高考数学中的离散数学
高考数学一轮复习---离散型随机变量的均值与方差、正态分布

离散型随机变量的均值与方差、正态分布一、基础知识1.均值一般地,若离散型随机变量X的分布列为:则称E(X)=x1p1+x2p2i i n n.它反映了离散型随机变量取值的平均水平.(1)期望是算术平均值概念的推广,是概率意义下的平均.,(2)E(X)是一个实数,由X的分布列唯一确定,即作为随机变量,X是可变的,可取不同值,而E(X)是不变的,它描述X取值的平均状态.,(3)E(X)=x1p1+x2p2+…+x n p n直接给出了E(X)的求法,即随机变量取值与相应概率分别相乘后相加.2.方差设离散型随机变量X的分布列为:则(x i-E(X))2描述了x i(i=)=(x i-E(X))2p i为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的方差,并称其算术平方根D(X)为随机变量X的标准差.(1)随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.D(X)越大,表明平均偏离程度越大,X的取值越分散.反之,D(X)越小,X的取值越集中在E(X)附近.,(2)方差也是一个常数,它不具有随机性,方差的值一定是非负.3.两个特殊分布的期望与方差4.正态分布(1)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.(2)正态分布的三个常用数据①P (μ-σ<X ≤μ+σ)≈0.682 6;②P (μ-2σ<X ≤μ+2σ)≈0.954 4;③P (μ-3σ<X ≤μ+3σ)≈0.997 4.二、常用结论若Y =aX +b ,其中a ,b 是常数,X 是随机变量,则 (1)E (k )=k ,D (k )=0,其中k 为常数; (2)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ); (3)E (X 1+X 2)=E (X 1)+E (X 2); (4)D (X )=E (X 2)-(E (X ))2;(5)若X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)·E (X 2).(6)若X ~N (μ,σ2),则X 的均值与方差分别为:E (X )=μ,D (X )=σ2. 三、考点解析考点一 离散型随机变量的均值与方差例、为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).跟踪训练1.随机变量X 的可能取值为0,1,2,若P (X =0)=15,E (X )=1,则D (X )=( )A.15B.25C.55D.1052.随着网络营销和电子商务的兴起,人们的购物方式更具多样化.某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率; (2)若从这10名购物者中随机抽取3名,设X 表示抽到倾向于选择网购的男性购物者的人数,求X 的分布列和数学期望.考点二 二项分布的均值与方差例、某部门为了解一企业在生产过程中的用水量情况,对其每天的用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图(单位:吨).若用水量不低于95吨,则称这一天的用水量超标.(1)从这12天的数据中随机抽取3个,求至多有1天的用水量超标的概率;(2)以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数,记随机变量X 为未来这3天中用水量超标的天数,求X 的分布列、数学期望和方差.[解题技法]二项分布的期望与方差(1)如果ξ ~B (n ,p ),则用公式E (ξ)=np ,D (ξ)=np (1-p )求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E (a ξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (a ξ+b ),同样还可求出D (a ξ+b ).跟踪训练1.设X 为随机变量,且X ~B (n ,p ),若随机变量X 的数学期望E (X )=4,D (X )=43,则P (X =2)=________.(结果用分数表示)2.一个盒子中装有大量形状、大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求a 的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X ,求X 的分布列和数学期望(以直方图中的频率作为概率).考点三 均值与方差在决策中的应用例、某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立. (1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. ①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; ②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?[解题技法]离散型随机变量的期望和方差应用问题的解题策略(1)求离散型随机变量的期望与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用期望、方差公式进行计算.(2)要注意观察随机变量的概率分布特征,若属于二项分布,可用二项分布的期望与方差公式计算,则更为简单.(3)在实际问题中,若两个随机变量ξ1,ξ2,有E (ξ1)=E (ξ2)或E (ξ1)与E (ξ2)较为接近时,就需要用D (ξ1)与D (ξ2)来比较两个随机变量的稳定程度.即一般地将期望最大(或最小)的方案作为最优方案,若各方案的期望相同,则选择方差最小(或最大)的方案作为最优方案.跟踪训练某投资公司在2019年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.考点四 正态分布例、(1)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A.P (Y ≥μ2)≥P (Y ≥μ1)B.P (X ≤σ2)≤P (X ≤σ1)C.对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t ,P (X ≥t )≥P (Y ≥t ) (2)已知随机变量X 服从正态分布N (3,1),且P (X ≥4)=0.158 7,则P (2<X <4)=( ) A.0.682 6 B.0.341 3 C.0.460 3 D.0.920 7(3)某校在一次月考中有900人参加考试,数学考试的成绩服从正态分布X ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.[解题技法]正态分布下2类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.跟踪训练1.已知随机变量ξ服从正态分布N (μ,σ2),若P (ξ<2)=P (ξ>6)=0.15,则P (2≤ξ<4)等于( ) A.0.3 B.0.35 C.0.5 D.0.72.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2). (1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. ①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =9.97,s ≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4.0.997 416≈0.959 2,0.008≈0.09.课后作业1.口袋中有编号分别为1,2,3的三个大小和形状完全相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23C.2D.832.已知随机变量X 服从正态分布N (a,4),且P (X >1)=0.5,P (X >2)=0.3,则P (X <0)=( ) A.0.2 B.0.3 C.0.7 D.0.83.已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5) A.4 093件 B.4 772件 C.6 827件 D.8 186件4.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是( )A.3B.83C.2D.535.某学校为了给运动会选拔志愿者,组委会举办了一个趣味答题活动.参选的志愿者回答三个问题,其中两个是判断题,另一个是有三个选项的单项选择题,设ξ为回答正确的题数,则随机变量ξ的数学期望E (ξ)=( )A.1B.43C.53D.26.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D (X )=________.7.若随机变量ξ的分布列如表所示,E (ξ)=1.6,则a -b =________.8.一个人将编号为1,2,3,4每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数为ξ,则ξ的期望值为________. 9.