离散数学知识点
02324离散数学知识点

02324离散数学知识点
离散数学是研究离散对象和离散结构的数学分支,其知识点包括但不限于集合论、图论、逻辑学、组合数学等。
以下是其中一些重要的知识点:
1. 集合论:集合论是离散数学的基石,它研究集合、集合之间的关系和集合的性质。
2. 图论:图论是离散数学的重要组成部分,它研究图(由节点和边构成的结构)的性质和分类。
3. 逻辑学:逻辑学是离散数学的另一个重要组成部分,它研究推理的规则和形式。
在离散数学中,逻辑通常用于描述和证明一些结构或系统的性质。
4. 组合数学:组合数学是离散数学的一个分支,它研究计数、排列和组合问题。
5. 离散概率论:离散概率论是离散数学的另一个分支,它研究离散随机事件的数学模型。
6. 离散概率分布:离散概率分布是描述离散随机事件发生概率的数学模型。
7. 离散随机变量:离散随机变量是能够取到可数无穷多个值的随机变量。
8. 离散概率空间:离散概率空间是一个集合,它包含一个可数无穷多的元素,每个元素都有一个与之相关的概率值。
9. 离散随机过程:离散随机过程是离散随机事件在时间或空间上的序列。
这些知识点都是离散数学的重要组成部分,它们在计算机科学、数学、物理学等领域都有广泛的应用。
离散数学知识点整理

离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、数理逻辑等领域都有着广泛的应用。
下面为您整理了一些离散数学的关键知识点。
一、集合论集合是离散数学中最基本的概念之一。
集合是由一些确定的、彼此不同的对象组成的整体。
比如,{1, 2, 3}就是一个集合。
集合的运算包括并集、交集、差集和补集。
并集是将两个集合中的所有元素合并在一起组成的新集合;交集则是两个集合中共同拥有的元素组成的集合;差集是从一个集合中去掉另一个集合中的元素所剩下的元素组成的集合;补集是在给定的全集范围内,某个集合的补集是全集中不属于该集合的元素组成的集合。
集合之间的关系有包含、相等、真包含等。
如果集合 A 的所有元素都属于集合 B,那么 A 包含于 B;如果 A 和 B 的元素完全相同,则 A和 B 相等;如果 A 包含于 B 且 A 不等于 B,那么 A 真包含于 B。
二、关系关系是集合中元素之间的某种联系。
比如在集合{1, 2, 3}中,“小于”就是一种关系。
关系可以用矩阵和图来表示。
矩阵表示法通过 0 和 1 来表示元素之间是否存在关系;图表示法则用节点代表元素,用边表示关系。
关系的性质包括自反性、对称性、反对称性和传递性。
自反性是指每个元素都与自身有关系;对称性是指如果 a 与 b 有关系,那么 b 与 a 也有关系;反对称性是指如果 a 与 b 有关系且 b 与 a 有关系,那么 a =b;传递性是指如果 a 与 b 有关系,b 与 c 有关系,那么 a 与 c 有关系。
三、函数函数是一种特殊的关系,对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
函数的类型有单射、满射和双射。
单射是指不同的自变量对应不同的函数值;满射是指函数的值域等于其到达的集合;双射则是既单射又满射。
四、数理逻辑数理逻辑包括命题逻辑和谓词逻辑。
命题是可以判断真假的陈述句。
命题逻辑中的基本运算有与(并且)、或、非、蕴含和等价。
离散数学知识点总结

离散数学知识点总结 一、各章复习要求与重点第一章 集 合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(V enn )图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
2、掌握集合的表示法和集合的交、并、差、补等基本运算。
3、掌握集合运算基本规律,证明集合等式的方法。
4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
[本章重点习题]P5~6,4、6; P14~15,3、6、7; P20,5、7。
[疑难解析] 1、集合的概念因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。
2、集合恒等式的证明通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。
实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~⋂=-证明中的特殊作用。
