初二数学期末考试题及答案
人教版数学八年级上册期末考试试题含答案解析

人教版数学八年级上册期末考试试卷一、选择題(共10小题,每小题3分,总分30分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤32.若下列各组值代表线段的长度,能组成三角形的是()A.1、2、3.5B.4、5、9C.5、15、8D.20、15、83.如图,AB=AD,BC=CD,那么全等三角形的对数是()A.1B.2C.3D.44.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.65.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.6x3÷(﹣3x2)=2x D.3﹣2=6.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C7.下列图形中,不一定是轴对称图形的是()A.直角三角形B.线段C.钝角D.等腰三角形8.如果=3,则=()A.B.xy C.4D.9.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9二、填空題(共8小题,每小題3分,满分24分)11.若分式的值为0,则x的值为.12.三角形三边的长分别为8、19、a,则边a的取值范围是.13.已知x2+mx+9是完全平方式,则常数m等于.14.已知点A(a,1)和B(2,b)关于x轴对称,则(a+b)2015=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.分解因式:3a3﹣12a=.17.在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠ADE=50°,则∠B=.18.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是.三、解答題(本大题共6小题,共计46分)19.解方程:﹣=0.20.一个多边形内角和是一个四边形内角和的4倍,请求出这个多边形的边数.21.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.22.先化简,再求值:÷(1+),其中x=﹣1.23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.24.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?参考答案与试题解析一、选择題(共10小题,每小题3分,总分30分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤3【考点】分式有意义的条件.【专题】压轴题.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选C.【点评】本题考查的是分式有意义的条件.当分母不为0时,分式有意义.2.若下列各组值代表线段的长度,能组成三角形的是()A.1、2、3.5B.4、5、9C.5、15、8D.20、15、8【考点】三角形三边关系.【专题】探究型.【分析】根据三角形两边之和大于第三边和两边之差小于第三边可以判断选项中的数据是否能组成三角形,本题得以解决.【解答】解:∵1+2<3.5,∴选项A中的数据不能组成三角形;∵4+5=9,∴选项B中的数据不能组成三角形;∵5+8<15∴选项C中的数据不能组成三角形;∵15+8>20∴选项D中的数据能组成三角形;故选D.【点评】本题考查三角形三边的关系,解题的关键是明确三角形两边之和大于第三边和两边之差小于第三边.3.如图,AB=AD,BC=CD,那么全等三角形的对数是()A.1B.2C.3D.4【考点】全等三角形的判定.【分析】先根据SSS推出△ABC≌△ADC,推出∠1=∠2,∠3=∠4,再根据SAS即可推出△ABO≌△ADO,△CBO≌△CDO.【解答】解:全等三角形有△ABC≌△ADC,△ABO≌△ADO,△CBO≌△CDO,共3对,故选C.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理是:SAS,ASA,AAS,SSS.4.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.6【考点】含30度角的直角三角形.【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再30°角所对的直角边等于斜边的一半即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故选A.【点评】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,含30度角的直角三角形性质的应用,关键是求出BD的长和得出CD=BD.5.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.6x3÷(﹣3x2)=2x D.3﹣2=【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【分析】根据幂的乘方、单项式的乘方、除法法则以及负指数次幂的意义即可判断.【解答】解:A、(x3)2=x6,选项错误;B、2a﹣5•a3=2a﹣2=,选项错误;C、6x3÷(﹣3x2)=﹣2x,选项错误;D、3﹣2==,选项正确.故选D.【点评】本题考查了单项式除单项式,用整式乘除解决实际问题时要注意分清量与量之间存在的数量关系.6.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C【考点】全等三角形的判定.【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.【解答】解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.【点评】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.7.下列图形中,不一定是轴对称图形的是()A.直角三角形B.线段C.钝角D.等腰三角形【考点】轴对称图形.【分析】根据轴对称图形的概念容易得出结果.【解答】解:B、C、D都是轴对称图形;A、不一定是轴对称图形,若三角形不是等腰直角三角形就不是轴对称图形.故选:A.【点评】本题考查了轴对称图形的知识,注意掌握轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.8.如果=3,则=()A.B.xy C.4D.【考点】分式的基本性质.【专题】计算题.【分析】由=3,得x=3y,再代入所求的式子化简即可.【解答】解:由=3,得x=3y,把x=3y代入==4,故选C.【点评】找出x、y的关系,代入所求式进行约分.9.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.二、填空題(共8小题,每小題3分,满分24分)11.若分式的值为0,则x的值为3.【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x﹣3=0且x+3≠0,解得x=3.故答案为:3.【点评】本题主要考查了分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.三角形三边的长分别为8、19、a,则边a的取值范围是11<a<27.【考点】三角形三边关系.【专题】推理填空题.【分析】根据三角形中的两边之和大于第三边和两边之差小于第三边进行计算即可解答本题.【解答】解:∵三角形三边的长分别为8、19、a,∴19﹣8<a<19+8,∴11<a<27,故答案为:11<a<27.【点评】本题考查三角形的三边关系,解题的关键是明确两边之和大于第三边和两边之差小于第三边.13.已知x2+mx+9是完全平方式,则常数m等于±6.【考点】完全平方式.【分析】完全平方式有a2+2ab+b2和a2﹣2ab+b2两个,根据已知得出mx=±2•x•3,求出即可.【解答】解:x2+mx+9=x2+mx+32,∵x2+mx+9是完全平方式,∴mx=±2•x•3,解得:m=±6,故答案为:±6.【点评】本题考查了对完全平方式的应用,能求出符合的两个值是解此题的关键,注意:完全平方式有a2+2ab+b2和a2﹣2ab+b2两个.14.已知点A(a,1)和B(2,b)关于x轴对称,则(a+b)2015=1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得a、b的值,根据1的任何次幂都是1,可得答案.【解答】解:由点A(a,1)和B(2,b)关于x轴对称,得a=2,b=﹣1.(a+b)2015=1,故答案为:1.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.分解因式:3a3﹣12a=3a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠ADE=50°,则∠B=70°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线的概念得到∠AED=90°,求出∠A=40°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∠ADE=50°,∴∠A=40°,又AB=AC,∴∠B=∠C=70°,故答案为:70°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.18.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是8cm.【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,再根据“HL”证明△ACD和△AED 全等,根据全等三角形对应边相等可得AC=AE,然后求出△BED的周长=AB,即可得解.【解答】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴△BED的周长=DE+BD+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=8cm,∴△BED的周长是8cm.故答案为:8cm.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质并求出△BED的周长=AB是解题的关键.三、解答題(本大题共6小题,共计46分)19.解方程:﹣=0.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣8﹣3x=0,解得:x=8,经检验x=8是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.一个多边形内角和是一个四边形内角和的4倍,请求出这个多边形的边数.【考点】多边形内角与外角.【分析】设这个多边形的边数为n,根据n边形的内角和的计算公式(n﹣2)•180°列出方程,解方程即可.【解答】解:设这个多边形的边数为n,由题意得,(n﹣2)×180°=360°×4,解得:n=10.答:这个多边形的边数为10.【点评】本题考查的是多边形的内角和和外角和的计算,掌握n边形的内角和的计算公式:(n﹣2)•180°是解题的关键.21.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.22.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE 和△ACE全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.24.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.。
黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或203.当分式有意义时,的取值范围是()A.B.C.D.4.当a≠0时,下列式子一定成立的是()A.B.C.D.5.若x2-y2=30,且x-y=-5,则x+y的值是()A.-6B.-5C.6D.56.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4B.2C.-2D.±27.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(a+b)(b-a)C.(-a+b)(a-b)D.(x2-y)(x+y2)8.点M(-2,1)关于y轴对称的点的坐标是()A.(-2,-1)B.(2.1)C.(2,-1)D.(1.-2)9.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BF⊥AD,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是()A.4B.3C.2D.110.如图,把一个等边三角形纸片,剪掉一个角后,所得到一个四边形;则图形中∠1+∠2的度数是.二、填空题1.一个等腰三角形有两条边长分别为5和8,则它的周长是.2.分解因式:= .3.如图,AB比AC长2,DE垂直平分BC,△ACD周长为14,则= ____.4.如图,已知,且,要使,你添加的条件是.5.若a-b=1,则代数式a2-b2-2b的值为.6.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC="8" cm,BD="5" cm,那么点D到直线AB的距离 cm.7.如图,边长为()的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为4,则另一边长是.8.若关于x的方程无解,则m=__________.9.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E,若AB=6,AC=5,则△ADE的周长是_________.三、计算题计算:;四、解答题1.解方程:2.如图,已知,(1)画出与关于轴对称的图形;(2)写出各顶点坐标.3.如图所示,D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.4.购进某种干果,由于销售状况良好,超市又用9000元第二次购进该干果,但第二次的进价比第一次的提髙了20%,第二次购进干果数量是第一次的2倍还多300千克.(1)求该干果的第一次进价是每千克多少元?(2)百姓超市按每千克9元的价格出售,当大部分干果售出后,余下的按售价的8折售完,若两次销售这种干果的利润不少于5820元,则最多余下多少千克干果按售价的8折销售.5.已知:Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)请找出图中其他的全等三角形;(2)求证:CD=EB;(3)求证:CF=EF.6.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.黑龙江初二初中数学期末考试答案及解析一、选择题1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】C.【解析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.根据轴对称图形的定义可得第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,故选C.【考点】轴对称图形的定义.2.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或20【答案】C.【解析】分两种情况:①若4是腰,则另一腰也是4,底是8,但是4+4=8,故不构成三角形,舍去.②若4是底,则腰是8,8.4+8>8,符合条件.成立.所以三角形的周长为:4+8+8=20.故选C.【考点】1.等腰三角形的性质;2.三角形的三边关系.3.当分式有意义时,的取值范围是()A.B.C.D.【答案】D.【解析】试题解析:当分母x﹣2≠0,即x≠2时,分式有意义.故选D.【考点】分式有意义的条件.4.当a≠0时,下列式子一定成立的是()A.B.C.D.【答案】C.【解析】试题解析:A、不是同类项,不能合并,故A选项错误;B、a2•a3=a5,故B选项错误;C、(a3)2=a6,故C选项正确;D、a6÷a2=a4,故D选项错误;故选C.【考点】1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.5.若x2-y2=30,且x-y=-5,则x+y的值是()A.-6B.-5C.6D.5【答案】A【解析】根据平方差公式可得:x2-y2=(x+y)(x-y)=30,则-5(x+y)=30,则x+y=-6.故选A.【考点】平方差公式的应用.6.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4B.2C.-2D.±2【答案】D【解析】根据完全平方公式可得:k2=4,则k=±2.故选D【考点】完全平方公式.7.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(a+b)(b-a)C.(-a+b)(a-b)D.(x2-y)(x+y2)【答案】B【解析】平方差公式是指:(a+b)(a-b)=a2-b2.故选B.【考点】平方差公式8.点M(-2,1)关于y轴对称的点的坐标是()A.(-2,-1)B.(2.1)C.(2,-1)D.(1.-2)【答案】B.【解析】试题解析:点M(-2,1)关于x轴对称的点的坐标是(2,1),故选B.【考点】关于x轴、y轴对称的点的坐标.9.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BF⊥AD,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是()A.4B.3C.2D.1【答案】A.【解析】①∵BC=AC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AD平分∠BAC,∴∠BAE=∠EAF=22.5°,∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,∴∠EAF=∠FBC,∵BC=AC,∠EAF=∠FBC,∠BCF=∠AEF,∴Rt△ADC≌Rt△BFC,∴AD=BF;故①正确;②∵①中Rt△ADC≌Rt△BFC,∴CF=CD,故②正确;③∵①中Rt△ADC≌Rt△BFC,∴CF=CD,AC+CD=AC+CF=AF,∵∠CBF=∠EAF=22.5°,∴在Rt△AEF中,∠F=90°﹣∠EAF=67.5°,∵∠CAB=45°,∴∠ABF=180°﹣∠F﹣∠CAB=180°﹣67.5°﹣45°=67.5°,∴AF=AB,即AC+CD=AB,故③正确;④由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BE=BF,∵在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF,故④错误;⑤由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BF=2BE,故⑤正确.所以①②③⑤四项正确.故选A.【考点】1.全等三角形的判定与性质;2.角平分线的性质;3.等腰直角三角形;4.综合题.10.如图,把一个等边三角形纸片,剪掉一个角后,所得到一个四边形;则图形中∠1+∠2的度数是.【答案】240°.【解析】试题解析:∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠1+∠2=360°-120°=240°.【考点】1.多边形内角与外角;2.等边三角形的性质.二、填空题1.一个等腰三角形有两条边长分别为5和8,则它的周长是.【答案】18或21.【解析】试题解析:若腰长为5,底边长为8,则周长为:5+5+8=18;若腰长为8,底边长为5,则周长为:5+8+8=21;则它的周长是:18或21.【考点】1.等腰三角形的性质;2.三角形三边关系.2.分解因式:= .【答案】(2x+3y)(2x﹣3y).【解析】试题解析:原式=(2x+3y)(2x﹣3y).【考点】因式分解-运用公式法.3.如图,AB比AC长2,DE垂直平分BC,△ACD周长为14,则= ____.【答案】28.【解析】∵DE垂直平分BC,∴BD=DC,∵△ACD周长为14,∴AC+AD+DC=AC+AD+BD=AC+AB=14,∵AB-AC=2,∴AB2-AC2=(AB+AC)(AB-AC)=14×2=28.【考点】线段垂直平分线的性质.4.如图,已知,且,要使,你添加的条件是.【答案】AC=DF.【解析】试题解析:添加的条件是AC=DF.∵AC∥DF,∴∠ACB=∠F ∵BE=CF,∴BC="EF" ,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)【考点】全等三角形的判定.5.若a-b=1,则代数式a2-b2-2b的值为.【答案】1.【解析】试题解析:∵a-b=1,∴a2-b2-2b=(a+b)(a-b)-2b=a+b-2b=a-b=1.【考点】平方差公式.6.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC="8" cm,BD="5" cm,那么点D到直线AB的距离 cm.【答案】3cm.【解析】试题解析:过点D作DE⊥AB于点E.∵BC=8cm,BD=5cm,CD=BC-BD=3cm;又∵∠C=90°,AD平分∠CAB,∴DE=CD=3cm,即D点到直线AB的距离是3cm.【考点】角平分线的性质.7.如图,边长为()的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为4,则另一边长是.