某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2018年享受此项政策的自主创业人员中抽取了100人进行调查统计,选择的贷款期限的频数如下表:. (1)某大学2019年毕业生中共有3人准备申报此项贷款,计算其中恰有2人选择的贷款期限为12个月的概率;(2)设给某享受此项政策的自主创业人员的补贴为X 元,写出X 的分布列;该市政府要做预算,若预计2019年全市有600人申报此项贷款,则估计2019年该市共要补贴多少万元.10.某厂有4台大型机器,在一个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为13.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的均值.提高练习1.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )A.0.7B.0.6C.0.4D.0.32.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ 没有零点的概率是12,则μ等于( )A.1B.2C.4D.不能确定 3.已知离散型随机变量X 的分布列如表所示,若E (X )=0,D (X )=1,则P (X <1)=________.4.甲、乙两家外卖公司,元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)现从记录甲公司的50天送餐单数中随机抽取3天的送餐单数,求这3天送餐单数都不小于40的概率.(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望E(X);②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.5.计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?。
高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列知识点1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质(1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11=∑=ni ip3.常见的离散型随机变量的分布列 (1)两点分布若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.题型一离散型随机变量的理解【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数XB .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度XC .某超市一天中来购物的顾客数XD .小马登录QQ 找小胡聊天,设X =⎩⎪⎨⎪⎧1,小胡在线0,小胡不在线【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ;(2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数.【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6D .ξ≤5【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25【过关练习】1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度.2.某人射击的命中率为p (0<p <1),他向一目标射击,若第一次射中目标,则停止射击,射击次数的取值是( ) A .1,2,3,…,n B .1,2,3,…,n ,… C .0,1,2,…,nD .0,1,2,…,n ,…3.同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________.4.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.5.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ, (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.题型二 离散型随机变量分布列的求法及性质【例1】某一随机变量ξ的概率分布列如表,且m +2n =1.2,则m -n2的值为( )A.-0.2 C .0.1D .-0.1【例2】已知离散型随机变量X 的分布列如下:则P (X =10)A.239 B.2310 C.139 D.1109 【例3】已知随机变量X 只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围为________.【过关练习】1.随机变量ξ的分布列如下:则ξ为奇数的概率为2.若离散型随机变量X 的分布列为:则常数c 的值为( ) A.23或13 B.23 C.13D .13.由于电脑故障,随机变量X 的分布列中部分数据丢失,以代替,其表如下: 0.50.1根据该表可知题型三 两种特殊分布的应用【例1】某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X 表示4人中的团员人数,则P (X =3)=( ) A.421 B.921 C.621 D.521【例2】一个袋中有形状、大小完全相同的3个白球和4个红球.从中任意摸出两个球,用“X =0”表示两个球全是白球,用“X =1”表示两个球不全是白球,求X 的分布列.【过关练习】1.从装有除颜色外其余均相同的3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,随机变量ξ的概率分布列如下:则x 1,x 2,x 3的值分别为________.2.在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.课后练习【补救练习】1.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( ) A .6 B .7 C .10D .252.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________.3.在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X 的分布列.【巩固练习】1.设实数x ∈R ,记随机变量ξ=⎩⎪⎨⎪⎧1,x ∈(0,+∞),0,x =0,-1,x ∈(-∞,0).则不等式1x≥1的解集所对应的ξ的值为( )A .1B .0C .-1D .1或02.若P (ξ≤n )=1-a ,P (ξ≥m )=1-b ,其中m <n ,则P (m ≤ξ≤n )等于( ) A .(1-a )(1-b ) B .1-a (1-b ) C .1-(a +b )D .1-b (1-a )3.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)4.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab ,则这名运动员投中3分的概率是________5.在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场. (1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.【拔高练习】1.随机变量ξ的概率分布列为P (ξ=n )=an (n +1),n =1,2,3,4,其中a 是常数,则P ⎝⎛⎭⎫12<ξ<52的值为( ) A.23 B.34 C.45D.562.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复设奖),每个问题回答正确与否相互之间没有影响,用X 表示小王所获奖品的价值,写出X 的所有可能取值及每个值所表示的随机试验的结果.。
离散的数学定义

离散的数学定义
离散数学是数学的一个分支,主要研究离散对象和离散结构之间的关系,重点关注离散的整数值、集合和图论等。
以下是离散数学的一些主要概念和定义:
1. 集合论:
- 集合是离散数学中最基本的概念之一,表示一组独立对象的总体。
集合论研究集合之间的关系、运算和性质。
2. 逻辑:
- 逻辑是研究命题和推理的学科,离散数学中的逻辑主要包括命题逻辑和谓词逻辑,用于研究命题的真假和推理规则。
3. 图论:
- 图论是离散数学的一个重要分支,研究图(vertices 和edges组成的结构)之间的关系和性质,包括图的遍历、连通性、最短路径等问题。
4. 离散结构:
- 离散结构指的是离散对象之间的关系和结构,如排列组合、树、图等。
离散数学研究这些结构的性质和应用。
5. 组合数学:
- 组合数学是离散数学的一个重要分支,研究离散对象的排列组合方式,包括排列、组合、二项式定理等。
6. 概率论:
- 离散概率论研究离散随机变量的概率分布和性质,包
括概率空间、随机变量、概率分布等。
7. 离散数学的应用:
- 离散数学在计算机科学、信息技术、密码学、通信等领域有着广泛的应用,如算法设计、数据结构、网络设计等。
总的来说,离散数学是研究离散对象和结构的数学分支,涉及集合论、逻辑、图论、组合数学等内容,在计算机科学和信息技术等领域具有重要的理论和实际应用。
高考数学复习知识点讲解教案第64讲 离散型随机变量的分布列、数字特征

所以ቊ
解得 = 1 = 0.6.
= 1 + = 0 = 1,
(2)
设随机变量的分布列为 = =
+1
= 1,2,3,4,5 ,则
3
3
7
10
< < =____.
2
2
[解析] ∵ 随机变量的分布列为 = =
)
2
,故选C.