[例题分析]例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。
解}}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A}}2,1{},2{},1{,{)(φρ=B于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ例2 设{}{}Φ=,,,,b a b a A ,试求:(1){}b a A ,-; (2)Φ-A ; (3){}Φ-A ; (4){}{}A b a -,; (5)A -Φ; (6){}A -Φ。
解 (1){}{}{}Φ=-,,,b a b a A (2)A A =Φ- (3){}{}{}b a b a A ,,,=Φ- (4){}{}Φ=-A b a , (5)Φ=-ΦA (6){}Φ=-ΦA 例3 试证明()()()()B A B A B A B A ~~~~⋂⋃⋂=⋃⋂⋃ 证明()()()()()()()()()()()()()()()()()()B A B A B A B A B B B A A B A A B B A A B A B A B A ~~~~~~~~~~~~~⋂⋃⋂=Φ⋃⋂⋃⋂⋃Φ=⋂⋃⋂⋃⋂⋃⋂=⋂⋃⋃⋂⋃=⋃⋂⋃第二章 二元关系[复习知识点]1、关系、关系矩阵与关系图2、复合关系与逆关系3、关系的性质(自反性、对称性、反对称性、传递性)4、关系的闭包(自反闭包、对称闭包、传递闭包)5、等价关系与等价类6、偏序关系与哈斯图(Hasse )、极大/小元、最大/小元、上/下界、最小上界、最大下界7、函数及其性质(单射、满射、双射)8、复合函数与反函数本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念 [复习要求]1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
离散数学复习知识点

复习知识点: 第1章1. 命题、真命题、假命题 2. 命题符号化〔连接词〕设P :天下大雨,Q :他在室内运动,命题“除非天下大雨,否则他不在室内运动”可符合化为〔 D 〕A .Q P ∧⌝B .Q P →⌝C .Q P ⌝→⌝D .Q P ⌝→设P :只有你通过了大学英语六级考试,Q :你是英语专业的学生,R :你可以选修这门课程。
命题“只有你通过了大学英语六级考试而且不是英语专业的学生,才可以选修这门课程”( B )A .R Q)(P →∧B .R Q)(P →⌝∧C .R Q)(P ↔⌝∧D .R Q)(P ↔∧3. 什么是命题公式 4. 命题公式的等价式5. 利用逻辑等价关系证明下面的等价关系 Q P Q)(P P))(Q Q)((P ∨⇔∧→→∧→证明:6. 用真值表法求命题公式的主析取范式和主合取范式 7. 符号化以下语句,并推证结论的有效性。
有些学生相信所有的老师,任何一个学生都不相信骗子,所以老师都不是骗子。
解:设论述域为全总个体域,S(x):x 是学生,T(x):x 是老师,P(x):x 是骗子,L(x,y):x 相信y 。
将前提和结论符号化为P(x))x(T(x)y)))L(x,y(P(y)x(S (x)y))),L(x,y(T(y)x(S (x)⌝→∀⇒⌝→∀→∀→∀∧∃〔1〕y)))L(x,y(T(y)x(S (x)→∀∧∃ P 〔2〕y))L(a,y(T(y)S (a)→∀∧T1,ESQ)(P TQ)(P Q)Q (Q)(P Q Q)(P T)(Q Q)(P P))P ((Q Q)(P Q)(P P)(Q Q)(P Q)(P P)Q (Q)P (Q)(P P))Q (Q)P ((Q)(P P)Q (Q)P (Q)(P P))(Q Q)((P ∨⇔∧∨⇔∨⌝∧∨⇔∨⌝∧⇔∧∨⌝∧⇔∨⌝∧∨⌝∧⇔∧∨⌝∧∨⌝∧⇔∧∨∨⌝⌝∨∨⌝⌝⇔∧∨∨⌝∧∨⌝⌝⇔∧→∨⌝∧∨⌝⇔∧→→∧→〔3〕S(a) T2,I 〔4〕y))L(a,y(T(y)→∀ T2,I 〔5〕b)L(a,T(b)→T4,US 〔6〕y)))L(x,y(P(y)x(S (x)⌝→∀→∀ P 〔7〕y))L(a,y(P(y)S (a)⌝→∀→ T6,US 〔8〕y))L(a,y(P(y)⌝→∀ T3,7,I 〔9〕b)L(a,P(b)⌝→ T8,US 〔10〕P(b)b)L(a,⌝→ T9,E 〔11〕P(b)T(b)⌝→T5,10,I 〔12〕P(x))x(T(x)⌝→∀T11,UG侦查员在调查了某珠宝店的珠宝失窃案现场以及询问了认证之后,得到以下事实: (1) 是营业员甲或营业员乙作案。
离散数学必备知识点总结汇总

