∆ABC 中,下列关系中一定成立的是( ).A .sin a b A >B .sin a b A =C .sin a b A <D .sin a b A ≥2. 在∆ABC 中,AB =3,BC AC =4,则边AC 上的高为( ).A B C .32 D . 3. D 、C 、B 在地面同一直线上,DC =100米,从D 、C 两地测得A 的仰角分别为30和45,则A 点离地面的高AB 等于( )米.A .100B .C .501)D .501)4. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔基B 高出地面20m ,则塔身AB 的高为_________m .5. 在∆ABC 中,b =2a =,且三角形有两解,则A 的取值范围是 .1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高.§1.2应用举例—③测量角度能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.一、课前准备复习1:在ABC △中,已知2c =,3C π=,且1sin 2ab C =a b ,.复习2:设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,3c =,求a c的值.二、新课导学※ 典型例题例1. 如图,一艘海轮从A出发,沿北偏东75︒的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32︒的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)分析:首先由三角形的内角和定理求出角∠ABC,然后用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB.例2. 某巡逻艇在A处发现北偏东45︒相距9海里的C处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?※动手试试练1. 甲、乙两船同时从B点出发,甲船以每小时1)km的速度向正东航行,乙船以每小时20km的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.练2. 某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升※ 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.※ 知识拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理数? 因为5C πθ=-,由余弦定理知222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90D .α+β=1802. 已知两线段2a =,b =若以a 、b 为边作三角形,则边a 所对的角A 的取值范围是( ).A .(,)63ππB .(0,]6π C .(0,)2π D .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=有相等实根,且A 、B 、C 是∆的三个内角,则三角形的三边a b c 、、满足( ).A .b ac =B .a bc =C .c ab =D .2b ac =4. △ABC 中,已知a :b :c ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A ,a ,b 给出下列说法:(1)若A ≥90°,且a ≤b ,则此三角形不存在(2)若A ≥90°,则此三角形最多有一解(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90°(4)当A <90°,a <b 时三角形一定存在(5)当A <90°,且b sin A <a <b 时,三角形有两解其中正确说法的序号是 .1. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2.§1.2应用举例—④解三角形1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.一、课前准备复习1:在∆ABC 中(1)若1,120a b B ===︒,则A 等于 .(2)若a =2b =,150C =︒,则c = _____.复习2:在ABC∆中,a=2b=,150C=︒,则高BD= ,三角形面积= .二、新课导学※学习探究探究:在∆ABC中,边BC上的高分别记为ha,那么它如何用已知边和角表示?ha=b sin C=c sin B根据以前学过的三角形面积公式S=12 ah,代入可以推导出下面的三角形面积公式,S=12ab sin C,或S= ,同理S= .新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.※典型例题例1. 在∆ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2):(1)已知a=14.8cm,c=23.5cm,B=148.5︒;(2)已知B=62.7︒,C=65.8︒,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)例2. 在∆ABC中,求证:(1)222222sin sinsina b A Bc C++=;(2)2a+2b+2c=2(bc cos A+ca cos B+ab cos C).小结:证明三角形中恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※动手试试练1. 在∆ABC中,已知28a cm=,33c cm=,45B=,则∆ABC的面积是.练2. 在∆ABC中,求证:22(cos cos)c a B b A a b-=-.三、总结提升※学习小结1. 三角形面积公式:S =12ab sin C = = . 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 知识拓展三角形面积S =, 这里1()p a b c =++,这就是著名的海伦公式.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).A. B. C. D. 322. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是( ).A. 3和5B. 4和6C. 6和8D. 5和73. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形.A. 等腰B. 直角C. 等边D. 等腰直角4. ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是 .5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面积是 .2. 已知在∆ABC 中,∠B =30︒,b =6,c a 及∆ABC 的面积S .2. 在△ABC 中,若sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.