3
2
,进而
3
(2)
若随机变量的分布列如下表所示,则当 < = 0.3时,实数的取
值范围是(
A.[−3,2]
B
)
−3
−2
0
1
2
0.2
0.1
0.2
0.1
0.4
B.(−2,0]
C.(0,1]
D.(1,2]
[思路点拨](2)根据分布列中的数据计算出 ≤ −2 , ≤ 0 的值,然
4
.故选ABD.
3
例3
某校为激发学生对天文、航天、数字科技三类相关知识的兴趣,举行了一
次知识竞赛(竞赛试题中天文、航天、数字科技三类相关知识题量占比分别为
40%,40%,20%).某同学回答天文、航天、数字科技这三类问题中每个题的正
2 1 1
确率分别为 , , .
3 2 3
(1)
若该同学在题库中任选一题作答,求他回答正确的概率;
则 = 0 −
+1 2
3
1
3
0++1
3
× + −
=
+1 2
3
高考数学总复习考点知识专题讲解12 离散型随机变量的数字特征

高考数学总复习考点知识专题讲解专题12 离散型随机变量的数字特征知识点一离散型随机变量的均值1.离散型随机变量的均值的概念一般地,若离散型随机变量X的分布列为则称E(X)=x1p1+x2p2+…+x i p i+…+x n p n=∑=ii ip x1,为随机变量X的均值或数学期望.2.离散型随机变量的均值的意义均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.3.离散型随机变量的均值的性质若Y=aX+b,其中a,b均是常数(X是随机变量),则Y也是随机变量,且有E(aX+b)=aE(X)+b.证明如下:如果Y=aX+b,其中a,b为常数,X是随机变量,那么Y也是随机变量.因此P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n,所以Y的分布列为于是有E(Y)=(ax1+b)p1+(ax2+b)p2+…+(ax i+b)p i+…+(ax n+b)p n=a(x1p1+x2p2+…+x i p i+…+x n p n)+b(p1+p2+…+p i+…+p n)=aE(X)+b,即E(aX+b)=aE(X)+b .知识点二 两点分布的均值如果随机变量X 服从两点分布,那么E (X )=0×(1-p )+1×p =p .【例1】(2023•岳阳楼区校级开学)甲乙两人进行乒乓球比赛,每人各局取胜的概率均为12,现采用五局三胜制,胜3局者赢得全部奖金800元.若前两局比赛均为甲胜,此时因某种原因比赛中止,为使奖金分配合理,则乙应得奖金()元 A .700B .600C .200D .100【例2】(2023•宝山区期末)设0a b <…,随机变量X 的分布是124()a b a b+,则()E X 的取值范围是()A .3(1,)2B .11[,3)4C .11(1,]4D .53[,)22【例3】(2023•多选•扬州期中)乒乓球()tabletennis ,被称为中国的“国球”,是一种世界流行的球类体育项目,是推动外交的体育项目,被誉为“小球推动大球”.某次比赛采用五局三胜制,当参赛甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前已赛结果影响.假设甲在任一局赢球的概率为(01)p p 剟,实际比赛局数的期望值记为()f p ,下列说法正确的是() A .三局就结束比赛的概率为33(1)p p +-B .()f p 的常数项为3 C .14()()35f f <D .133()28f =知识点三 离散型随机变量的方差、标准差 设离散型随机变量X 的分布列如表所示.我们用X 所有可能取值x i 与E (X )的偏差的平方(x 1-E (X ))2,(x 2-E (X ))2,…,(x n -E (X ))2,关于取值概率的加权平均,来度量随机变量X 取值与其均值E (X )的偏离程度.我们称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i ni i p X E x ∑=-12))((为随机变量X 的方差(variance),有时也记为Var (X )X 的标准差(standard deviation),记为σ(X ). 知识点四 离散型随机变量方差的性质 1.设a ,b 为常数,则D (aX +b )=a 2D (X ). 2.D (c )=0(其中c 为常数). 均值、方差在决策中的作用(1)均值:均值反映了离散型随机变量取值的平均水平,均值越大,平均水平越高. (2)方差:方差反映了离散型随机变量取值的离散波动程度,方差越大越不稳定. (3)在决策中常结合实际情形依据均值、方差做出决断.【例4】(2023•巴中模拟)若一组样本数据1y ,2y ,⋯⋯,n y 的期望和方差分别为2,0.04,则数据151y +,251y +,351y +,⋯⋯,51n y +的期望和方差分别为() A .3,1B .11,1C .3,0.2D .11,0.2【例5】(2023•多选•重庆期中)若随机变量X 服从两点分布,且1(0)4P X ==,则()A .(1)()P X E X ==B .(41)3E X +=C .3()16D X =D .(41)4D X +=【例6】(2023•多选•南山区期中)设离散型随机变量X 的分布列为若离散型随机变量Y 满足21Y X =+,则下列结果正确的有() A .0.5q =B .()3E X =,() 1.4D X =C .()3E X =,() 1.8D X =D .()7E Y =,() 5.6D Y =【例7】(2022•浙江)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==,()E ξ=.【例8】(2023•湖南月考)长沙市有橘子洲,岳麓山,天心阁,开福寺四个景点,一位游客来长沙市游览.已知该游客游览橘子洲的概率为23,游览其他景点的概率都是12.该游客是否游览这四个景点相互独立,用随机变量X 记录该游客游览的景点数,下列说法正确的是()A .游客至多游览一个景点的概率为14B .3(2)8P X ==C .1(4)24P X ==D .13()6E X =【例9】(2023•多选•南京模拟)在10件产品中,其中有3件一等品,4件二等品,3件三等品,现从这10件产品中任取3件,记X 为取出的3件产品中一等品件数,事件A为取出的3件产品中一等品件数等于一等品件数,事件B 为取出的3件产品中一等品件数等于三等品件数,则下列命题正确的是() A .7(2)40P X ==B .29(1)30P X =…C .9()10E X =D .A ,B 相互独立【例10】(2022•多选•张家口期末)一种疾病需要通过核酸检测来确定是否患病,检测结果呈阴性即没患病,呈阳性即为患病,已知7人中有1人患有这种疾病,先任取4人,将他们的核酸采样混在一起检测.