平面与平面垂直的判定定理
证明两个平面垂直的判定定理

证明两个平面垂直的判定定理一、引言在几何学中,平面垂直是一个基本的概念。
两个平面垂直是指它们的法向量垂直。
本文将证明两个平面垂直的判定定理。
二、定义和符号说明1. 平面:由无限多条互不相交的直线组成的集合。
2. 法向量:与平面垂直且长度为1的向量。
3. 垂直:两个向量夹角为90度。
三、定理陈述若两个平面的法向量相互垂直,则这两个平面是垂直的。
四、证明设平面$P_1$和$P_2$分别由点集合$S_1$和$S_2$上所有点组成,它们的法向量分别为$\vec{n_1}$和$\vec{n_2}$,且$\vec{n_1}$与$\vec{n_2}$相互垂直。
首先证明,对于任意一个在平面$P_1$上的点$A\in S_1$,其到平面$P_2$上任意一点距离$d(A,P_2)$等于该点到平面$P_2$上任意一点距离$d(B,P_2)$(其中B为在平面上任意取得一个点)。
假设存在一个在平面上任意取得的点B,使得$d(A,P_2)\neqd(B,P_2)$。
则连接$A$和$B$的线段与平面$P_1$的交点为点$C$,连接$A$和$B$的线段与平面$P_2$的交点为点$D$。
由于$\vec{n_1}$与$\vec{n_2}$相互垂直,则向量$\vec{CD}$在平面上任意取得一条向量$\vec{v}$都与$\vec{n_1}$垂直。
又由于向量$\vec{AB}$在平面上任意取得一条向量$\vec{w}$都在平面内,则向量$\vec{w}$与$\vec{n_1}$垂直。
因此,向量$\vec{v}+\vec{w}$也在平面内且与$\vec{n_1}$垂直。
但是,向量$(\vec{v}+\vec{w})\cdot\cos(\angle ACB)$显然不是法向量。
这与假设矛盾,因此$d(A,P_2)=d(B,P_2)$。
接下来证明,对于任意一个在平面上的点A和B,它们到另一个平面的距离相等。
假设存在一个在平面上任意取得的点C,使得$d(A,P_2)\neqd(B,P_2)$。
两个平面垂直的判定定理

两个平面垂直的判定定理
在向量空间中,如果a,b两个平面两两垂直,那么a,b两个平面对应的法向量n1,n2正交,则称a,b两个平面垂直是满足的。
定理:
令a,b两个平面的法向量分别为n1,n2,则a,b两个平面垂直的充分必要条件是n1n2=0.
证明:
设a,b两个平面垂直,则a,b两个平面对应的法向量n1,n2正交。
取a,b两个法向量n1,n2任意一组,据定理可知,n1n2=0,即可证明a,b两个平面垂直。
反之,设n1n2=0,则n1,n2两个向量无法构建一个正交系统,因此n1,n2不能构成正交标准基;而正交标准基是构建空间的基本单位,因此不存在两个平面两两垂直,从而证明n1n2=0是a,b两个平面垂直的充分必要条件。
综上所述,故以上结论成立,两个平面垂直的判定定理正确。
扩展:
根据以上两个平面垂直的判定定理,可以进行多维空间中任意平面垂直的判定,平行的判定和平面的->.定。
在多维空间中,例如三维空间中,若x,y两个平面垂直,则前提条件必须满足的是:平面的法向量x,y满足n1n2=0。
若两个平面x,y平行,则n1=kn2,其中k是不等于零的实数,
这里n1,n2分别为平面x,y的法向量。
若 x,y 两个平面平行且垂直于 z面,则 n1n2=0且 n1n3(n3为z平面的法向量)=0。
由此可见,通过求解平面的法向量点积,可以确定几个平面之间的垂直或平行关系,从而验证多维空间中任意两个平面垂直的判定定理。
结论:
以《两个平面垂直的判定定理》为标题,本文研究了该定理的定义与证明,并且讨论了该定理在多维空间中的广泛运用。
综上所述,两个平面垂直的判定定理正确。
2.3.2平面与平面垂直的判定定理