§1.2应用举例(练习)1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;2.三角形的面积及有关恒等式.一、课前准备复习1:解三角形应用题的关键:将实际问题转化为解三角形问题来解决.复习2:基本解题思路是:①分析此题属于哪种类型(距离、高度、角度);②依题意画出示意图,把已知量和未知量标在图中;③确定用哪个定理转化,哪个定理求解;④进行作答,并注意近似计算的要求.二、新课导学※典型例题例1. 某观测站C在目标A的南偏西25方向,从A出发有一条南偏东35走向的公路,在C 处测得与C相距31km的公路上有一人正沿着此公路向A走去,走20km到达D,此时测得CD距离为21km,求此人在D处距A还有多远?例2. 在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30m,至点C处测得顶端A的仰角为2θ,再继续前进至D点,测得顶端A的仰角为4θ,求θ的大小和建筑物AE的高.例3. 如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC求AB的长.※动手试试练1. 为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,则塔AB的高度为多少m?练2. 两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升※学习小结1. 解三角形应用题的基本思路,方法;2.应用举例中测量问题的强化.※知识拓展秦九韶“三斜求积”公式:※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 某人向正东方向走x km后,向右转150,然后朝新方向走3km,结果他离出发点恰好km,则x等于().A B.C D.32.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为30,60,则塔高为( )米.A .2003BC .4003D3. 在∆ABC 中,60A ∠=︒,16AC =,面积为BC 的长度为( ).A .25B .51C .D .494. 从200米高的山顶A 处测得地面上某两个景点B 、C 的俯角分别是30º和45º,且∠BAC =45º,则这两个景点B 、C 之间的距离 .5. 一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45︒,则货轮的速度 .1. 3.5米长的棒斜靠在石堤旁,棒的一端在离堤足1.2米地面上,另一端在沿堤上2.8米的地方,求堤对地面的倾斜角.2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m 1-),n =(cos A ,sin A ). 若m ⊥n ,且a cos B +b cos A =c sin C ,求角B .第一章 解三角形(复习)能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题.一、课前准备复习1: 正弦定理和余弦定理(1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数).(2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .二、新课导学※ 典型例题例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.例2. 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?例3. 在∆ABC中,设tan2,tanA c bB b-=求A的值.※动手试试练1. 如图,某海轮以60 n mile/h 的速度航行,在A点测得海面上油井P在南偏东60°,向北航行40 min后到达B点,测得油井P在南偏东30°,海轮改为北偏东60°的航向再行驶80 min到达C点,求P、C间的距离.练2. 在△ABC中,b=10,A=30°,问a取何值时,此三角形有一个解?两个解?无解?三、总结提升※ 学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等);3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).※ 知识拓展设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ).A .9B .18C .9D .2.在△ABC 中,若222c a b ab =++,则∠C =( ).A . 60°B . 90°C .150°D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是( ).A .0个B .1个C .2个D .不确定的4. 在△ABC 中,a =b =1cos 3C =,则ABC S =△_______ 5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,则A =___ ____.1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=. (1)求A ;(2)若4a b c =+=,求ABC ∆的面积.2. 在△ABC中,,,a b c分别为角A、B、C的对边,2228 5 bca c b-=-,a=3,△ABC的面积为6,(1)求角A的正弦值;(2)求边b、c.§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P28 ~ P30 ,找出疑惑之处)复习1:函数,当x依次取1,2,3,…时,其函数值有什么特点?复习2:函数y=7x+9,当x依次取1,2,3,…时,其函数值有什么特点?二、新课导学※学习探究探究任务:数列的概念⒈数列的定义:的一列数叫做数列.⒉数列的项:数列中的都叫做这个数列的项.反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 来表示,那么 就叫做这个数列的通项公式. 反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?5.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.※ 典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴ 1,-12,13,-14;⑵ 1, 0, 1, 0.。
高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5
第五课时 三角形中的几何计算(二)一、教学目标:1、会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;2、搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;3、理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;4、通过解三角形的应用的学习,提高解决实际问题的能力。