若结果呈阳性,则表明患病者为这4人中的1人,然后再逐个检测,直到能确定患病者为止;若结果呈阴性,则在另外3人中逐个检测,直到能确定患病者为止.则()A .最多需要检测4次可确定患病者B .第2次检测后就可确定患病者的概率为27C .第3次检测后就可确定患病者的概率为27D .检测次数的期望为227【例11】(2023•河源期末)某工厂有甲、乙、丙三条生产线同时生产同一产品,这三条生产线生产产品的次品率分别为6%,5%,4%,假设这三条生产线产品产量的比为5:7:8,现从这三条生产线上共任意选取100件产品,则次品数的数学期望为4.85.【例12】(2022•甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.【例13】(2021•新高考Ⅰ)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.同步训练1.(2019•浙江)设01<<.随机变量X的分布列是a则当a在(0,1)内增大时,()A.()D X减小D X增大B.()C.()D X先减小后增大D X先增大后减小D.()2.(2023•多选•从化区期中)袋内有大小完全相同的2个黑球和3个白球,从中不放回地每次任取1个小球,直至取到白球后停止取球,则()A .抽取2次后停止取球的概率为35B .停止取球时,取出的白球个数不少于黑球的概率为910C .取球次数ξ的期望为2D .取球3次的概率为1103.(2022•多选•南关区开学)已知随机变量ξ的分布列如下表;记“函数()3sin()2x f x x R π+=∈是偶函数”为事件A ,则下列结论正确的有() A .3()4E m ξ=-B .34m n +=C .3()4P A =D .1()4P A =4.(2023•多选•城厢区期末)设01m <<,随机变量的分布列为:则当m 在(0,1)上增大时,() A .()E ξ减小B .()E ξ增大C .()D ξ先增后减,最大值为16D .()D ξ先减后增,最小值为165.(2021•浙江)袋中有4个红球,m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=,()E ξ=.6.(2020•浙江)盒中有4个球,其中1个红球,1个绿球,2 个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)Pξ==,Eξ=.()7.(2022•全国)甲、乙两名运动员进行五局三胜制的乒乓球比赛,先赢得3局的运动员获胜,并结束比赛.设各局比赛的结果相互独立,每局比赛甲赢的概率为2,乙赢的3.概率为13(1)求甲获胜的概率;(2)设X为结束比赛所需要的局数,求随机变量X的分布列及数学期望.8.(2022•北京)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50)m的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):m甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(Ⅰ)估计甲在校运动会铅球比赛中获得优秀奖的概率;(Ⅱ)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望EX;(Ⅲ)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)9.(2021•新高考Ⅱ)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,⋯⋯,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0i P X i p i ===,1,2,3).(Ⅰ)已知00.4p =,10.3p =,20.2p =,30.1p =,求()E X ;(Ⅱ)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X …时,1p =,当()1E X >时,1p <;(Ⅲ)根据你的理解说明(2)问结论的实际含义.10.(2020•江苏)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为n X ,恰有2个黑球的概率为n p ,恰有1个黑球的概率为n q . (1)求1p ,1q 和2p ,2q ;(2)求2n n p q +与112n n p q --+的递推关系式和n X 的数学期望()n E X (用n 表示).。
2023年高考数学(理科)一轮复习——离散型随机变量及其分布列

感悟提升
分布列性质的两个作用 (1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性. (2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机 变量在某个范围内的概率.
索引
考点二 离散型随机变量的分布列
例1 (12分)某市某超市为了回馈新老顾客,决定在2022年元旦来临之际举行 “庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活 动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小 组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色, 再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记 它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.
索引
6.(2021·郑州检测)设随机变量X的概率分布列为
X1 2 34
P
1 3
m
1 4
1 6
5 则P(|X-3|=1)=___1_2____.
解析 由13+m+14+16=1,解得 m=14, P(|X-3|=1)=P(X=2)+P(X=4)=14+16=152.
索引
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
索引
P(ξ=1)=CC13·C29 16=1386=12, P(ξ=2)=CC23·C29 06=336=112.
所以ξ的分布列为
ξ 012
P
5 12
1 2
1 12
索引
感悟提升
1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超 几何分布的特征是: (1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查 某类个体数X的概率分布. 2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古 典概型.