D
C
解:过E作EF⊥CD于F, M A ∵ ABCD-A1B1C1D1是长方体, B ∴EF⊥平面BCD,且F为CD中点, 过F作FG⊥BD于G,连结EG,则EG⊥BD.(垂线法) 于是,∠EGF为二面角E-BD-C的平面角. 1 BC CD 1 2 1 GF ∵BC = 1,CD = 2, ∴ 2 BD 2 5 5 EF 5 而EF = 1,在△EFG中 tan EGF GF
0
分析 : 由直二面角的定义可知 , BDC 就 是这个直二面角的平面角 . 为直角 , 所以 BDCD . 若设 AD a ,则 BD CD a ,即可求得:
A
AB AC BC 2a , 那么 BAC 为等边三角形,
即有 BAC 60 .
0
D
C
B
例2 如图,山坡倾斜度是60度,山坡上一条路CD和坡 底线AB成30度角.沿这条路向上走100米,升高了多少?
l
B'
O' B
O
②角的两边分别在两个面内 ③角的边都要垂直于二面角的棱
1.二面角的概念
二面角的大小用它的 (4) 二面角的平面角 平面角的大小来度量,二面角的 平面角是多少度,就说这个二面 角是多少度,ok
A
l
O
A B B
注1: ①当二面角的两个面合成一个平面时,规定二面角的大小为180°; ②平面角是直角的二面角叫做直二面角,此时称两半平面所在的两 个平面互相垂直.
练习
练习 1正方体ABCD—A1B1C1D1中, 45° 二面角B1-AA1-C1的大小为_____ , 二面角B-AA1-D的大小为______ , 90° 二面角C1-BD-C的正切值是_______. 2
线面垂直、面面垂直的性质定理

何时用:已知面面垂直时. 关键:在一个平面内作(找)出垂直于交线的直线.
例4:如图,已知PA⊥平面ABC, 平面PAB⊥平面PBC,求证:BC⊥平面PAB
证明:过点A作AE⊥PB,垂足 P 为E, ∵平面PAB⊥平面PBC, 平面PAB∩平面PBC=PB, A ∴AE⊥平面PBC ∵BC 平面PBC ∴AE⊥BC ∵PA⊥平面ABC,BC 平面ABC ∴PA⊥BC ∵PA∩AE=A,∴BC⊥平面PAB B
C
推论:如果两条平行直线中的一条垂直于一个平 面,那么另一条也垂直于这个平面。
a
b,a 源自b 平面与平面垂直 (1)平面和平面垂直的定义 两个平面相交,如果它们所成的二面角是直二面角, 就说这两个平面互相垂直. (2)平面与平面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么 这两个平面相互垂直。
线面垂直则线线垂直.
线线垂直则线面垂直.
例1 已知M是菱形ABCD所在平面外一点,且 MA=MC, 求证:AC⊥平面BDM。
例2 已知AB、CD是两条不在同一个平面内 的线段,且AC=AD,BC=BD,
求证:AB⊥CD。
线面垂直的性质定理:
垂直于同一个平面的两条直线平行
符号语言: a
, b a / /b
温故知新 直线与平面垂直定义: 如果直线 l 与平面 内 的任意一条直线都垂直, 我们说直线 l 与平面 互相垂直。 直线与平面垂直判定定理: 一条直线与一个平面内的 两条相交线都垂直,则该 直线与此平面垂直.
由定义知: 若l , a 则l a
符号语言: 若l a, l b, a b O, a , b , 则l .
若a , a , 则
两平面垂直的判定与性质