离散数学必备知识点总结汇总
1.集合论:集合的概念、元素、子集、交集、并集、差集、补集、空集、集合的运算、集合的等价关系、集合的序关系等。
2.命题逻辑:命题的概念、命题的联接词(与、或、非)、命题的否
定形式、命题的蕴涵、等价命题、命题的充分条件和必要条件、命题的合
取范式和析取范式、蕴涵式、逻辑等价式、命题的否定形式的推理。
3.谓词逻辑:谓词的概念、谓词的量化、全称量化和存在量化、谓词
逻辑的等价式和推理规则、归纳定理和应用。
4.关系:关系的概念、关系的性质、关系的运算、关系的性质和关系
的代数结构。
5.图论:图的概念、图的表示、连通图、树、度数和定理、欧拉图、
哈密顿图、图的平面性质等。
6.混合图:有向图、无向图、有向图和无向图的表示、混合图的回路、可达矩阵、连通度、强连通图等。
7.布尔代数:布尔运算、布尔函数、布尔代数的运算规则、完备性和
最小化。
8.代数结构:半群、群、环、域的定义和性质、同态和同构。
9.组合数学:排列组合、二项式系数、排列、组合、分配原理、鸽巢
原理、生成函数、容斥原理等。
10.图的着色:图的着色问题、邻接矩阵、边界点、图的着色问题的
算法、四色定理等。
11.概率论:基本概念、概率的性质、条件概率、独立事件、贝叶斯定理、随机变量、概率分布函数、期望、方差、协方差、相关系数、大数定理和中心极限定理等。
12.递归:递归关系、递归函数、递归算法、递归树、递归求解等。
离散数学最全知识点

10 1 1
1
1
11 0 0
0
1
2、演绎法
事实库
规则匹配 新事实
事实=结论?
触发规则
N
公理库 将事实加入到事实库中
Y 结束
推理定理
推理规则
3、反证法
例 如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡 是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑。 所以羊不吃草。
例 有红、黄、蓝、白四队参加足球联赛。 如果红队第三,则当黄队第二时,蓝队第四; 或者白队不是第一,或者红队第三; 事实上,黄队第二。 因此,如果白队第一,那么蓝队第四。
莱布尼茨之梦
“精炼我们的推理的唯一方 式是使它们同数学一样切实,这 样我们能一眼就找出我们的错误, 并且在人们有争议的时候,我们 可以简单的说: 让我们计算, 而无须进一步的忙乱,就能看出 谁是正确的。”
莱布尼茨(1646年~1716年) 德国哲学家、数学家。
布尔与布尔代数
“以计算的符号语言来表示 它们,以此为基石建立逻辑的科 学,并且构造他们的方法。”
否定律 分配律
DeMorgan律
矛盾律 排中律 蕴涵 等价
判定公式是永真或永假的方法有:真值表法和公式推演法
法一
法二
例 试用较少的开关设计一个与下图有相同功 能的电路。
3.3 联结词的完备集
一、联结词的个数
1、一元联结词
0001 1 1010 1
2、二元联结词
00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
离散数学总复习-知识点

离散数学总复习第1章命题逻辑一、命题的判断例:1、仁者无敌!2、x+y<23、如果雪是红的,那么地球是月亮的卫星。
4、我正在说谎。
二、命题符号化例:1、蓝色和黄色可以调成绿色。
2、付明和杨进都是运动员。
3、刘易斯是百米游泳冠军或百米跨栏冠军。
4、李飞现在在宿舍或在图书馆。
5、只要天不下雨,我就步行上学校。
6、只有天不下雨,我才步行上学校。
7、并非只要你努力了,就一定成功。
三、主范式1、会等值演算;2、主合取和主析取范式的相互转换。
例:求命题公式P∨Q的主析取范式和主合取范式。
3、根据主范式进行方案的选择例1:某科研所要从3名科研骨干A,B,C中挑选1-2名出国进修,由于工作需要,选派需同时满足条件:(1)若A去,则C同去;(2)只有C不去,B才去;(3)只要C不去,则A或B就可以去。
问有哪些选派方案?例2:甲、乙、丙、丁四人有且仅有两个人参加比赛,下列四个条件均要满足:(1)甲和乙有且只有一人参加;(2)丙参加,则丁必参加;(3)乙和丁至多有一人参加;(4)丁不参加,甲也不会参加。
问哪两个人参加了比赛?四、简单的推理例1:如果明天天气好我们就去爬长城。
明天天气好。
所以我们去爬长城。
例3:课后习题16第2章谓词逻辑一、谓词逻辑中的命题符号化例:1、所有运动员都是强壮的2、并非每个实数都是有理数3、有些实数是有理数二、量词的辖域,约束变元换名、自由变元代替例:1、∀x(P(x)∨∃yR(x,y))→Q(x)2、∀x(P(x,z)∨∃yR(x,y))→Q(x)中量词的辖域,重名情况,改名等三、命题逻辑永真式的任何代换实例必是谓词逻辑的永真式。