高中数学离散型随机变量

高中数学离散型随机变量
高中数学离散型随机变量是概率论与数理统计中的重要概念之一。
离散型随机变量是指只能取有限或可数个数值的随机变量。
我们可以通过概率分布函数或者概率质量函数来描述离散型随机变量的
概率分布。
离散型随机变量的概率分布可以通过概率质量函数(probability mass function, PMF)来表示。
概率质量函数给出了随机变量取某个特定值的概率。
例如,考虑一个抛硬币的实验,其中正面出现的概率为p,反面出现的概率为1-p。
对于这个实验来说,我们可以定义一个离散型随机变量X,如果正面朝上则取值为1,反面朝上则取值为0。
这个随机变量的概率质量函数可以表示为P(X=1) = p和P(X=0) = 1-p。
离散型随机变量的特点是每个取值都有一个非负的概率值与之对应,而且所有概率值的和等于1。
通过概率质量函数,我们可以计算出随机变量取某个值的概率,并可以进一步计算出随机变量的期望值、方差等重要的统计量。
离散型随机变量的应用非常广泛。
在实际生活中,许多随机现象可以用离散型随机变量来建模。
例如,掷骰子的点数、抽奖中奖的号码、一天内接到的电话数量等等。
通过对这些随机变量进行建模和分析,
我们可以了解随机事件发生的概率和规律,进而做出合理的决策。
在高中数学中,离散型随机变量是概率论与数理统计的基础内容之一。
通过学习离散型随机变量,学生可以了解随机变量的概念和性质,学习如何计算概率以及如何分析随机变量的特征。
这些知识对于未来深入学习概率论和数理统计,以及在应用领域中进行数据分析和决策都非常重要。
高考数学一轮复习离散型随机变量的均值与方差

第8节离散型随机变量的均值与方差最新考纲了解取有限个值的离散型随机变量的均值、方差的概念口归敦材,夯实:基础IS础诊断知识梳理i. 离散型随机变量的均值与方差若离散型随机变量X的分布列为(1)均值称E (X)= X]p]+ X?02+…+ X]p i+…+ X n P n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差n称D (X)=£_(x i — E (X)) 2p丄为随机变量X的方差,它刻画了随机变量X与i = 1其均值E (X)的平均偏离程度,其算术平方根 D (X)为随机变量X的标准差.2. 均值与方差的性质(1) E (aX+ b)= aE (X)+ b.(2) D (aX+ b)= a2D (X) (a, b 为常数).3. 两点分布与二项分布的均值、方差(1)若X服从两点分布,则E (X)= p, D (X)= p (1 —p).(2)若X〜B (n, p),则 E (X)= np,D (X)= np (1 —p).[常用结论与微点提醒]1. 已知随机变量X的均值、方差,求X的线性函数丫= aX+ b的均值、方差和标准差,可用均值、方差的性质求解;2. 如能分析所给随机变量服从常用的分布(如二项分布),可直接利用它们的均值、方差公式求解.诊断自测1•思考辨析(在括号内打“/或“ X”) (1) 期望值就是算术平均数,与概率无关•()(2)随机变量的均值是常数,样本的平均值是随机变量 .()(3) 随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度, 方差 或标准差越小,则偏离变量平均程度越小.()(4) 均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回事 ( ) 解析均值即期望值刻画了离散型随机变量取值的平均水平,而方差刻画了离散 型随机变量的取值偏离期望值的平均程度,因此它们不是一回事,故(1)(4)均 不正确.答案(1)X (2)V2. (选修2-3P68T1改编)设丫二2X + 3,则E (丫)的值为( )A.3B.4C.-1D.111 1 解析 E (x )= — 2+ g =-3,(3)V(4)X4. (2017全国U 卷)一批产品的二等品率为0.02,从这批产品中每次随机取一件, 有放回地抽取100次,X 表示抽到的二等品件数,则 D (X )= _____________ 解析 有放回地抽取,是一个二项分布模型,则 X 〜B (100,0.02),所以 D (X )= np (1 — p )= 100X 0.02X 0.98=1.96.答案 1.96则a= _________ ,数学期望E (X )= _____________49 25 9 1 65E (X )=1X 84+ 2X 84+ 3X 84+ 4X 84=42. 答案25 65答案 84 42 6. (2018湖州调研)甲、乙两人被随机分配到 A ,B ,C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数 学期望E (X )= _____________ ,方差D (X )= _____________ .0 OA解析 由题意可得X 的可能取值有0,1, 2,P (X = 0)= 亍 =9 P (X = 1)3X 3 9C 2X 2 4 11^44 12 =3X 3 = 9,P (X= 2) = 3X 3=9,则数学期望 E (X )= 0X 9+ 1X9+ 2X 9= 3,已知随机变量X 的分布列如下: 5. (2018金华十校联考)解析 由分布列的性质可得:49 9 1 84+ a + 84+ 84= 1,解得a = 2584.考克突破分类讲竦,以例求试考点一 一般分布列的均值与方差方差D (X )224=0—3 X 9+21-3X 4+ 2-22 43 X9=9.【例3】(3)(2038浙江三市联考)已知某口袋中有3个白球和a 个黑球(a € N ), 现从中随机取出一球,再放回一个不同颜色的球(即若取出的是白球,则放回一 个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是 E若 E (— 3,则 D (5 = ( )3 3 A.|B.3C.|D.2(2) (2038浙江五校联考)从装有大小相同的3个红球和6个白球的袋子中,不 放回地每摸出2个球为一次试验,直到摸出的球中有红球时试验结束,则第一次 试验恰摸到一个红球和一个白球的概率是 ___________________ ;若记试验次数为X ,则X 的 数学期望E (X )= ___________ .3a解析(3)由题意,知 5= 2 或 4,P ( 5= 2)=, P ( 5= 4)= ,则 E a + 3 a + 3 3 a (5 = 2X ------- + 4X ------ = 3,解得 a = 3,a + 3a + 33 3 22••• P ( 5= 2)= P ( = 4)= 2,则 D (5 = $ (2-3) 2+(4-3) 2] = 3. c !c 3 3(2)第一次试验恰摸到一个红球和一个白球的概率是p=-c£=2;若记试验次数为X ,则X = 3, 2, 3, 4,于是c l c 4 C 2C 3+ C 2 93P ( x =3)= C 9C 4—^1 二 84二 l8,P(X = 4) = C l C 4 C |=需,则 X 的数学期望 E(X ) = 3 X -32+ I X 84+ 3x 18+ 4X 84 65 =4I .