【答案】2m+4.【解析】试题解析:设拼成的矩形的另一边长为x,则4x=(m+4)2-m2=(m+4+m)(m+4-m),解得x=2m+4.【考点】平方差公式的几何背景.8.若关于x的方程无解,则m=__________.【答案】1.【解析】试题解析:原方程可化为x-3=-m,∴x=3-m,由已知得:3-m=2,∴m=1.【考点】分式方程的解.9.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E,若AB=6,AC=5,则△ADE的周长是_________.【答案】11【解析】由题意可得:△BDO和△COE是等腰三角形,OD=BD,OE=EC,则△ADE的周长=AD+DE+AE=AD+DO+OE+AE=AD+BD+AE+CE=AB+AC=6+5=11.【考点】1.角平分线的性质;2.等腰三角形的性质.三、计算题计算:;【答案】3.【解析】先把整数指数幂算出来,然后按照有理数混合计算法则计算即可;试题解析:原式=1+4+(-2)="5-2=3" ;【考点】1.零指数幂的计算;2.实数的计算.四、解答题1.解方程:【答案】x=3.【解析】观察方程可得最简公分母是:(x﹣2)(x+2),两边同时乘最简公分母可把分式方程化为整式方程来解答.试题解析:方程两边同乘以(x﹣2)(x+2),得(x﹣2)2+4=(x﹣2)(x+2),解得x=3.经检验:x=3是原方程的解. 【考点】解分式方程.2.如图,已知,(1)画出与关于轴对称的图形;(2)写出各顶点坐标.【答案】(1)作图见解析;(2)A 1(0,2),B 1(2,4),C 1(4,1). 【解析】(1)分别作出点A 、B 、C 关于y 轴对称的点,然后顺次连接; (2)根据图示以及直角坐标系的特点写出个顶点的坐标;试题解析:(1)如图所示:(2)由图可知,A 1(0,2 ),B 1( 2,4),C 1( 4,1 ). 【考点】作图-轴对称变换.3.如图所示,D 、E 在BC 上,且BD=CE ,AD=AE ,求证:AB=AC .【答案】证明见解析.【解析】可由SAS 证得△ABE ≌△ACD ,即可得出结论.试题解析:∵AD=AE ,∴∠ADE=∠AED , ∵BD=CE , ∴BE=CD , ∴△ABE ≌△ACD (SAS ),∴AB=AC . 【考点】全等三角形的判定与性质.4.购进某种干果,由于销售状况良好,超市又用9000元第二次购进该干果,但第二次的进价比第一次的提髙了20%,第二次购进干果数量是第一次的2倍还多300千克. (1)求该干果的第一次进价是每千克多少元?(2)百姓超市按每千克9元的价格出售,当大部分干果售出后,余下的按售价的8折售完,若两次销售这种干果的利润不少于5820元,则最多余下多少千克干果按售价的8折销售.【答案】(1)该种干果的第一次进价是每千克5元.(2)最多余下600千克干果按售价的8折销售.【解析】(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解.(2)根据利润=售价-进价列出不等式并解答.试题解析:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元.(2)设当大部分干果售出后,余下a千克按售价的8折售完,由题意得:解得a≤600.答:当大部分干果售出后,余下的按售价的8折售完,若两次销售这种干果的利润不少于5820元,则最多余下600千克干果按售价的8折销售.【考点】1.分式方程的应用;2.一元一次不等式的应用.5.已知:Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)请找出图中其他的全等三角形;(2)求证:CD=EB;(3)求证:CF=EF.【答案】(1)△ADC≌△ABE,△CDF≌△EBF;(2)证明见解析;(3)证明见解析.【解析】(1)根据Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,∠ACB=∠AED,∠BAC=∠DAE,从而推出∠CAD=∠EAB,△ACD≌△AEB,△CDF≌△EBF,(2)由△ADC≌△ABE,得到CD=EB.(3)由△CDF≌△EBF,得到CF=EF.试题解析:(1)△ADC≌△ABE,△CDF≌△EBF;(2)∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠BAC=∠DAE,∴∠BAC-∠DAB=∠DAE-∠DAB,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS),∴CD=BE.(3)∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB-∠DAB=∠EAD-∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB,∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS)∴CF=EF.【考点】全等三角形的判定与性质.6.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【答案】(1)证明见解析;(2)BE=CM.证明见解析.【解析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.试题解析:(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,,∴△AEC≌△CGB(ASA),∴AE=CG,(2)BE=CM.∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【考点】1.全等三角形的判定与性质;2.等腰直角三角形.。
2023北京密云区初二(下)期末数学试题及答案

2023北京密云初二(下)期末数 学2023.6考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用2B 铅笔.4.考试结束,请将本试卷和答题纸一并交回.一、选择题 (本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的.1. 在函数中,自变量x 的取值范围是( )A .x ≠2B .x>2C .x <2D .x ≥2 2. 下列各组数中,能作为直角三角形三边长度的是( )A .1,2,3B .2,3,4C .3,4,5D .4,5,63. 下列二次根式中,为最简二次根式的是( )ABD .4. 下列各点中,在直线上的点是()A .(1,3)B .(3,1)C .(1,-3) D .(3,-1)5. 已知□ABCD 中,∠A +∠C=140°,则∠B 的度数为( )A .100°B .110°C .120°D .140°6.如图,一次函数y =-2x +4与y =kx +b (k ≠0)的图象交于点P ,则关于x 、y 的方程组 的解是( )A . 32x y =⎧⎨=-⎩B .C .D .7.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板离地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”若设秋千绳索长为x 尺,则可列方程为( ) A . B .C .D . y =3y x =-24y x y kx b=-+⎧⎨=+⎩23x y =-⎧⎨=⎩23x y =⎧⎨=-⎩32x y =-⎧⎨=⎩()222101x x +=+()222110x x ++=()222104x x +=-()222410x x -+=8. 如图1,动点P 从点A 出发,在边长为1的小正方形组成的网格平面内运动.设点P 经过的路程为s ,点P 到直线l 的距离为d ,已知d 与s 的关系如图2所示.则下列选项中,可能是点P 的运动路线的是( )二、填空题(本题共16分,每小题2分)9.10.计算)32)(32(-+的结果是 .11. 将函数y=5x 的图象沿y 轴向上平移2个单位长度后,所得图象对应的函数表达式为 .12. 若实数x ,y 2(0y =,则xy 的值是 .13. 函数y =kx +b (k ≠0)的图象上有两个点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,y 1>y 2,写出一个满足条件的函数表达式 .14. 如图,在2×3的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A 为圆心,AB 长为半径作弧交网格线于点D ,则CD 的长为 .15. 某测评中心分别从操作系统、硬件规格、屏幕尺寸和电池寿命四个方面对新投入市场的两款智能手机进行测评.各项得分均按十分制计,然后再按操作系统占30%,硬件规格占30%、屏幕尺寸占20%、电池寿命占20%,计算这两款智能手机的综合得分.这两款智能手机的各项得分如下表所示:手机款式操作系统硬件规格屏幕尺寸电池寿命A 7863B 6845由此计算得到A 款智能手机的综合得分为6.3,B 款智能手机的综合得分为 .16. 为增强员工身体素质,营造“健康生活、快乐工作”的氛围,某公司开展了健步走计步打卡活动.以下统计图反映的是某位员工6月1日—14日连续两个星期健步走的步数.根据统计图提供的信息,有下列三个结论:=图1图2① 该员工这14天健步走的步数的众数和中位数都是1.8万步;② 该员工两个星期健步走的步数从高到低排名,6月7日所走步数在这14天中排名第三;③ 若该员工6月1日—7日健步走的步数的方差记作S 12,6月8日—14日健步走的步数的方差记作S 22,则S 12>S 22.其中所有正确结论的序号是 .三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.计算:18. 已知,求代数式的值.19.下面是小茜设计的“作一个已知角的平分线”的尺规作图过程.已知:如图1,∠AOB .求作:射线OP ,使得OP 平分∠AOB .作法:如图2,① 在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧交射线OB 于点D ;② 分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点P (异于点O ),连接PC 和PD ;③ 作射线OP .所以射线OP 平分∠AOB .根据小茜设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明,并在括号内填写推理依据.证明:∵ OC=OD =PC = ,∴ 四边形OCPD 是 ( ).∴ OP 平分∠AOB ( ).20. 在平面直角坐标系xOy 中,已知一次函数的图象与x 轴、y 轴分别交于点A 和点B .(1)求A 、B 两点的坐标;(2)在给定的平面直角坐标系中,画出该函数的图象;(3)结合图象直接写出当y >0时,x 的取值范围.21. 