同样,命题逻辑永假式的任何代换实例必是谓词逻辑的永假式。
例:1、(∀xP(x)→∃xQ(x))↔(⌝∀xP(x)∨∃xQ(x))2、(∀xP(x)→∃xQ(x))∧(∃xQ(x))→∀zR(z)))→(∀xP(x) →∀zR(z))1-2是永真式(重言式)3、⌝(∀xF(x) ∃yG(y)) ∧ ∃yG(y) 永假式(矛盾式)四、消量词例:个体域D={1,2},对∀x∀y(P(x)→Q(y))消量词五、简单的前束范式会判断即可。
离散数学知识点及其应用

离散数学知识点及其应用1. 集合论- 集合的定义和运算:集合是由一些确定的不同对象组成的整体,集合之间可以进行交、并、差等运算。
集合的定义和运算:集合是由一些确定的不同对象组成的整体,集合之间可以进行交、并、差等运算。
- 集合关系:包括包含关系(子集)、相等关系和互斥关系。
集合关系:包括包含关系(子集)、相等关系和互斥关系。
- 数学归纳法:是一种用于证明关于自然数的性质的重要方法,包括强归纳法和弱归纳法。
数学归纳法:是一种用于证明关于自然数的性质的重要方法,包括强归纳法和弱归纳法。
- 二元关系:描述两个对象之间的关联关系,包括等价关系、偏序关系和关系的复合与逆。
二元关系:描述两个对象之间的关联关系,包括等价关系、偏序关系和关系的复合与逆。
2. 图论- 图的基本概念:包括图的定义、顶点、边、路径、回路等概念。
图的基本概念:包括图的定义、顶点、边、路径、回路等概念。
- 图的表示方法:邻接矩阵和邻接表。
图的表示方法:邻接矩阵和邻接表。
- 图的遍历算法:深度优先搜索和广度优先搜索。
图的遍历算法:深度优先搜索和广度优先搜索。
- 最短路径算法:迪杰斯特拉算法和弗洛伊德算法。
最短路径算法:迪杰斯特拉算法和弗洛伊德算法。
- 最小生成树算法:普里姆算法和克鲁斯卡尔算法。
最小生成树算法:普里姆算法和克鲁斯卡尔算法。
3. 布尔代数- 基本运算:包括与、或、非等基本逻辑运算。
基本运算:包括与、或、非等基本逻辑运算。
- 逻辑表达式:利用逻辑运算符表达逻辑关系。
逻辑表达式:利用逻辑运算符表达逻辑关系。
- 逻辑电路:基于布尔代数原理设计的逻辑电路,如与门、或门、非门等。
逻辑电路:基于布尔代数原理设计的逻辑电路,如与门、或门、非门等。
- Karnaugh图:用于简化逻辑表达式的图形方法。
Karnaugh 图:用于简化逻辑表达式的图形方法。
4. 组合数学- 排列和组合:用于计数给定集合的排列和组合的方法。
排列和组合:用于计数给定集合的排列和组合的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重言式(永真式):任意赋值 v, v
A
矛盾式(永假式):任意赋值 v, 有 v A【定义 1.10】
等值式:若等价式 A B 是重言式,则称A与 B 等值,记作 A B。【定义 2.1】
基本等值式
ﻩ双重否定律
AA
幂等律
A A A, A A A
交换律
A B B A, A B B A
结合律
(A B) C A (B C), (A B) C A (B C)
3. 图的矩阵表示:关联矩阵,邻接矩阵,可达矩阵 4. 欧拉图与哈密顿图:欧拉通路、欧拉回路、欧拉图、半欧拉图,哈密顿通路、哈密
顿回路、哈密顿图、半哈密顿图 5. 无向树与根树:无向树,生成树,最小生成树,Kruskal,根树,m 叉树,最优二叉
树,Huffman 算法 6. 平面图:平面图,面,欧拉公式,Kuratoski 定理
元,零元,逆元 2. 代数系统:代数系统,子代数,积代数,同态,同构。 3. 群与子群:半群,子半群,元素的幂,独异点,群,群的阶数,子群,平凡子群,陪集,
拉格朗日(Lagrange)定理 4. 阿贝尔群和循环群:阿贝尔群(交换群),循环群,生成元 5. 环与域:环,交换环,含幺环,整环,域 6. 格与布尔代数:格,对偶原理,子格,分配格,有界格,有补格,布尔代数,有限布尔代
等价等值式 A B (A B) (B A)
假言易位
AB B A
等价否定等值式A B A B
归谬论
(A B) (A B)
A
置换规则: 设 X 是公式 A 的子公式, X Y。将 A 中的X(可以是全部或部分 X)用Y来置换,
所得到的公式 B,则 A B。
数理逻辑:
命题:具有确定真值的陈述句。
否定词符号 :设 p 是一个命题, p 称为 p 的否定式。 p 是真的当且仅当 p 是假的。p是真
的当且仅当 p 是假的。【定义1.1】