二、教学重点:实际问题向数学问题的转化及解斜三角形的方法教学难点:实际问题向数学问题转化思路的确定三、教学方法:启发引导式四、教学过程:(一).复习回顾:1.正弦定理:R Cc B b A a 2sin sin sin === 2.余弦定理:,cos 2222A bc c b a -+=⇔bca cb A 2cos 222-+= ,cos 2222B ca a c b -+=⇔ca b a c B 2cos 222-+= C ab b a c cos 2222-+=,⇔ab c b a C 2cos 222-+= 3.解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力下面,我们将举例来说明解斜三角形在实际中的一些应用(二)、探析范例:例1:某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°、距离A 为10海里的C 处,并测得渔船正沿方位角为105°的方向,以9海里/h的速度向某小岛B 靠拢,我海军舰艇立即以21海里/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间分析:设舰艇从A 处靠近渔船所用的时间为x h,则利用余弦定理建立方程来解决较好,因为如图中的∠1,∠2可以求出,而AC 已知,BC 、AB 均可用x表示,故可看成是一个已知两边夹角求第三边问题解:设舰艇从A 处靠近渔船所用的时间为xh,则AB =21x海里,BC =9x 海里,AC =10 海里,∠ACB =∠1+∠2=45°+(180°-105°)=120°, 根据余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC ·cos120°得(21x)2=102+(9x)2-2×10×9xcos120°,即36x2-9x2×10=0解得x1=32,x2=-125 (舍去) ∴AB =21x=14,BC =9x=6再由余弦定理可得cos ∠BAC =,9286.010142610142222222=⨯⨯-+=⋅⋅-+AC AB BC AC AB ∴∠BAC =21°47′,45°+21°47′=66°47′所以舰艇方位角为66°47′,32小时即40分钟答:舰艇应以66°47′的方位角方向航行,靠近渔船则需要40分钟评述:解好本题需明确“方位角”这一概念,方位角是指由正北方向顺时针旋转到目标方向线的水平角,其范围是(0°,360°)在利用余弦定理建立方程求出x后,所求舰艇方位角就转化为一个已知三边求角的问题,故仍然利余弦定理例2:如图所示,已知半圆的直径AB =2,点C 在AB 的延长线上,BC =1,点P 为半圆上的一个动点,以DC 为边作等边△PCD ,且点D 与圆心O 分别在PC 的两侧,求四边形OPDC 面积的最大值分析:要求四边形OPDC 面积的最大值,这首先需要建立一个面积函数,问题是选谁作为自变量,注意到动点P 在半圆上运动与∠POB 大小变化之间的联系,自然引入∠POB =θ作为自变量建立函数关系四边形OPDC 可以分成△OPC 与等边△PDC ,S△OPC 可用21·OP ·OC ·sin θ表示,而等边△PDC 的面积关键在于边长求解,而边长PC 可以在△POC 中利用余弦定理表示,至于面积最值的获得,则通过三角函数知识解决解:设∠POB =θ,四边形面积为y,则在△POC 中,由余弦定理得:PC 2=OP 2+OC 2-2OP ·OC cos θ=5-4cos θ∴y=S△OPC +S△PCD =θsin 2121⨯⨯+43(5-4cos θ)=2sin(θ-3π)+435 ∴当θ-3π=2π即θ=65π时,ymax =2+435 评述:本题中余弦定理为表示△PCD 的面积,从而为表示四边形OPDC 面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性另外,在求三角函数最值时,涉及到两角和正弦公式sin (α+β)=sin αcos β+cos αsin β的构造及逆用,应要求学生予以重视(三).随堂练习:1.已知,A B 两地的距离为10,,km B C 两地的距离为20km ,现测得120ABC ∠=,则,A C 两地的距离为 ( ) A. 10km B. 103km C. 105kmD. 107km2在△ABC 中,已知角B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB解:在△ADC 中,cosC =,14113725372222222=⨯⨯-+=⋅⋅-+DC AC AD DC AC 又0<C <180°,∴sinC =1435 在△ABC 中,CAB B AC sin sin = ∴AB =.265721435sin sin =⋅⋅=AC B C 评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用2、 如图,在四边形ABCD 中,已知ADCD, AD=10, AB=14, BDA=60, BCD=135求BC 的长。
高中数学必修5《解三角形应用举例》知识全解
《解三角形应用举例》知识全解一、知识结构二、内容解析正弦定理和余弦定理在实际测量中有许多应用,如测量距离、高度、角度等.对于未知的距离、高度等,存在着许多可以供选择的测量方案,可以应用全等三角形的方法,也可以应用相似三角形的方法,或借助解直角三角形的方法,以及在本节介绍的应用两个定理的方法,等等.但是,由于在测量问题的实际背景下,某些方法也许不能实施,如因为没有足够的空间,不能用全等三角形的方法来测量,所以,一种方法会有局限性.关于三角形的有关几何计算,书中涉及了三角形的高和面积的问题.课本直接给出了计算三角形的高的公式,这三个公式实际上在正弦定理的证明过程中就已经得到.书中证明了已知三角形的两边及其夹角时的面积公式..在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形的知识,求出需要的元素,就可以求出三角形的面积.三、重点、难点.本节的教学重点是解决两个与测量有关的问题,也就是如何将实际问题转化为数学问题,并利用解斜三角形的方法予以解决..分析、探究并确定将实际问题转化为数学问题的思路是难点和关键.四、教法导引在教学设计时,对教学的每一个环节都强调了学生的主体地位.对每一个问题的解决,从问题的分析、方案的讨论、数据的获取、信息的分析、结论的得出、方法的总结,无一不是由学生亲自参与、合作完成的,而教师很好地充当了指导者和合作伙伴的角色,形成了一个自由的、开放的生态化课堂.从而运用认知建构教学理论和多元智能发展观,在教学中采用自主探究与尝试指导相结合,引导学生通过分析实践、自主探究、合作讨论得出转化(解决)问题的方法.在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较.对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法.适当安排一些实习作业,让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力.教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题.五、学法建议在实践中体验过程,在过程中感受应用,在交流中升华知识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选word文档 下载后可编辑打印
精选word文档 下载后可编辑打印
第5课时 解三角形的实际应用
1.掌握仰角、俯角、方向角、方位角等的含义.