阅读材料,并回答问题:1x =224x x -+122y x =-+图1图2(1)上述解答过程中,从第______步开始出现了错误(填序号);(2)在下面的空白处,写出正确的解答过程.22. 如图,四边形ABCD是平行四边形,∠BAD的平分线交DC延长线于点E.求证:BC=DE.23. 在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(0,-1)和点B(1,0).(1)求一次函数的表达式;(2)当x>1时,对于x的每一个值,函数y=mx+2(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.24. 如图,在菱形ABCD中,对角线AC,BD相交于点O,过点A作BC边垂线,垂足为E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AB=13,AC=10,求AE的长.25. 五一期间,某移动公司推出三种手机流量套餐的优惠方案,具体如下表所示:每月基本费用(元)每月免费使用流量(GB)超出流量每GB收费(元)A套餐2010nB套餐5630nC套餐188无限其中,A,B,C三种套餐每月所需的费用y A、y B、y C(元)与每月使用的流量x(GB)之间的函数关系如图所示.(1)写出表中n的值;(2)在A套餐中,若每月使用的流量不少于10GB,求每月所需的费用y A(元)与每月使用的流量x (GB)之间的函数表达式;(3)如果从节省费用的角度考虑,根据图象与表达式可知:当y A<y B且y A<y C时,每月使用的流量x的取值范围是__________;当y B<y A且y B<y C时,每月使用的流量x的取值范围是__________;当y C<y A且y C<y B时,每月使用的流量x的取值范围是__________.26. 每年的6月5日是世界环境日,它反映了世界各国人民对环境问题的认识和态度,也表达了人类对美好环境的向往和追求.为了解学生对“生态文明与环境保护”相关知识的掌握情况,某校分别从七、八年级随机抽取了80名学生的环保知识测试成绩(百分制,单位:分),并对数据(测试成绩)进行整理、描述和分析,下面给出了部分信息.a.七年级80名学生环保知识测试成绩的频数分布直方图如下:(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)b.七年级80名学生环保知识测试成绩在70≤x<80这一组的是(单位:分)707273737474757676767777787878787879c.七、八两年级80名学生环保知识测试成绩的平均数、中位数和众数如下:年级平均数中位数众数七年级74.3m81八年级757978根据以上信息,回答下列问题:(1)补全频数分布直方图.(2)写出表中m的值.(3)七年级小颖同学的测试成绩是76分.她认为:“76分高于本年级测试成绩的平均数,所以自己的成绩高于本年级一半学生的成绩”.你认为她的说法正确吗?请说明理由.(4)若八年级400名学生都参加了此次环保知识测试,估计八年级学生环保知识测试的总成绩.27. 如图1,在正方形ABCD中,点E是边CD上一点,且点E不与C、D重合,过点A作AE的垂线交CB 延长线于点F,连接EF.图1 图2(1)计算∠AEF的度数.(2)如图2,过点A作AG⊥EF,垂足为G,连接DG.用等式表示线段CF与DG之间的数量关系,并证明.28. 在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P、Q两点为垂距等点.如图所示P、Q两点即为垂距等点.已知点A的坐标为(-2,3).① 在点M(1,4),N(7,-2),T(-5,0)中,为点A的垂距等点的是;②若点B在y轴的负半轴上,且A、B两点为垂距等点,则点B的坐标为;(2)直线l:y=x-4与x轴交于点C,与y轴交于点D.① 当E为线段CD上一点时,若在直线x=n上存在点F,使得E、F两点为垂距等点,求n的取值范围.② 已知正方形HPKQ的边长为2,(t,0)是对角线HK、PQ的交点,且正方形的任何一条边均与某条坐标轴垂直.当E为直线l上一动点时,若该正方形的边上存在点G,使得E、G两点为垂距等点,直接写出t的取值范围.参考答案一、选择题(本题共16分,每小题2分)题号12345678选项DCBCBADC二、填空题(本题共16分,每小题2分)9.2; 10. 1; 11.y =5x +2; 12. ; 13. y =-2x +1(答案不唯一); 14..6; 16.②③.三、解答题(本题共68分.其中17 ~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17. (1)原式………………………………3分 =………………………………5分18. 解:把 代入………………………………1分………………………………4分= 5………………………………5分19.(1)………………………………1分(2)OC=OD=PC= PD ………………………2分∴ 四边形OCPD 是 菱形 ( 四条边都相等的四边形是菱形 ). ………………………4分 ∴ OP 平分∠AOB ( 菱形的每一条对角线平分一组对角 ). ………………………5分20. (1)解:令y =0,则………………………………1分x =4 ∴ A (4,0) ………………………………2分令x =0,则y=2∴ B (0,2) ………………………………3分 (2)1x =+224x x -+3=21)1)4+-+2124=++--+1202x -+=………………………………4分(3)x <4 ………………………………5分21.(1)② ………………………………1分 (2)解:2分3分4分5分 22.证明:在平行四边形ABCD 中,AB//CD∴∠BAE =∠E ……………………………1分 ∵AE 平分∠BAD∴∠BAE =∠DAE ……………………………2分 ∴∠DAE =∠E ……………………………3分 ∴AD =DE ……………………………4分 ∵AD =BC∴BC=DE ……………………………5分23.(1)解:y =kx +b (k ≠0)的图象经过点A (0,-1)和点B (1,0)∴y =kx -1经过点B (1,0) …………………………………1分 ∴k -1=0 …………………………………2分 k=1 ………………………………… 3分∴y =x -1 …………………………………4分(2)m ≤-2 …………………………………6分 24.(1)证明:在菱形ABCD 中,AD//BC 且AD=BC ∵BE=CF ,EC=EC , ∴BE+ EC= CF+EC ,即BC=EF ………………………1分 ∴AD=EF 且AD//EF∴四边形AEFD 为平行四边形 ………………………2分====∵AE ⊥BC ∴∠AEF =90°∴平行四边形AEFD 为矩形 ………………………3分(2)解:∵在菱形ABCD 中,AB =13,AC =10∴,BC=AB=13 ………………………………4分∵AC ⊥BD∴在Rt △AOB 中,OB=12 ………………………………5分 ∵AC ·OB=BC ·AE∴10×12=13 AE∴ AE= . ………………………………6分25.(1)n =3 ………………………………1分 (2)解:y A =20+3(x -10) =3x -10 (x ≥10) ………………………………3分 (3)0≤x < 22; ………………………………4分 22 < x < 74; ………………………………5分 x >74. ………………………………6分26.(1)………………………………1分(2)m =77.5; ………………………………2分(3)小颖同学的说法不正确; ………………………………3分因为平均数不能反映某一数据在一组数据中所处的位置,应与中位数做比较;七年级的中位数是77.5,小颖同学的测试成绩是76分,由于76<77.5,所以说明小颖同学的成绩低于本年级一半学生的成绩. ……………………………… 5分 (4)75×400=30000(分)估计八年级学生环保知识测试的总成绩为30000分. ………………………………6分27.(1)证明:在正方形ABCD 中,∠ABC=∠BAD=∠D=90°,AB=AD ∴∠ABF=90° ∵AF ⊥AE ∴∠FAE = 90°∴∠FAE -∠BAE =∠BAD -∠BAE即∠FAB =∠DAE ∵∠ABF=∠D=90°∴△BAF ≅△DAE . ………………………………2分 ∴AF=AE∴△FAE 是等腰直角三角形152OA AC ==12013∴∠AEF=45°. ……………………………… 3分(2)………………………………4分证明:连接CG ,过点G作GH ⊥CD∵AF=AE ,AG ⊥EF ∴点G 为EF 中点在Rt △EFC 中,CG= FG=EG ∵∠AEF=45° ∴AG=EG=CG 在△ADG 和△CDG 中 AD=CD ∵ AG=CG DG=DG ∴△ADG ≅△CDG∴∠ADG=∠CDG=45° ………………………………5分 ∴在Rt △GHD ∵EG=CG ,GH ⊥CD ∴点H 为CE 中点∴GH 为△EFC 的中位线 ………………………………6分 ∴CF=2GH ∴………………………………7分28.(1)① M ,T ………………………………2分② B (0,-5) ………………………………3分 (2)① 解:由题意,直线y =x -4与x 轴交于C (4,0),与y 轴交于D (0,-4). 点E 在线段CD 上,设点E 的坐标为(x E ,y E ),则有: x E ≥0,y E ≤0,且y E = x E -4.点E 到x 轴的距离为│y E │,到y 轴的距离为│x E │, 则│x E │+│y E │= x E - y E =4. ∵E 、F 两点为垂距等点∴点F 满足横、纵坐标的绝对值之和为4. 即点F 在右图所示的正方形CDST 上.∵点S 的坐标为(-4,0),点F 在直线x=n 上,∴ . ………………………………5分 ② t ≤-2或t ≥2 ………………………………7分CF =GD CF 44n -≤≤。
黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.函数中,自变量x的取值范围是_____________.2.9的平方根是_____.3.在平面直角坐标系中.点P(-2,3)关于x轴的对称点坐标是4.等腰三角形的一个角是80°,则它的底角是_____________5.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_________个.6..7.如图,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______.8.如图,已知OC平分∠AOB,P为OC上一点,PM⊥OA于M,PN⊥OB于N,PN="3" .则PM=_______。
9.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________。
10.如图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D。