合取词符号 :设 p,q 是两个命题,命题 “p 并且 q”称为 p,q 的合取,记以 p q,读作 p 且 q。
p q 是真的当且仅当p和 q 都是真的。【定义 1.2】
对称闭包 s(R), 传递闭包 t(R) 4. 等价关系: 等价关系, 等价类, 商集, 划分 5. 偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元,
上界/下界 6. 函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数 7. 集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集 代数结构: 1. 运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺
(4) 所有合式公式都是有限次使用(1),(2),(3)、(4)得到的符号串。
子公式: 如果 X 是合式公式 A 的一部分,且 X 本身也是一个合式公式,则称X为公式A的子公式。
【定义 1.6】
赋值(指派,解释): 设 是命题变元集合,则称函数 v:
{1,0}是一个真值赋值。【定
义1.8】
真值表:公式A在其所有可能的赋值下所取真值的表,称为 A 的真值表。【定义 1.9】
说明: 定义:红色表示。
定理性质:橙色表示。 ﻩ公式:蓝色表示。 ﻩ算法: 绿色表示
页码:灰色表示
离散数学知识点
数理逻辑: 1. 命题公式:命题, 联结词( , , , , ),合式公式,子公式 2. 公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式 3. 范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式 4. 联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集 5. 推理理论:重言蕴含式,有效结论,P 规则,T 规则, CP 规则,推理 6. 谓词与量词:谓词,个体词,论域,全称量词,存在量词 7. 项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入 8. 公式语义:解释,赋值,有效的,可满足的,不可满足的 9. 前束范式:前束范式 10. 推理理论:逻辑蕴含式,有效结论, -规则(US), +规则(UG), -规则(ES),
等价词符号 :设 p,q 是两个命题,命题 “p 当且仅当 q”称为 p 等价 q,记以p q。p q
是真的当且仅当 p,q 或者都是真的,或者都是假的。【定义 1.5】
合式公式:
(1) 命题常元和变元符号是合式公式;
(2) 若 A 是合式公式,则( A)是合式公式,称为 A 的否定式;
(3) 若 A,B 是合式公式,则 (A B), (A B), (A B),(A B)是合式公式;
析取词符号 :设 p,q 是两个命题,命题 “p或者 q”称为 p,q 的析取,记以 p q,读作p或 q。
p q 是真的当且仅当p,q 中至少有一个是真的。【定义 1.3】
蕴含词符号 :设 p,q是两个命题,命题 “如果 p,则 q”称为 p 蕴含 q,记以 p q。p q是假
的当且仅当 p 是真的而 q 是假的。【定义1.4】
+规则(EG), 推理 集合论: 1. 集合: 集合, 外延性原理, , , , 空集, 全集, 幂集, 文氏图, 交, 并,
差, 补, 对称差 2. 关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系,
恒等关系 3. 关系性质与闭包:自反的, 反自反的,对称的, 反对称的, 传递的,自反闭包 r(R),
分配律
A (B C) (A B) (A C), A (B C) (A B) ﻩ, (A B) A B
吸收律
A (A B) A, A (A B) A
ﻩ零律
A ,A
2 / 23
离散数学知识点
同一律
A
A, A
A
排中律 矛盾律
A A AA
蕴涵等值式 A B A B
数的表示定理 图论: 1. 图的基本概念:无向图、有向图、关联与相邻、简单图、完全图、正则图、子图、
补图,握手定理,图的同构
1 / 23
离散数学知识点
2. 图的连通性:通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈), 点连通,连通图,点割集,割点,边割集,割边,点连通度,边连通度,弱连通图, 单向连通图,强连通图,二部图(二分图)