答案(3) B (I ) 3 45P (X = 3)c 3c 3 + c i 7 —c —=32,P (X = 2)2629c 「c25一规律方法(3)求离散型随机变量的均值与方差关键是确定随机变量的所有可能(2) (2018温州九校联考)将四位同学等可能地分到甲、乙、丙三个班级,则甲 班级至少有一位同学的概率是 _________________ ,用随机变量a 表示分到丙班级 的人数,则E ( a = _____________ .1 1 1 解析 (1)由已知,得1+3+ p = 1,所以p =6, 且 E (X ) — 2X 1+ O X 1+ 1X 1一 6, ••• E (Y )= E (2X + 3)= 2E (X ) + 3 = 2X 1 + 1 + C 4 + C 4 + C 4 16 =81,所以甲班级至少有一位同学的概率为1-81=H •随机变量a 的可能取值为【例2】(1)已知随机变量X 服从二项分布B (n , p ),若E (X )= 30, D (X ) =20」p = (2)(一题多解)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时, 就说这次试验成功,则在2次试验中成功次数X 的均值是 _____________ 解析 (1)依题意可得 E (X )= np = 30,且 D (X )= np (1 — p )= 20,解得 p4- 3 --3+(2 )甲班级没有分到同学的概率为0, 1, 2, 3, 4,则 P (E=0)=話 P ( E= 1)=C 4 ( 1 + 1 + C 3+ C 3)32= P 81’ P(V 2)=C 2 (1 + 1+ 2)3 24 C 4X 2 8 21, P (= 3)= 丁=81, P (片4)24 8 1 4 +2X 81+3X 81+4X 81=3. 答案(1) 1 3(2) 8? 4考点二与二项分布有关的均值、方差=扛81,于是E (a =0X 暮+1X 32值,写出随机变量的分布列,正确运用均值、方差公式进行计算则 p = ________ ;若 Y = 2X + 3,贝U E (Y )= __________ .1=3.1 3(2)法一由题意可知每次试验不成功的概率为4,成功的概率为4,在2次试验中成功次数X的可能取值为0,1, 2,则1 1 1 3 3P (X=o)= 16, P(x= 1)= C2X4X4二8,29P(X= 1 2 = 4 =所以在2次试验中成功次数X的分布列为则在2次试验中成功次数X的均值为1 3 9 3E (X)二o x 16+ 1X8+2X—=^.3法二此试验满足二项分布,其中p= 4,所以在2次试验中成功次数X的均值为3 3E (X)= np= 2X4 = 21 3答案(1) 3 (2) 3规律方法二项分布的期望与方差(1)如果E〜B (n, p),则用公式E (B = np;D ( $ = np (1 —p)求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用 E (a& b)= aE ( $ + b以及E ( $ = np求出 E (a& b),同样还可求出D (a& b).【训练2】(1)有10道数学单项选择题,每题选对得4分,不选或选错得0分.1已知某考生能正确答对其中的7道题,余下的3道题每题能正确答对的概率为-.假设每题答对与否相互独立,记E为该考生答对的题数,n为该考生的得分,则P (E= 9)= ________ , E ( n) = _________ .(2) (2018杭州学军中学模拟)商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖•每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5 个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖,则顾客抽奖1次能获奖的概率是 __________ ;若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,贝U E (X)= ____________ .2解析(1) P ( 9)= C3x 1 x 1 —£= |.由题意可得:E 7,8,9,10,n= 4g 且(E—7)〜B$, 3 4j.3P ( &7)= C3x 1—3 二27,2P ( &8)= C1X3X 1—3 二9,22 Q 2 2P ( E9)= C3X 3 x3二9,31、 1P( 10)= c3x 3 = 27.••• E的分布列为:8 4 2 1E ( 0 = 7X27+ 8X9+ 9X9+ 10X27 = 8.E (n) = E (4 0 = 4E (0 = 32.2 3(2 )由题得,在甲箱中抽中红球、白球的概率分别为5,5,在乙箱中抽中红球、3 7 2 1 13 1 3 13白球的概率分别为2 2.抽奖一次不获奖的概率为£x?=10,所以其(对立事件)获奖的概率为1-10二缶.因为每次获得一等奖的概率为2x 1 = 1, 3次抽奖相互独、” 1 3立,故 E (X)= np= 3x5= 5.2 7 3答案(1)9 32 (2)和 5I课乍业另层训练,提升能右基础巩固题组一、选择题1.已知离散型随机变量X的概率分布列为则其方差D (X) = ( )A.1B.0.6C.2.44D.2.4解析由0.5+ m+ 0.2= 1 得m= 0.3,二 E (X)= 1 x 0.5+ 3X 0.3+ 5X 0.2= 2.4,2 2 2••• D (X) = ( 1-2.4) X 0.5+( 3-2.4) X 0.3+( 5-2.4) X 0.2= 2.44.答案C2. (2018稽阳联谊学校联考)随机变量E的分布列如下,且满足E ( $ = 2,则E (a + b)的值为( )A.0B.1C.2D.无法确定,与a, b有关解析E ( $) = 2,贝U a + 2b+ 3c= 2,又a+ b+ c= 1,由两式可得a= c, 2a + b=1,二 E (a $+ b)= aE ( $ + b = 2a + b= 1.答案B2 13. (2018绍兴检测)设X是离散型随机变量,P (X= X1)=彳P (X= X2) = 3,4 2且X1V X2,若 E (X)= 3, D (X)= 9,则X1 + X2=( )2 1 43x1 + 3x2=3,由已知得12( 4、2 1( 4、2 23x1 3 + 3x2 3 _9,答案 D4•已知随机变量X + n= 8,若X 〜B (10, 0.6),则E ( n, D ( n 分别是( )A.6, 2.4 C.2, 5.6解析 由已知随机变量X + n= 8,所以有n= 8— X. 