05
两平面垂直的实例分析
实例一:简单的几何图形
总结词
通过观察几何图形,可以直观地判断两平面是否垂直。
详细描述
在平面几何中,常见的图形如矩形、正方形和正六面体等,它们的相对面都是垂直的。通过观察这些图形的角和 边,可以直观地判断两平面是否垂直。
பைடு நூலகம்
实例二:建筑模型的分析
总结词
建筑模型中的墙面和地面通常都是垂直的。
判定定理的应用
应用场景
判定两平面是否垂直,特别是在几何、工程和物理学等领域中,两平面垂直的判 定定理具有广泛的应用价值。
实际应用
在建筑学中,为了确保结构的稳定性和安全性,需要判定各个平面是否垂直;在 机械工程中,判定两平面是否垂直对于零件的设计和制造至关重要;在物理学中 ,两平面垂直的判定定理可用于研究物体的运动轨迹和力的分布。
判定定理的证明
• 证明过程:设两平面分别为α和β,且α内的两条相交直线a和b 分别与β垂直。在直线a上任取一点A,由于a与β垂直,作直线c 平行于a且在β内,使得A落在c上。同理,在直线b上任取一点B, 作直线d平行于b且在β内,使得B落在d上。由于a和b相交,所 以点A和B确定了一个平面γ。由于c和d都在β内,且c与d相交, 所以β包含在γ内。又因为α与γ内的两条相交直线a和b都垂直, 所以α与γ垂直。由此可知,α与β垂直。
详细描述
在建筑领域,墙面和地面通常都是垂直的。这是因为垂直的 平面能够提供更好的支撑和稳定性。通过观察建筑物的结构 和设计,可以分析出两平面是否垂直。
实例三:物理实验的现象分析
总结词
物理实验中经常涉及到两平面垂直的情 况,如重力的方向与地面垂直。
VS
详细描述
在物理实验中,很多现象都涉及到两平面 垂直的情况。例如,在研究重力时,重力 的方向总是垂直于地面向下。通过分析这 些实验的现象和结果,可以深入理解两平 面垂直的性质和应用。
面面垂直的判定定理和一般性质

面面垂直的判定定理和一般性质一、面面垂直的判定定理和一般性质1、二面角(1)半平面:平面内的一条直线把平面分成两部分,每一部分都叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
(3)二面角的表示方法①棱为$AB$,面分别为$α$,$β$的二面角记作二面角$α—AB—β$。
②棱为$l$,面分别为$α$,$β$的二面角记作二面角$α—l—β$。
③棱为$AB$,若在$α$,$β$面内分别取不在棱上的点$P$,$Q$,这个二面角可记作二面角$P—AB—Q$。
(4)二面角的平面角在二面角$α—l—β$的棱$l$上任取一点$O$,以点$O$为垂足,在半平面$α$和$β$内分别作垂直于棱$l$的射线$OA$和$OB$,则射线$OA$和$OB$构成的∠$AOB$叫做二面角的平面角。
二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
平面角是直角的二面角叫做直二面角。
二面角的平面角的取值范围为$[0°,180°]$。
2、平面与平面垂直定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,记作$α⊥β$。
判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
平面与平面垂直的一般性质和结论(1)如果两个平面互相垂直,那么与其中一个平面平行的平面垂直于另一个平面。
(2)如果两个平面互相垂直,那么其中一个平面的垂线平行于另一个平面或在另一个平面内。
(3)如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
(4)三个两两垂直的平面的交线也两两垂直。
二、面面垂直的判定定理的相关例题在正四面体$P-ABC$中,$D$、$E$、$F$分别是$AB$、$BC$、$CA$的中点,下面四个结论中不成立的是___A.$BC$ $∥$ 平面$PDF$B.$DF⊥$ 平面$PAE$C.平面$PDF⊥$ 平面$ABC$D.平面$PAE⊥$ 平面$ABC$答案:C解析:对于A选项,∵$D$、$F$分别为$AB$、$AC$的中点,∴$BC∥DF$,∵$BC\not\subset$平面$PDF$,$DF\subset$平面$PDF$,∴$BC$ $∥$ 平面$PDF$,A选项正确;对于B选项,∵$△ABC$是等边三角形,$E$为$BC$的中点,∴$AE⊥BC$,同理$PE⊥BC$,∵$AE∩PE=E$,∴$BC⊥$平面$PAE$,∵$DF∥BC$,∴$DF⊥$平面$PAE$ , B选项正确;对于C选项,设$DF∩AE=G$ ,连接$PG$,假设平面$PDF⊥$ 平面$ABC$成立,∵$D$、$F$分别为$AB$、$AC$的中点,∴$DF∥BC$,且$DF∩AE=G$,则$G$为$AE$的中点,由B选项知,$DF⊥$平面$PAE$ ,∵$PG\subset$平面$PAE$,$PG⊥DF$,若平面$PDF⊥$ 平面$ABC$,由于平面$PDF∩$ 平面$ABC=DF$,$PG\subset$平面$PDF$,∴$PG⊥$ 平面$ABC$,过点$P$作$PO⊥$平面$ABC$,重足为点$O$,则$O$为等边$△ABC$的中心,则$AO=\frac{2}{3}AE≠AG$,矛盾,所以,平面$PDF⊥$ 平面$ABC$不成立,C选项错误;对于D选项,由B选项知,$BC⊥$平面$PAE$,∵$BC\subset$平面$ABC$,∴平面$PAE⊥$平面$ABC$,D选项正确。
两个平面垂直判定定理