若BD=1,则AB=_____11.将直线y=4x+1的图象向下平移3个单位长度,得到直线_____________.12.对于数a,b,c,d,规定一种运算=ad-bc,如=1×(-2)-0×2=-2,那么当=27时,则x= .二、选择题1.下列图形中,不是轴对称图形的是()。
2.已知正比例函数的函数值y随x的增大而增大,则一次函数的图象大致是 ( )3.下列算式中,运算结果为负数的是()A.-(-3)B.C.-32D.(-3) 24.已知点(-4,y 1),(2,y 2)都在直线y="-" x+2上,则y 1、y 2大小关系是 ( )A . y 1 > y 2B . y 1 = y 2C .y 1 < y 2D .不能比较5.下列运算正确的是 ( )A .x 2+x 2=2x 4B .a 2·a 3= a 5C .(-2x 2)4=16x 6D .a 7÷a 4÷a 3=a6.关于函数,下列结论正确的是 ( )A .函数图像必经过点(1,2)B .函数图像经过二、四象限C .y 随x 的增大而增大D .y 随x 的增大而减小7.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,下列说法错误的是( )A .△EBD 是等腰三角形,EB=EDB .折叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形8.下列各命题中,假命题的个数为( )①面积相等的两个三角形是全等三角形;②三个角对应相等的两个三角形是全等三角形;③全等三角形的周长相等④有两边及其中一边的对角对应相等的两个三角形是全等三角形. A .1 B .2 C .3 D .4三、解答题1.先化简,再求值:,其中,.2.在平面直角坐标系中的位置如图所示.(1)作出与关于轴对称的;并写出A 1、B 1、C 1坐标。
黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各点中,在函数的图象上的是( ) A .(2,1)B .(﹣2,1)C .(2,﹣2)D .(1,2)2.如果把分式中的x 、y 都扩大到原来的10倍,则分式的值( )A .扩大100倍B .扩大10倍C .不变D .缩小到原来的3.下列各组线段中,能构成直角三角形的是( ) A .2,3,4 B .3,4,6C .5,12,13D .4,6,74.在下列函数中,y 随x 增大而增大的是( ) A .B .C .y=x ﹣3D .y=x 2+35.六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数为( ) A .3 B .4 C .5 D .66.一组数据的方差为s 2,将这组数据的每个数据都扩大三倍,所得到的一组新的数据的方差为( )A .9s 2B .s 2C .3s 2D .2s 27.如图,在菱形ABCD 中,AC=6cm ,BD=8cm ,则菱形AB 边上的高CE 的长是( )A .cmB .cmC .5cmD .10cm8.数据1,2,8,5,3,9,5,4,5,4的众数是 ;中位数是 .二、填空题1.用科学记数法表示:132000000= ;0.0012= ;﹣0.000 305= .2.已知一组数据x 1,x 2,…,x n 的平均数是,方差为s 2,则新的数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数是 ,方差是 .3.已知反比例函数y=,其图象在第一、第三象限内,则k的值可为.(写出满足条件的一个k的值即可).4.一直角三角形的两边长分别为5和12,则第三边的长是.5.当x= 时,分式无意义.6.在直角坐标系中,点P(﹣2,3)到原点的距离是.7.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= .8.若一组数据1、2、3、x的极差是6,则x的值为.9.如图,在梯形ABCD中,AD∥BC,E,F分别是对角线BD、AC的中点,AD=22cm,BC=38cm,则EF= .三、解答题1.解方程:①;②;③;④.2.已知函数y与x+1成反比例,且当x=﹣2时,y=﹣3.(1)求y与x的函数关系式;(2)当x=时,求y的值.3.若边长为4cm的菱形的两邻角度数之比为1:2,求菱形的面积为多少cm2?4.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,那么你认为该公司应该录取谁.5.已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.6.如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?四、计算题已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.黑龙江初二初中数学期末考试答案及解析一、选择题1.下列各点中,在函数的图象上的是()A.(2,1)B.(﹣2,1)C.(2,﹣2)D.(1,2)【答案】B.【解析】反比例函数的比例系数为k=xy=-2,四个选项中只有选项B符合要求,故答案选B..【考点】反比例函数图象上点的坐标特征.2.如果把分式中的x、y都扩大到原来的10倍,则分式的值()A.扩大100倍B.扩大10倍C.不变D.缩小到原来的【答案】C.【解析】把分式中的x、y都扩大到原来的10倍,可得=,故答案选C.【考点】分式的基本性质.3.下列各组线段中,能构成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.4,6,7【答案】C.【解析】选项A,22+32=13≠42;选项B,32+42=25≠62;选项C,52+122=169=132;选项D,42+62=52≠72.由勾股定理的逆定理可得,只有选项C能够成直角三角形,故答案选C.【考点】勾股定理的逆定理.4.在下列函数中,y随x增大而增大的是()A.B.C.y=x﹣3D.y=x2+3【答案】C.【解析】选项A,根据正比例函数的性质可得在中,y随x的增大而减小;选项B,根据反比例函数的性质可得在中,在每个象限内,y随x的增大而减小;选项C,根据一次函数的性质可得在y=x﹣3中,y随x 的增大而增大;选项D,根据二次函数的性质可得在y=x2+3中,当x>0时,y随x的增大而增大,当x<0时,y随x增大而减小;故答案选C.【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.5.六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数为()A.3B.4C.5D.6【答案】B.【解析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平数),叫做这组数据的中位数.根据中位数的定义可得,将这组数据是按从小到大的顺序排列为2,3,3,5,10,13,处于3,4位的两个数是3,5,所以这组数据的中位数为(3+5)÷2=4.故答案选B.【考点】中位数.6.一组数据的方差为s2,将这组数据的每个数据都扩大三倍,所得到的一组新的数据的方差为()A.9s2B.s2C.3s2D.2s2【答案】A.【解析】根据数据都扩大相同的倍数,方差扩大相同倍数的平方倍可得一这组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是32s2,即9s2.故答案选A.【考点】方差.7.如图,在菱形ABCD 中,AC=6cm ,BD=8cm ,则菱形AB 边上的高CE 的长是( )A .cmB .cmC .5cmD .10cm【答案】A .【解析】由菱形的性质可得AO=OC=3.BO=DO=4,△ABO 为直角三角形,在Rt △ABO 中,根据勾股定理即可得AB=5,根据菱形的面积=边长乘以高=两对角线乘积的一半可得S=×6cm×8cm=5cm×CE ,解得CE=cm ,故答案选A .【考点】菱形的性质.8.数据1,2,8,5,3,9,5,4,5,4的众数是 ;中位数是 . 【答案】5,4.5.【解析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.将数据从小到大重新排列后为1,2,3,4,4,5,5,5,8,9;观察数据可知最中间的两个数是4和5,故其中位数即这两个数平均数(4+5)÷2=4.5;出现次数最多的是5,所以众数为5.【考点】中位数;众数.二、填空题1.用科学记数法表示:132000000= ;0.0012= ;﹣0.000 305= .【答案】1.32×108;1.2×10﹣3;﹣3.05×10﹣4.【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.由此可得132 000 000=1.32×108;0.0012=1.2×10﹣3;﹣0.000 305=﹣3.05×10﹣4. 【考点】科学记数法.2.已知一组数据x 1,x 2,…,x n 的平均数是,方差为s 2,则新的数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数是 ,方差是 .【答案】a +b ,a 2s 2.【解析】数据都加同一个数,平均数加这个数;数据都扩大相同的倍数,平均数也扩大相同的倍数,方差扩大数据扩大倍数的平方倍;数据都扩大相同的倍数,都加上同一个数,平均数扩大相同的倍数也加上相同的数,方差扩大相同倍数的平方倍.已知一组数据x 1,x 2,…,x n 的平均数是,方差为s 2,根据这个规律可得新的数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数是a +b ,方差是 a 2s 2. 【考点】方差;算术平均数.3.已知反比例函数y=,其图象在第一、第三象限内,则k 的值可为 .(写出满足条件的一个k 的值即可).【答案】答案不唯一,只要符合k >2即可,如k=3. 【解析】已知反比例函数y=,其图象在第一、第三象限内,由反比例函数的性质可得k ﹣2>0,即k >2,k的值可为3(答案不唯一,只要符合k >2即可). 【考点】反比例函数的性质.4.一直角三角形的两边长分别为5和12,则第三边的长是 . 【答案】13或.【解析】设第三边为x ,分两种情况,(1)若12是直角边,则第三边x 是斜边,由勾股定理得52+122=x 2,解得x=13;(2)若12是斜边,则第三边x 为直角边,由勾股定理得52+x 2=122,解得x=;即第三边的长为13或.【考点】勾股定理.5.当x= 时,分式无意义.【答案】x=5.【解析】要使分式无意义,必须使x-5=0,即x=5.【考点】分式无意义的条件.6.在直角坐标系中,点P(﹣2,3)到原点的距离是.【答案】.【解析】在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,利用勾股定理求出OP的长,即为P到原点的距离.如图,过P作PE⊥x轴,连接OP,由P(﹣2,3),可得PE=3,OE=2,在Rt△OPE中,根据勾股定理得OP2=PE2+OE2,代入数据即可求得OP=,即点P在原点的距离为.