因此,求得 E ( n) = 8— E (X )= 8— 10X 0.6 = 2, D ( n) = (— 1) 2D (X )= 10X 0.6X 0.4= 2.4. 答案 B5. 某种种子每粒发芽的概率都为0.9,现播种了 1 000粒,对于没有发芽的种子, 每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A.100B.200C.300D.400解析 设没有发芽的种子有E 粒,则 〜B (1 000, 0.1),且X = 2E, ••• E (X )= E (2$ = 2E ( 5 = 2X 1 000 X 0.1 = 200. 答案 B6. 口袋中有5只球,编号分别为1, 2, 3, 4, 5,从中任取3只球,以X 表示取 出的球的最大号码,贝U X 的数学期望E (X )的值是( )A.4B.4.5C.4.75D.51 1 解析 由题意知,X 可以取3, 4, 5, P (X = 3) = & = 10,A ・| D.3解析 |xi = 1, 解得 1x2= 2 LX 1 = 或 X 2 = 5 3,2 3, x1 =1,因为X 1V X 2,所以所以X 1 + x 2= 1 + 2= 3. X 2二 2,B.2, 2.4 D.6, 5.6C s 3 C2 6 3 P (X= 4) = C3= 10,P (X= 5) = C5= 10=5,13 3所以 E (X )= 3X 10 + 4X 10+ 5X 5= 4.5. 答案 B7. (2017浙江卷)已知随机变量&满足P (E = 1)= P i , 1P (&= 0)= 1 — p i , i = 1, 2.若 0v p i <p 2V 2,则( )A. E ( gi)v E (切,D ( &)< D (切B. E ( &)< E ( £>) , D ( 8)> D ( ^2)C. E ( gi)> E (切,D ( &)< D (动D. E ( &)> E (切,D( 8)> D ( ®解析 由题设可知E ( gi)= p 1, E ( $)= p 2,从而 E (8)< E (色),而 D ($)= p 1 (1 — p 1),D (&) =p 2 ( 1 — P 2),所以 D (&)— D (&)<0,即 D (@)< D (切.答案 A甲、乙两人轮流从袋中取球,甲先取,个球,取后不放回,直到其中有一人取出白球时终止•用X 表示取球终止时取球的 总次数,则X 的数学期望E (X ) = ( )A.9B.学C^6 2 3X 6 1 3X 2X 6 1 3X 2X 1 X 6="=9 = 3;P ( X =5 6 = 9X 8 = 4;P ( X = 7= 9^X7=X = 8= 9X 8X 7X 65 2 1 1 1 10 =84所以 E (X )= 1X 3+2X 4+3X 初+4X 84=〒. 答案 B 二、填空题9. (2018湖州调研)设X 为随机变量,X 〜Bn , 3,若随机变量X 的数学期望=(P 1 — P 2)( 1 — P 1 —)9个,从中任取2个都是白球的概率为寻.现 乙后取,然后甲再取,……,每次取出 8.袋中装有大小相同的黑球和白球共 ‘ 12 D.〒解析 易得袋中白球的个数为6•则由题意得, X 的可能取值为1, 2,3, 4.P (XE (X)= 2,则P (X = 2)= ____________ ; D (X)= ___________ .解析由X〜B n, 3 , E (X)= 2,得np=罗=2, •••n = 6,则P (X= 2)=43 二243, D(X)二np(—P)二6x卜3二4.10. 某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的4- 3概率是以a为首项,2为公比的等比数列,相应的奖金分别是7 000元、5 600元、4 200元,则参加此次大赛获得奖金的期望是_________ 元.1 1 解析由题意知a+ 2a + 4a= 1, • a = 7, •获得一、二、三等奖的概率分别为7,2 4 1 2 47, 7,•所获奖金的期望是E( X)二7X 7 000+ 7X 5 600+7X 4 200= 5 000 (元)答案 5 00011. (2018嘉兴测试)已知随机变量E的分布列如下.$ 012P b 2 a1a22则E ( $的最小值为___________ ,此时b= __________ .解析由题意得E ( $ = 0X b+ 1 X a2+ 2X号一2 = a2-a+ 1 = g —舟了+弓,所以E ($的最小值为4,此时a = 2,又因为b+ a2+1—1,所以b= —a2+1+舟=12.3 1答案3112. (2018杭州高级中学模拟)已知一个袋子中装有4个红球和2个白球,假设每一个球被摸到的可能性是相等的,若从袋子中摸出3个球,记摸到白球的个数为$则随机变量$的均值是________________________ ;方差是___________ .解析由题可得,$的所有可能取值分别为0, 1, 2.且P ( $= 0)= 2Q=5,2 1 1 2八C4C2 12 3 , / " c、C4C2 4 1 比「、十八升知斗P ($=1)=CCT=12=5, P (= 2)= "CT二20=1.所以其分布列为$ 0 1 2 P1 3 1 555”、「 1 3 1 2 1 2 3 所以 E ( o = O X 5+ 1X 5+ 2X 5 = 1; D ( $ = ( 0— 1) X 5+( 1- 1) X-5 +2 1 2(2-1) X厲2 答案1 2 513.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢 玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射击到3次为止.设甲每次击中的概率为p (p M 0),射击次数为 Y ,若Y 的数学期望E (Y ) #,则p 的取值范围是 ______________ . 解析 由已知得 P (丫= 1)= p , P (丫= 2) = ( 1 — p ) p , P (Y = 3) = ( 1 — p ) 2,227则 E (Y )= p + 2 (1 — p ) p + 3 (1 — p ) = p — 3p + 3>4又 E (X )= = 3,二 m = 2,m + 3答案 BA.5解析 由题X 〜B 5,3、m + 3 /i 3、则 X 〜B 5, 5,故 D (X )642-X3- 5X15. 袋中装有大小完全相同,标号分别为 1, 2, 3,…,9的九个球.现从袋中随机 取出3个球.设E 为这3个球的标号相邻的组数(例如:若取出球的标号为 3, 4, 3, 4和4, 5,此时9的值是2),则随机变量9的均值解析 依题意得,9的所有可能取值是0, 1, 2.