解三角形必考题型归纳梳理

解三角形必考题型归纳梳理
解三角形必考题型归纳梳理

解三角形题型归纳总结

一、正弦定理、余弦定理

在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则

二、三角形中常用的面积公式

1.三角形中常用的面积公式 (1)S =1

2ah (h 表示边a 上的高);

(2)S =12bc s in A =12ac s inB =1

2ab s in C ;

(3)S =1

2r (a +b +c )(r 为三角形的内切圆半径).

2.在△ABC 中常用结论 (1)∠A +∠B +∠C =π.

(2)在三角形中大边对大角,大角对大边.

(3)任意两边之和大于第三边,任意两边之差小于第三边

(4)s in (A +B )=s inC ;c os(A +B )=-c os C ;t an (A +B )=-t anC ;s in

A +

B 2=c os

C 2;c os A +B 2=s in C

2

. (5)t an A +t an B +t an C =t an A ·t an B ·t an C .(6)∠A >∠B ?a >b ?s in A >s in B ?c os A

sin A =a +b +c sin A +sin B +sin C

=2R .

(8)在锐角三角形中①A +B >π2;②若A =π3,则π6<B ,C <π

2

三、实际测量中的常见问题

求AB 图形需要测量的元素解法

求竖直高度

底部

可达

∠ACB=α,

BC=a

解直角三角形AB=

a t anα

底部

不可达

∠ACB=α,

∠ADB=β,

CD=a

解两个直角三角形AB

a tan αtan β

tan β-tan α

求水平距离山

∠ACB=α,

AC=b,

BC=a

用余弦定理AB=

a2+b2-2ab cos α河

∠ACB=α,

∠ABC=β,

CB=a

用正弦定理

AB=

a sin α

sin(α+β)

∠ADC=α,

∠BDC=β,

∠BCD=δ,

∠ACD=γ,

CD=a

在△ADC中,AC=

a sin α

sin(α+γ)

在△BDC

中,BC=

a sin β

sin(β+δ)

在△ABC中,应用余

弦定理求AB

(一)仰角和俯角

在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图①).

(二)方位角和方向角

(1)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).

(2)方向角:相对于某正方向的水平角,如南偏东30°等.

必考点1: 利用正弦定理解三角形

利用正弦定理可解决两类问题

例题1: 已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =π6,B =π

4,a =1,则b =( )

A .2

B .1

C .3

D .2 答案:D

变式1: 在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a s in B =3b ,则角A =________. 【解析】∵2a s in B =3b ,∴2s in A s in B =3s in B ,得s in A =32

, ∴A =π3或A =2π

3

∵△ABC 为锐角三角形,∴A =π3

.

利用余弦定理解三角形

利用余弦定理可解决两类问题

例题2: (2019·山东济南)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则c os C =( ) A .

24 B .-24 C .34 D .-3

4

【解析】由题意得,b 2=ac =2a 2,即b =2a , ∴c os C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a

=-24.选B

变式2: (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2bc os B =ac os C +cc os A ,

则B =________.

方法一:由2bc os B =ac os C +cc os A 及正弦定理,得2s in Bc os B =s in Ac os C +s in Cc os A . ∴2s in Bc os B =s in (A +C ).又A +B +C =π,∴A +C =π-B . ∴2s in Bc os B =s in (π-B )=s in B .又s in B ≠0,∴c os B =12.∴B =π

3

.

方法二:∵在△ABC 中,ac os C +cc os A =b ,∴条件等式变为2bc os B =b ,∴c os B =1

2.

又0

3

.

必考点2: 判断三角形的形状

例题3: 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bc os C +cc os B =a s in A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形

D .不确定

【解析】由正弦定理得s in Bc os C +s in Cc os B =s in 2A ,

∴s in (B +C )=s in 2A ,即s in (π-A )=s in 2A ,s in A =s in 2A . ∵A ∈(0,π),∴s in A >0,∴s in A =1,即A =π2,

∴△ABC 为直角三角形.

变式3: 本题中,若将条件变为2s in Ac os B =s in C ,判断△ABC 的形状. 【解析】∵2s in Ac os B =s in C =s in (A +B ),

∴2s in Ac os B =s in Ac os B +c os A s in B ,∴s in (A -B )=0. 又A ,B 为△ABC 的内角.∴A =B ,∴△ABC 为等腰三角形.

变式4: 本题中,若将条件变为a 2+b 2-c 2=ab ,且2c os A s in B =s in C ,判断△ABC 的形状. 【解析】∵a 2+b 2-c 2=ab ,∴c os C =

a 2+

b 2-

c 22ab =1

2

, 又0

3

,又由2c os A s in B =s in C 得s in (B -A )=0,∴A =B ,故△ABC 为等边三角形.

求三角形的面积

例题4: (2017·全国卷Ⅲ)△ABC 内角A ,B ,C 对边分别为a ,b ,c ,s

in A +3c os A =0,a =27,b =2. (1)求c ;

(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解析】 (1)由已知可得t an A =-3,所以A =2π3.

在△ABC 中,由余弦定理得28=4+c 2-4cc os

3

,即c 2+2c -24=0,解得c =-6(舍去),c =4. (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π

6.

故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sin π

6

1

2

AC ·AD =1.

又△ABC 的面积为1

2×4×2s in ∠BAC =23,所以△ABD 的面积为 3.