【考点】勾股定理;点的坐标.7.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= .【答案】15°.【解析】由正方形的性质及等边三角形的性质可得AB=AD=AE,∠BAD=90°,∠DAE=60°,可得∠BAE=∠BAD+∠DAE=150°,再由等腰三角形的性质及三角形的内角和定理即可得∠AEB=15°.【考点】正方形的性质;等边三角形的性质;等腰三角形的性质;三角形的内角和定理.8.若一组数据1、2、3、x的极差是6,则x的值为.【答案】7或﹣3.【解析】极差是用一组数据中的最大值减去最小值所得的结果.本题分两种情况,当x为最大数时,可得x﹣1=6,解x=7;得当x为最小数是,可得3﹣x=6,解得x=﹣3.【考点】极差.9.如图,在梯形ABCD中,AD∥BC,E,F分别是对角线BD、AC的中点,AD=22cm,BC=38cm,则EF= .【答案】8cm.【解析】如图,连接DF并延长DF交BC于M,根据平行线的性质,利用AAS或ASA可证△AFD≌△CFM,根据全等三角形的性质可得AF=CF,再由三角形的中位线定理可得EF=BM=(BC﹣AD)=×(38﹣22)=8cm.【考点】全等三角形的判定及性质;三角形中位线定理.三、解答题1.解方程:①;②;③;④.【答案】(1)x=﹣3;(2)x=;(3)x=﹣;(4)x=﹣.【解析】将各分式方程去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:①去分母得:2x﹣6=3x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解;②去分母得:40+3x=108,解得:x=,经检验x=是分式方程的解;③去分母得:2x﹣5=6x﹣3,解得:x=﹣,经检验x=﹣是分式方程的解;④去分母得:3x=2x+3x+3,解得:x=﹣,经检验x=﹣是分式方程的解.【考点】分式方程的解法.2.已知函数y与x+1成反比例,且当x=﹣2时,y=﹣3.(1)求y与x的函数关系式;(2)当x=时,求y的值.【答案】(1);(2)2.【解析】(1)已知函数y与x+1成反比例,设函数解析式为,把x=﹣2时,y=﹣3代入即可;(2)把自变量的取值代入(1)中所求的函数解析式即可求得y的值.试题解析:解:(1)设,把x=﹣2,y=﹣3代入得.解得:k=3.∴.(2)把x=代入解析式得:.【考点】待定系数法求函数解析式.3.若边长为4cm的菱形的两邻角度数之比为1:2,求菱形的面积为多少cm2?【答案】菱形的面积为8cm2.【解析】已知如图,菱形ABCD的边长为4cm,∠A:∠ABC=1:2,由菱形的性质可得AD∥BC,AB=AD=4,则∠A+∠ABC=180°,即可得∠A=60°,所以△ABD为等边三角形,再根据等边三角形的面积公式,利用S菱形ABCD=2S △ABD 即可得菱形的面积.试题解析:解:如图,菱形ABCD 的边长为4cm ,∠A :∠ABC=1:2, ∵四边形ABCD 为菱形, ∴AD ∥BC ,AB=AD=4, ∴∠A+∠ABC=180°, ∴∠A+2∠A=180°,解得∠A=60°, ∴△ABD 为等边三角形,∴S 菱形ABCD =2S △ABD =2××42=8(cm 2).答:菱形的面积为8cm 2.【考点】菱形的性质.4.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,那么你认为该公司应该录取谁. 【答案】(1)应该录取乙;(2)应该录取乙.【解析】(1)由题意可知,形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算甲乙二人的加权平均数,比较即可得答案;(2)已知面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,根据加权平均数的计算方法分别计算甲乙二人的加权平均数,比较即可得答案.试题解析:解:(1)形体、口才、专业水平、创新能力按照4:6:5:5的比确定, 则甲的平均成绩为=91.2. 乙的平均成绩为=91.8.乙的成绩比甲的高,所以应该录取乙.(2)面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%, 则甲的平均成绩为86×15%+90×20%+96×40%+92×25%=92.3. 乙的平均成绩为92×15%+88×20%+95×40%+93×25%=92.65. 乙的成绩比甲的高,所以应该录取乙. 【考点】加权平均数.5.已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.【答案】(1)y=,y=2x﹣3;(2)x>0;(3)点P′在直线上.【解析】(1)根据题意,反比例函数y=的图象过点A(2,1),可求得k的值,进而可得解析式;一次函数y=kx+m的图象过点A(2,1),代入求得m的值,从而得出一次函数的解析式;(2)根据(1)中求得的解析式,当y>0时,解得对应x的取值即可;(3)由题意可知,反比例函数值大于一次函数的值,即可得>2x﹣3,解得x的取值范围即可;(4)先根据题意求出P′的坐标,再代入一次函数的解析式即可判断P′是否在一次函数y=kx+m的图象上..试题解析:解:(1)根据题意,反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1),则反比例函数y=中有k=2×1=2,y=kx+m中,k=2,又∵过(2,1),解可得m=﹣3;故其解析式为y=,y=2x﹣3;(2)由(1)可得反比例函数的解析式为y=,令y>0,即>0,解可得x>0.(3)根据题意,要反比例函数值大于一次函数的值,即>2x﹣3,解可得x<﹣0.5或0<x<2.(4)根据题意,易得点P(﹣1,5)关于x轴的对称点P′的坐标为(﹣1,﹣5)在y=2x﹣3中,x=﹣1时,y=﹣5;故点P′在直线上.【考点】反比例函数与一次函数的交点问题.6.如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?【答案】详见解析.【解析】(1)根据等边三角形的性质,利用SAS易证△BDE≌△BAC,即可得DE=AC=AF,同理可得EF=AB=AD,根据两组对边分别相等的四边形是平行四边形即可判定四边形ADEF为平行四边形;(2)AB=AC时,根据一组邻边相等的平行四边形为菱形即可判定平行四边形ADEF为菱形;要使平行四边形AEDF是矩形,则有∠DEF=90°,由∠DEF=∠BED+∠BEC+∠CEF,可推出∠BAC=150°时为矩形.试题解析:(1)四边形ADEF为平行四边形,证明:∵△ABD和△EBC都是等边三角形,∴BD=AB,BE=BC;∵∠DBA=∠EBC=60°,∴∠DBA﹣∠EBA=∠EBC﹣∠EBA,∴∠DBE=∠ABC;∵在△BDE和△BAC中,∴△BDE≌△BAC,∴DE=AC=AF,同理可证:△ECF≌△BCA,∴EF=AB=AD,∴ADEF为平行四边形;(2)AB=AC时,▱ADEF为菱形,当∠BAC=150°时▱ADEF为矩形.理由是:∵AB=AC,∴AD=AF.∴▱ADEF是菱形.∴∠DEF=90°=∠BED+∠BEC+∠CEF=∠BCA+60°+∠CBA=180﹣∠BAC+60°=240°﹣∠BAC,∴∠BAC=150°,∵∠DAB=∠FAC=60°,∴∠DAF=90°,∴平行四边形ADEF是矩形.【考点】等边三角形的性质;平行四边形的判定;菱形的判定;矩形的判定.四、计算题已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.【答案】详见解析.【解析】如图,连接AC、BD交于点O,连接OE,已知AE⊥CE,BE⊥DE,根据直角三角形斜边上的中线等于斜边的一半得到OE=AC=BD,进而得到AC=BD,根据对角线相等的平行四边形是矩形即可判定平行四边形ABCD是矩形..试题解析:证明:连接AC、BD交于点O,连接OE,∵AE⊥CE,BE⊥DE,∴OE=AC=BD,∴AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD为矩形.【考点】平行四边形的性质;矩形的判定.。
黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各式中最简二次根式为( )A.B.C.D.2.如果x=-3是方程的一个根,那么m的值是( )A.一4B.4C.3D.-33.下列计算正确的是( )A.B.C.D.4.关于x的一元二次方程的根的情况是( )A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.以上答案都不对5.将方程化成的形式是( )A.B.C.D.6.如图所示,ABCD的周长为l6cm,对角线AC与BD相交于点O,交AD于E,连接CE,则△DCE 的周长为( )A.4cm B.6cm C.8cm D.10cm7.在一幅长90cm,宽40cm的风景画的四周的外边镶宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整个挂图面积的58%,设金色纸边的宽度为xcm,则可列方程为( )A.(90+x)(40+x)×58%=90x40B.(90+x)(40+2x)×58%=90x40C.(90+2x)(40+x)×58%=90x40D.(90+2x)(40+2x)×58%=90x408.关于反比例函数,下列说法中错误的是( )A.它的图象分布在一、三象限B.它的图象过点(-1,-3)C.当x>0时,y的值随x的增大两增大D.当x<0时,y的值随x的增大而减小9.下列四个命题中假命题是( )A.对角线互相垂直的平行四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相垂直平分且相等的四边形是正方形D.对角线相等的四边形是平行四边形10.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正确的个数为( )A.1个B.2个C.3个D.4个二、填空题1.在函数中,自变量x的取值范围是________.2.计算:_______.3.一轮船以l6海里/时的速度从港口A出发沿着北偏东60°的方向航行,另一轮船以l2海里/时的速度同时从港口A出发沿着南偏东30°的方向航行,离开港口2小时后两船相距_______ 海里.4.已知关于x的方程的两个根分别是a和b,则a+b=_______.5.如图,正方形ABCD的对角线AC是菱形AEFC的一边,则∠FAB等于_________ .6.利用一面墙(墙的长度为12m),其它三面用40m长的篱笆,围成—个面积为l50㎡的长方形的场地,则此长方形的场地的长为 __________m.(规定长要大于宽)7.如图,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,连接BD,过点A作BD的垂线,交BC于E,若EC=3cm,CD=4cm,则梯形ABCD的面积是_________cm².8.