两个平面垂直判定定理
两个平面垂直判定定理是解析几何中的基本原理,它可以用来判断两个平面是否垂直。
下面我将以人类的视角,用简练的语言来描述这个定理。
我们先来了解一下什么是平面。
平面是一个无限扩展的二维空间,可以用一个平面上的点和法向量来唯一确定。
垂直是指两个物体或者事物之间的夹角为90度,即呈直角。
而两个平面的垂直判定定理告诉我们,如果两个平面的法向量相互垂直,那么这两个平面就是垂直的。
具体来说,设有两个平面A和B,它们的法向量分别为n1和n2。
如果向量n1和向量n2的点积为0,即n1·n2=0,那么平面A和平面B就是垂直的。
这是因为两个向量的点积等于它们的模长乘积再乘以它们的夹角的余弦值,而当夹角为90度时,余弦值为0。
这个定理在解析几何中有着广泛的应用。
例如,在空间几何中,我们可以通过两个平面的法向量来判断它们是否垂直。
在物理学中,我们可以利用这个定理来解决力的合成和分解问题。
在工程学中,我们可以利用这个定理来设计建筑物的结构。
总结起来,两个平面垂直判定定理告诉我们,如果两个平面的法向量相互垂直,那么这两个平面就是垂直的。
这个定理在解析几何中有着重要的应用,可以帮助我们解决各种问题。
希望通过这篇文章
的描述,读者能够更好地理解和应用这个定理。
平面与平面垂直的性质和判定

2. 如果平面内有一条直线垂直于平面β内的两条 直线,则⊥.( )
3. 如果平面内的一条直线垂直于平面β内的两条 相交直线, 则⊥.( )
4. 若m⊥,m ,则⊥. ( )
定义:如果两个平面相交所成的二面角是直二面角, 那么我们称这两个平面相互垂直.
9.4.3平面与平面垂直的判定与性质
平面内的一条直线把这个平面分成两个部分,其中的每一 部分都叫做半平面.
从一条直线出发的两个半平面所组成的图形叫做二面角.
B
l
O
A
以二面角的棱 l 上任意一点O为端点, 在两个半平面内分
别作垂直于棱的两条射线.射线OA和OB构成的AOB叫做二
面角的平面角.
二面角的平面角的度数就是这个二面角的度数.
A l
O
平面与平面垂直的性质定理 如果两个平面互相垂直,那么在一个平面内 垂直于它们交线的直线垂直于另一个平面.
A l
OB
符号表示:
如果 ⊥, ∩ =l,OA ,OA ⊥ l , 那么 OA⊥ .
在正方体ABCD-ABC D中, 求证:平面ACCA⊥平面BDDB.
D A
C B
D A
C B
判断:
画法:
判定定理:如果一个平面经过另一个平面的一条 垂线,那么这两个平面相互垂直.
性质定理:如果两个平面相互垂直,那么在一个 平面内垂直于它们交线的直线垂直于另一个平面.
线线垂直
线面垂直
面面垂直
二面角的大小范围是 0≤ ≤180.
计算二面角的步骤:一找,二证,三算,四答
平面与平面垂直的定义 两个平面相交,如果组成的二面角是直二
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面与平面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(线面垂直面
面垂直)如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
一个平面过另一平面的垂线,则这两个平面相互垂直。
几何描述:若a⊥β,a?α,则α⊥β
证明:任意两个平面关系为相交或平行,设a⊥β,垂足为P,那么P∈β
∵a?α,P∈a
∴P∈α
即α和β有公共点P,因此α与β相交。
设α∩β=b,∵P是α和β的公共点
∴P∈b
过P在β内作c⊥b
∵b?β,a⊥β
∴a⊥b,垂足为P
又c⊥b,垂足为P
∴∠aPc是二面角α-b-β的平面角
∵c?β
∴a⊥c,即∠aPc=90°
根据面面垂直的定义,α⊥β
感谢您的阅读,祝您生活愉快。