口 C 7 5且 P (片 o )= &= 12, P (E = 1) c j 丄P (E 2)= C 9=12,… 5 1 1 2 因此 E ( 9 = o x 12+1 x 2+ 2x 12= 3. 答案 D16. (2018北京海淀区模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从 标有5, 6, 7, 8, 9的小球中随机摸取一个(除数字不同外,其余均相同),将小 球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将 两个小球上数字之差的绝对值的 2倍作为其奖金(单位:元).若随机变量X 和Y 分别表示参与者在每一局赌博游戏中的赎金与奖金,则 E (X )— E (Y )=元.1解析 根据题意可得P (X = k )= 5 (k = 5, 6, 7, 8, 9), 1 一可得 E (X )= 5X (5+ 6+ 7 + 8+ 9)= 7 (兀).丫的取值可能为2, 4, 6, 8,其中23115,则有两组相邻的标号A.61- 2 --P (Y = 4)= P (Y = 6)= P (Y = 8)=310155丄10 - - -- 3&2& 注)P (Y = 2)所以E (丫)= 2x5+ 4X10 + 6X5 + 8X —= 4 (元) 故E (X)—E (Y)= 7—4= 3 (元)答案 317. (2018衢州质检)一个袋中装有质地均匀、大小相同的 2个黑球和3个白球, 从袋中一次任意摸出2个球,则恰有1个是白球的概率为 ____________;从袋中一 次任意摸出3个球,摸出白球个数的数学期望 E ( 0 = _____________ . 解析 由题意得从5个小球中任意摸出2个共有C 2= 10种取法,其中满足恰有 一个白球的取法有c 2c 3=6种,所以恰有一个白球的概率为10=&.任意摸出3个C 2C 1 小球,设其中白球的个数为 0贝U 0的可能取值为1, 2, 3,且P ( 0= 1)=-(育 3 c 2c 2 3 c 3 1 十“3 3=10; P ( 0= 2)= c 3 = 5; P ( 0= 3)=况=10,所以 E ( 0 = 1 X 1o + 2X 5 +27E (Y )= E (2X + 3)= 2E (X ) + 3= — 3+ 3=?. 答案 A13X10 18. (2018金华一中模拟)有甲、乙两个盒子,甲盒子中装有 3个小球,乙盒子 中装有5个小球,每次随机取一个盒子并从中取一个球,则甲盒子中的球被取完 时,乙盒子中恰剩下2个球的概率为 _____________ ;当取完一个盒子中的球时,另一 个盒子恰剩下0个球,则0的期望为 _________ . 解析 甲盒子中的球被取完时,乙盒子中恰剩下 2个球的概率P =1-221-1 52 = 32;由题意,知曲勺可能取值为1, 2, 3, 4, 5,因为7 7 P ( & 1)= C 6 2 + C 62 二 64, 1- 22^-1164--4526 -743 2lQ 3⑴」P (E= 4)= C 3 2 = 16,P (E 5)= 2 = 8,所以 E ( 0二 1X65 + 2X 64+ 3X 32 + 4X 老 + 5X 基器答案5 17532 643. _______ 设随机变量X的分布列为P (X= k)= 5 (k= 2, 4, 6, 8,10),则D (X)等于 ____ .1解析••• E (X)= 5 (2+ 4+ 6+ 8+ 10)= 6,••• D (X)= |[ (- 4) 2+(- 2 ) 2+ 02+ 22+ 42] = 8.答案85 1解得p>2或p<2,又p€ (0,1),所以p€ 0, 2 .答案0, 1能力提升题组14. 从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X,已知E (X)= 3,则D (X)=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学中的离散数学
离散数学是一门研究离散结构的数学科学。
在高考数学中,离
散数学的知识点涉及了集合论、图论、代数、逻辑等多个方面。
本文将从基础概念入手,深入浅出地介绍高考数学中离散数学的
相关知识。
1. 集合论
集合是一种数学概念,在离散数学中也是很重要的一个概念。
集合的定义是无序元素的组合,并且元素不重复。
例如:{1,2,3}就是一个集合,而{1, 2, 2, 3}不是一个集合。
在高考数学中,我们需要了解集合的基本运算:交、并、差、
补集等。
交集指两个集合中都有的元素组成的集合;并集指两个
集合中所有元素的集合;差集指其中一个集合中有,另一个没有
的元素组成的集合;补集指给定集合之外的元素的集合。
此外,我们还需要了解集合的概率和条件概率。
集合的概率是
指一个事件发生的可能性,通常表示为P(A),其中A为事件。
条
件概率则是指某个事件发生的条件下,另一个事件发生的可能性。
条件概率的公式为:P(B|A) = P(A∩B)/P(A),其中B|A表示在事件A发生的情况下,事件B发生的概率。
2. 图论
图论是离散数学中的一个非常重要的分支,广泛应用于计算机科学、通信、运筹学等领域。
图是由顶点和边组成的一个结构,用于描述物体间相互连接的关系。
在高考数学中,我们需要了解无向图和有向图的概念以及它们的特点。
无向图是指图中每一个边都不具有方向性的图,而有向图则是指图中每一个边都具有方向性的图。
此外,我们还需要了解最短路径算法。
最短路径算法是用于寻找两个点之间的最短距离,通常有两种算法:迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法是一种贪心算法,通过逐步扩大已被访问的点的集合来搜寻最短路径;而弗洛伊德算法则是一种动态规划算法,通过逐步增加路径中经过的结点数量来实现寻找最短路径的目的。
3. 代数
代数是对符号和符号之间的关系进行研究的数学分支。
在离散数学中,我们需要了解常见的代数结构:群、环、域等。
其中,群是一种代数结构,满足定义的四个条件:封闭性、结合律、单位元、逆元。
而环则是一种满足两个二元运算定义的代数结构。
此外,我们还需要了解置换群的概念。
置换群是一种群,由有限个置换组成。
其中,置换是一种操作,将一个元素映射到自身或其他元素。
一个群的置换群是由群内元素所各自定义的置换组成的群。
4. 逻辑
逻辑是应用到离散数学中的又一重要概念。
在离散数学中,我们需要了解命题、谓词、量词等逻辑概念。
命题是指具有真假值的简单陈述性语句,例如“太阳从东方升起”,而谓词是指具有代数值的语句,例如“x>y”这个不等式。
在谓词中,变量是可以代表任何值的。
此外,我们还需要了解真值表和布尔代数的相关知识。
真值表是在输入变量的各种可能情况下,给出函数的输出结果。
布尔代数是基于布尔运算的代数,用于计算逻辑表达式的值。
总之,离散数学是高考数学中的一个非常重要的知识点,涉及了许多不同的方面。
通过深入学习离散数学,我们可以更好地理解数学本质,从而提升自己的数学能力。