如图所示,将—些相同的棋子按如图所示的规律摆放:第l个图形有4个棋子,第2个图形有8个棋子,第3个图形有l2个棋子,第四个图形有l6个棋子,依此规律,第lO个图形有____个棋子.9.菱形ABCD中,∠A=60°,AB=6,点P是菱形内一点,PB=PD=,则AP的长为_____.10.如图,正方形ABCD的面积为l2,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,PD+PE的和最小,则这个最小值为_______.三、解答题1.计算:(1);(2)2.解下列一元二次方程:(1);(2)3.图1,图2均为正方形网格,每个小正方形的边长均为l,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)画一个直角三角形,且三边长为,2,5;(2)画一个边长为整数的等腰三角形,且面积等于l2.4.已知如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F.求证:DF=DC.5.加工一种产品,需先将材料加热达到60℃后,再停止加热进行加工,设该材料温度为y﹙℃﹚,从加热开始计算的时间为x(分钟).据了解,该材料在加热时,温度y是时间x的一次函数,停止加热进行加工时,温度y与时间x成反比例关系(如图所示),己知该材料在加热前的温度为l5℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和加工时,y与x的函数关系式(不必写出自变量的取值范围);(2)根据工艺要求,当材料的温度低于l5℃时,必须停止加工,那么加工时间是多少分钟?6.某电脑公司2012年的各项经营收入为1500万元,该公司预计2014年经营收入要达到2160万元,设每年经营收入的年平均增长率相同。
2023-2024学年度第一学期期末考试 试题 八年级数学+答案解析

2023-2024学年度第一学期期末考试八年级数学试卷试卷满分:150分考试时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.下列几种著名的数学曲线中,不是轴对称图形的是(▲)A .B .C .D .2.有下列实数: ,1.8-,9,3,33,其中无理数有(▲)A .1个B .2个C .3个D .4个3.下列数据中不能确定物体位置的是(▲)A .电影票上的“5排8号”B .小明住在某小区3号楼7号C .南偏西37°D .东经130°,北纬54°的城市4.如图,AD 为∠BAC 的角平分线,添加下列条件后,不能证明△ABD ≌△ACD 的是(▲)A .∠B =∠C B .∠BDA =∠CDA C .AB =AC D .BD =CD 5.在等腰三角形ABC 中,∠A =100°,则底角的度数是(▲)A .100°B .80°C .50°D .40°6.如图,△AOB 是边长为2的等边三角形,点B 在x 轴上,则点A 关于x 轴的对称点的坐标为(▲)A .(1,-3)B .(1,3)C .(-1,-3)D .(-1,3)7.一次函数b ax y +=1与正比例函数bx y =-2在同一坐标系中的图像大致是(▲)A .B .C .D .8.如图,△ABC 中,∠ACB =90°,BC =6,AC =8,点D 是AB 的中点,将△ACD 沿CD 翻折得到△ECD ,连接AE ,BE ,则线段AE 的长等于(▲)A .75B .548C .53D .514第4题图第6题图第8题图二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.36的平方根是▲.10.扬州市面积约为6591平方公里,数据6591用四舍五入法精确到百位,并用科学记数法表示为▲.11.比较大小:3▲1-π(用“>”、“<”或“=”填空).12.如果将直线y =2x -1向上平移3个单位,那么所得直线的函数表达式是▲.13.已知点A (1,m ),B (32,n )在一次函数y =3x +1的图像上,则m ▲n (用“>”、“<”或“=”填空).14.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若BC =3cm ,AD =4cm ,则图中阴影部分的面积是▲cm 2.15.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为()a a -,+112,则a 的值为▲.16.如图,在Rt △ABC 中,AC =4,AB =5,∠C =90°,BD 平分∠ABC 交AC 于点D ,则DC 的长是▲.17.已知A 、B 两地是一条直路,甲骑自行车从A 地到B 地,乙骑摩托车从B 地到A 地,两人同时出发,乙先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,则下列结论正确的有▲.①两人出发2h 后相遇;②甲骑自行车的速度为60km/h ;③乙比甲提前2h 到达目的地;④乙到达目的地时两人相距200km .第14题图第15题图第16题图第17题图18.定义:在平面直角坐标系xOy 中,O 为坐标原点,任意两点P (x 1,y 1)、Q (x 2,y 2),称2121y y x x +++的值为P 、Q 两点的“坐标和距离”.若P (1,-3),Q 为直线y =x +2上任意一点,则P ,Q 的“坐标和距离”的最小值为▲.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:9)1(6423--+;(2)求27)4(3-=-x 中x 的值.20.(本题满分8分)已知2a +1与a -4是b 的两个不相等的平方根,求b -1的立方根.21.(本题满分8分)已知y 与2x -3成正比例,且当x =2时,y =2.(1)求y 与x 的函数关系式;(2)求当x =21时的函数值.22.(本题满分8分)已知:如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,AD ⊥BC ,垂足为点D ,求BC ,AD 的长.23.(本题满分10分)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图.(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1(点A 、B 、C 分别对应A 1、B 1、C 1);(2)△A 1B 1C 1的面积=▲;(3)若M (x ,y )是△ABC 内部任意一点,请直接写出这点在△A 1B 1C 1内部的对应点M 1的坐标▲;(4)P 是x 轴上一点,满足线段B 1P +BP 的值最小,画出P 点,并写出P 点坐标▲.24.(本题满分10分)已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,连接BM 、DM .(1)求证:BM =DM ;(2)求证:MN ⊥BD .25.(本题满分10分)在四边形ABCD 中,O 是边BC 上的一点.若△OAB ≌△OCD ,则点O 叫做该四边形的“全等点”.(1)如图,已知在四边形ABCD 中,∠BAO =85°,∠B =40°,求∠AOD 的度数;(2)如图,在四边形ABCD 中,边BC 上的点O 是四边形ABCD 的“全等点”,已知CD =32,OA =5,BC =12,连接AC ,求AC 的长.26.(本题满分10分)如图,一次函数343+-=x y 的图像分别于x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰直角△ABC ,∠BAC =90°.(1)求过B 、C 两点的直线的函数解析式;(2)在x 轴上取一点M ,使△AMC 是等腰三角形,直接写出符合条件的所有M 的坐标.27.(本题满分12分)如图,深50cm 的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,右图为容器顶部离水面的距离y (cm )随时间t (分钟)的变化图像.(1)求放入的长方体的高度;(2)求该容器注满水所用的时间;(3)若长方体铁块的底面积为6cm 2,求圆柱体的底面积.28.(本题满分12分)已知,△ABC 是等边三角形,点D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 右侧作等边△ADE .图1图2图3(1)如图1,点D 在线段BC 上,连接CE ,若AB =4,且CE =1,求线段CD 的长;(2)如图2,点D 是BC 延长线上一点,过点E 作EF ⊥AC 于点F ,求证:CF =AF +CD ;(3)如图3,若AB =8,点D 在射线BC 上运动,取AC 中点G ,连接EG ,请直接写出EG 的最小值.2023-2024学年度第一学期期末考试八年级数学参考答案一、选择题(每题3分,共24分)题号12345678答案DBCDDACB二、填空题(每题3分,共30分)9.±6;10.3106.6⨯;11.<;12.22+=x y ;13.<;14.3;15.-2;16.23;17.①②④;18.2.三、解答题19.(1)计算:9)1(6423--+解:原式=2……………………4分(2)求27)4(3-=-x 中x 的值.解:x =1……………………8分20.解:2a +1+a -4=0a =1……………………4分b =9b -1的立方根为2……………………8分21.(1)解:设y =k (2x -3)(k ≠0)x =2,y =2k =2y =4x -6……………………4分(2)解:当21=x 时y =-4……………………8分22.(1)BC =5……………………4分(2)AD =512……………………8分23.(1)图略……………………2分(2)2……………………4分(3)(-x ,y )……………………6分(4)作出点P 图略…………………8分(0,0)……………………10分24.(1)在△ABC 中,∵∠ABC =90°,M 是AC 的中点∴BM =21AC 同理DM =21AC∴BM =DM ……………………5分(2)在△MBD 中,BM =DM∵N 是BD 的中点∴MN ⊥BD……………………10分25.(1)70;……………………5分(2)80或54……………………10分26.(1)371+=x y ;……………………5分(2)(-1,0)、(9,0)、(10,0)(649,0)……………………10分(其中前3个1分1个,最后一个2分)27.(1)20cm ;……………………4分(2)21分钟;……………………8分(3)8cm 2……………………10分28.(1)3;……………………4分(2)在AC 上取一点G ,使CG =CD ,连EG先证△ABD ≌△ACE 得到∠ACE =∠DCE =60°再证△EGC ≌△EDC 得EG =EA 又∵EF ⊥AC ∴AF =FG ∴CF =AF +CD……………………8分(3)12或32……………………12分。
江西初二初中数学期末考试带答案解析