2.学会用正弦定理、余弦定理解决距离、高度、角度等的问题.
3.学会解三角形应用题的一般步骤.
中国的“海洋国土”面积约300万平方公里,海洋权益在国家利益中的地位更加凸显
.
近几年,我国海军先后参加了为打击海盗进行的亚丁湾护航,并开始走出近海,深入远海进行
演习,实力在不断增强,为护卫我们的“蓝色国土”提供了坚实的保障.
2005年7月11日,是中国伟大航海家郑和下西洋600周年纪念日.2005年4月25日,
经国务院批准,将每年的7月11日确立为中国“航海日”,作为国家的重要节日固定下来,
海洋强国正成为13亿华夏儿女的共同梦想.
问题1:海军在海上航行时,定位船只或者自身位置的手段已经非常先进.在较早时期,
人们在海上航行时,定位船只的方法通常是根据方位角、方向角和距离来进行的.那么何为方
位角、方向角呢?
方位角: ;方向
角: .此外,在测量以及确定方位时,我们能接触到的还
有俯角: 和仰
角: ,这些是测量中的常用的名词,在我
们的学习中也会经常出现.
问题2:正弦定理与余弦定理的常见变形有哪些?
(1)a∶b∶c= ;
(2)R为△ABC外接圆的半径,则sin A= ,sin B= ,sin
C=
;
(3)余弦定理的推论可以用式子表示为cos A= ,cos
B= ,cos C= .
问题3:在解三角形应用问题时,一般在处理问题时要分几个步骤?
分如下四个步骤:
(1) :理解题意,分清已知与未知,画出示意图.
(2) :根据已知条件与求解目标,将实际问题转化为抽象的数学问题.
(3) :利用正弦定理、余弦定理有序地解三角形,求得数学模型的解.
(4) :检验上述所求的解是否具有实际意义,从而得出实际问题的解.
问题4:解斜三角形应用题的步骤是怎么样的?
应用正弦定理、余弦定理解三角形应用问题,一般是根据题意,从实际问题中抽象
出 ,通过解这些三角形,从而使实际问题得到解决.解题时应认真审题,未给图形
精选word文档 下载后可编辑打印
精选word文档 下载后可编辑打印
的,可以先画出示意图,要理解好应用题中有关的名词、术语,
如 、 、 、 等,要注意解的实际意义以及题目中给出的
精确度.
1.若P在Q的北偏东44°50',则Q在P的( ).
A.东偏北45°10' B.东偏北45°50'
C.南偏西44°50' D.南偏西45°50'
2.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行
半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的航行速
度是每小时( ).
A.5海里 B.5海里 C.10海里 D.10海里
3.在直径为30 m的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆形,且其轴截面
顶角为120°,若要光源恰好照到整个广场,则光源的高度为 m.
4.在同一平面内,在A处测得B点的仰角是50°,且到A的距离为2,C点的俯角为70°,且到
A的距离为3,求 B、C间的距离.
利用正、余弦定理求解距离问题
如图所示,隔河看两目标A,B,但不能到达,在岸边选取相距千米的C,D两点,并测得
∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之
间的距离.
利用正、余弦定理求解高度问题
如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯
角为45°,已知塔高AB=20 m,求山高CD.