江西初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在式子,,,,,中,分式的个数是 A .5B .4C .3D .22.反比例函数的图像经过点,则该函数的图像在A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限3.在下列性质中,平行四边形不一定具有的性质是 A .对边相等 B .对边平行C .对角互补D .内角和为3604.菱形的两条对角线长分别为和,则它的周长和面积分别为 A .B .C .D .5.函数的图像上有两点,,若 0﹤﹤,则A .﹤B .﹥C .=D .,的大小关系不能确定6.在下列各组数据中,可以构成直角三角形的是 A .0.2,0.3,0.4B .,,C .3,4,5D .5,6,77.样本数据是3,6,10,4,2,则这个样本的方差是 A .8 B .5 C .3D .8.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是A .①②③B .②③④C .①③④D .①②③④二、填空题1.生物学家发现一种病毒的长度约为0.00000043mm ,•用科学记数法表示这个数的结果为 .2.若的值为零, 则的值是 .3.数据1,2,8,5,3,9,5,4,5,4的众数是_________,中位数是__________.4.若□ABCD 的周长为100cm ,两条对角线相交于点O ,△AOB 的周长比△BOC 的周长多10cm ,那么AB= cm ,BC= cm.5.若关于的分式方程无解,则常数的值为 .6.若函数是反比例函数,则的值为________________.7.已知等腰梯形的一个底角为600,它的两底边分别长10cm、16cm,则等腰梯形的周长是_____________________.8.如图,将矩形沿直线折叠,顶点恰好落在边上点处,已知,,则图中阴影部分面积为 __.三、解答题1.先化简,再取一个你认为合理的x值,代入求原式的值.2.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学期末考试题及答案一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列各组数中,以它们为边长的线段能构成直角三角形的是().A.,,B.3,4,5C.2,3,4D.1,1,2.下列图案中,是中心对称图形的是().3.将一元二次方程x2-6x-5=0化成(x-3)2=b的形式,则b等于().A.4B.-4C.14D.-144.一次函数的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限5.已知四边形ABCD是平行四边形,下列结论中不正确的是().A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90o时,它是矩形D.当AC=BD时,它是正方形6.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120o,则BC的长为().A.B.4C.D.27.中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m)1.501.551.601.651.701.75人数__这些运动员跳高成绩的中位数和众数分别是().A.1.65,1.70B.1.70,1.65C.1.70,1.70D.3,58.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A 的坐标为,点B的坐标为,点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x 轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是().A.3B.4C.5D.6二、填空题(本题共25分,第9~15题每小题3分,第16题4分)9.一元二次方程的根是.10.如果直线向上平移3个单位后得到直线AB,那么直线AB的解析式是_________.11.如果菱形的两条对角线长分别为6和8,那么该菱形的面积为_________.12.如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,AC的中点,已知DF=3,则AE=.13.若点和点都在一次函数的图象上,则y1y2(选择“>”、“<”、“=”填空).14.在平面直角坐标系xOy中,点A的坐标为(3,2),若将线段OA绕点O顺时针旋转90°得到线段,则点的坐标是.15.如图,直线:与直线:相交于点P(,2),则关于的不等式≥的解集为.16.如图1,五边形ABCDE中,∠A=90°,AB∥DE,AE∥BC,点F,G分别是BC,AE的中点.动点P以每秒2cm的速度在五边形ABCDE的边上运动,运动路径为F→C→D→E→G,相应的△ABP 的面积y(cm2)关于运动时间t(s)的函数图象如图2所示.若AB=10cm,则(1)图1中BC的长为_______cm;(2)图2中a的值为_________.三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)17.解一元二次方程:.解:18.已知:在平面直角坐标系xOy中,一次函数的图象与y 轴交于点A,与x轴的正半轴交于点B,.(1)求点A、点B的坐标;(2)求一次函数的解析式.解:19.已知:如图,点A是直线l外一点,B,C两点在直线l 上,,.(1)按要求作图:(保留作图痕迹)①以A为圆心,BC为半径作弧,再以C为圆心,AB为半径作弧,两弧交于点D;②作出所有以A,B,C,D为顶点的四边形;(2)比较在(1)中所作出的线段BD与AC的大小关系.解:(1)(2)BDAC.20.已知:如图,ABCD中,E,F两点在对角线BD上,BE=DF.(1)求证:AE=CF;(2)当四边形AECF为矩形时,直接写出的值.标签:(1)证明:(2)答:当四边形AECF为矩形时,=.21.已知关于x的方程.(1)求证:方程总有两个不相等的实数根;(2)如果方程的一个根为,求k的值及方程的另一根.(1)证明:(2)解:四、解答题(本题7分)22.北京是水资源缺乏的城市,为落实水资源管理制度,促进市民节约水资源,北京市发改委在对居民年用水量进行统计分析的基础上召开水价听证会后发布通知,从2014年5月1日起北京市居民用水实行阶梯水价,将居民家庭全年用水量划分为三档,水价分档递增,对于人口为5人(含)以下的家庭,水价标准如图1所示,图2是小明家在未实行新水价方案时的一张水费单(注:水价由三部分组成).若执行新水价方案后,一户3口之家应交水费为y(单位:元),年用水量为x(单位:),y与x之间的函数图象如图3所示.根据以上信息解答下列问题:(1)由图2可知未调价时的水价为元/;(2)图3中,a=,b=,图1中,c=;(3)当180<x≤260时,求y与x之间的函数关系式.解:五、解答题(本题共14分,每小题7分)23.已知:正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,.画出,猜想的度数并写出计算过程.解:的度数为.计算过程如下:24.已知:如图,在平面直角坐标系xOy中,,,点C在x轴的正半轴上,点D为OC的中点.(1)求证:BD∥AC;(2)当BD与AC的距离等于1时,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.解:(1)答案一、选择题(本题共24分,每小题3分)题号__答案__C二、填空题(本题共25分,第9~15题每小题3分,第16题4分)9..10..11.24.12.3.13.>.14..15.≥1(阅卷说明:若填≥a只得1分)16.(1)16;(2)17.(每空2分)三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)17.解:.,,.。
1分.。
2分方程有两个不相等的实数根。
3分.所以原方程的根为,.(各1分)。
5分18.解:(1)∵一次函数的图象与y轴的交点为A,∴点A的坐标为.。
1分∴.。
2分∵,∴.。
3分∵一次函数的图象与x轴正半轴的交点为B,∴点B的坐标为.。
4分(2)将的坐标代入,得.解得.。
5分∴一次函数的解析式为.。
6分19.解:(1)按要求作图如图1所示,四边形和四边形分别是所求作的四边形;。
4分(2)BD≥AC.。
6分阅卷说明:第(1)问正确作出一个四边形得3分;第(2)问只填BD>AC或BD=AC只得1分.20.(1)证明:如图2.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.。
1分标签:∴∠1=∠2.。
2分在△ABE和△CDF中,。
3分∴△ABE≌△CDF.(SAS)。
4分∴AE=CF.。
5分(2)当四边形AECF为矩形时,=2.。
6分21.(1)证明:∵是一元二次方程,。
1分,。
2分无论k取何实数,总有≥0,>0.。
3分∴方程总有两个不相等的实数根.。
4分(2)解:把代入方程,有.。
5分整理,得.解得.。
6分此时方程可化为.解此方程,得,.∴方程的另一根为.。
7分四、解答题(本题7分)22.解:(1)4.。
1分(2)a=900,b=1460,(各1分)。
3分c=9.。
5分(3)解法一:当180<x≤260时,.。
7分解法二:当180<x≤260时,设y与x之间的函数关系式为(k≠0).由(2)可知:,.得解得∴.。
7分五、解答题(本题共14分,每小题7分)23.解:所画如图3所示.。
1分的度数为.。
2分解法一:如图4,连接EF,作FG⊥DE于点G.。
3分∵正方形ABCD的边长为6,∴AB=BC=CD=AD=6,.∵点E为BC的中点,∴BE=EC=3.∵点F在AB边上,,∴AF=2,BF=4.在Rt△ADF中,,.在Rt△BEF,Rt△CDE中,同理有,.在Rt△DFG和Rt△EFG中,有.设,则.。
4分整理,得.解得,即.。
5分∴.∴.。
6分∵,∴.。
7分解法二:如图5,延长BC到点H,使CH=AF,连接DH,EF.。
3分∵正方形ABCD的边长为6,∴AB=BC=CD=AD=6,.∴,.在△ADF和△CDH中,∴△ADF≌△CDH.(SAS)。
4分∴DF=DH,①.∴.。
5分∵点E为BC的中点,∴BE=EC=3.∵点F在AB边上,,∴CH=AF=2,BF=4.∴.在Rt△BEF中,,.∴.②又∵DE=DE,③由①②③得△DEF≌△DEH.(SSS)。
6分∴.。
7分24.解:(1)∵,,∴OA=4,OB=2,点B为线段OA的中点.。
1分∵点D为OC的中点,∴BD∥AC.。
2分(2)如图6,作BF⊥AC于点F,取AB的中点G,则.∵BD∥AC,BD与AC的距离等于1,∴.标签:∵在Rt△ABF中,,AB=2,点G为AB的中点,∴.∴△BFG是等边三角形,.∴.设,则,.∵OA=4,∴.。
3分∵点C在x轴的正半轴上,∴点C的坐标为.。
4分(3)如图7,当四边形ABDE为平行四边形时,AB∥DE.∴DE⊥OC.∵点D为OC的中点,∴OE=EC.∵OE⊥AC,。