变式5: (2018·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b s in C +c s in B =4a s in B s in C ,b 2+c 2-a 2=8,则△ABC 的面积为________. 【解析】∵b s in C +c s in B =4a s in B s in C ,

∴由正弦定理得s in B s in C +s in C s in B =4s in A s in B s in C .又s in B s in C >0,∴s in A =12.

由余弦定理得c os A =b 2+c 2-a 22bc =82bc =4bc >0,∴c os A =32,bc =4cos A =83

3,

∴S △ABC =12bc s in A =12×833×12=23

3

必考点3: 解几何计算问题

例题5: 如图,在△ABC 中,B =π

3

,BC =2,点D 在边AB 上,AD =DC ,DE ⊥AC ,E 为垂足.

(1)若△BCD 的面积为

33,求AB 的长;(2)若DE =6

2

,求角A 的大小. 【解析】 (1)∵△BCD 的面积为

33,B =π3,BC =2,∴12×2×BD ×s in π3=33,∴BD =2

3

.

在△BCD 中,由余弦定理可得CD =BC 2+BD 2-2BC ·BD ·cos B =4+49-2×2×23×12=27

3

. ∴AB =AD +BD =CD +BD =273+23=27+2

3

. (2)∵DE =

62,∴CD =AD =DE sin A =62sin A .在△BCD 中,由正弦定理可得BC sin ∠BDC =CD

sin B

. ∵∠BDC =2∠A ,∴2sin 2A =62sin A sin

π3,∴c os A =22.∴A =π

4

.

变式6: (2018·北京卷)在△ABC 中,a =7,b =8,c os B =-1

7.

(1)求∠A ;(2)求AC 边上的高.

【解析】(1)在△ABC 中,因为c os B =-1

7

,所以s in B =

1-cos 2B =43

7

.

由正弦定理得s in A =a sin B b =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π

3.

(2)在△ABC 中,因为s in C =s in (A +B )=s in Ac os B +c os A s in B =33

14,

所以AC 边上的高为a s in C =7×3314=33

2

.

必考点4: 考点6三角函数求值问题

例题6: (2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b s in A =ac os ????B -π

6. (1)求角B 的大小;(2)设a =2,c =3,求b 和s in (2A -B )的值. 【解析】(1)在△ABC 中,由正弦定理a sin A =b

sin B ,可得b s in A =a s in B .

又由b s in A =ac os ????B -π6,得a s in B =ac os ???

?B -π6, 即s in B =c os ????B -π6,所以t an B = 3.又因为B ∈(0,π),所以B =π3. (2)在△ABC 中,由余弦定理及a =2,c =3,B =π

3

得b 2=a 2+c 2-2acc os B =7,故b =7.由b s in A =ac os ????B -π6,可得s in A =37 . 因为a

27

.因此s in 2A =2s in Ac os A =437,c os 2A =2c os 2A -1=1

7.

所以s in (2A -B )=s in 2Ac os B -c os 2A s in B =437×12-17×32=33

14

.

必考点5: 考点7解三角形综合问题

例题7: (2018·全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.

(1)求c os ∠ADB ;(2)若DC =22,求BC .

【解析】 (1)在△ABD 中,由正弦定理得BD sin ∠A =AB sin ∠ADB ,s in ∠ADB =2

5,c os ∠ADB =

1-225=235

(2)由题设及(1)知,c os ∠BDC =s in ∠ADB =

2

5

在△BCD 中,由余弦定理得 BC 2=BD 2+DC 2-2BD ·DC ·c os ∠BDC =25+8-2×5×22×

2

5

=25所以BC =5 变式7: (2019·广东惠州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足(2b -c )c os A =ac os C . (1)求角A 的大小;(2)若a =13,b +c =5,求△ABC 的面积.

【解析】(1)△ABC 中,由条件及正弦定理得(2s in B -s in C )c os A =s in Ac os C ,

∴2s in Bc os A =s in Cc os A +s in Ac os C =s in B .∵s in B ≠0,∴2c os A =1,∵A ∈(0,π),∴A =π

3.

(2)∵a =13,b +c =5,a 2=b 2+c 2-2bcc os A =(b +c )2-2bc -2bcc os π

3=52-3bc =13,

∴bc =25-133=4,∴S △ABC =12bc s in A =12×4×s in π3

= 3.

必考点6: 高度问题(已知仰角或俯角)

例题8: (2019·山东青岛月考)如图所示,D ,C ,B 三点在地面的同一条直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.

【解析】由已知得∠DAC =30°,△ADC 为等腰三角形,AD =3a ,所以在Rt △ADB 中,AB =12AD =3

2a .

变式8: (2019·河北衡水模拟)如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m .

【解析】在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°,

由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC

3

2,解得AC =600 6.

在△ACD 中,∵t an ∠DAC =

DC AC =33,∴DC =6006×3

3

=600 2. 求解高度问题的3个注意点

(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.

(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.

(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.

必考点7: 高度问题(已知方位角或方向角)

例题9: 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山高度CD =______m .

【解析】由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BC

sin 30°,解得BC =300 2 m .

在Rt △BCD 中,CD =BC ·t an 30°=3002×

3

3

=1006(m ) 必考点8: 距离问题

例题10:

(2019·山东临沂联考)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,

此时气球的高是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:s in 67°≈0.92,c os 67°≈0.39,s in 37°≈0.60,c os 37°≈0.80,3≈1.73)

【解析】如图,过点A 作AD 垂直于CB 的延长线,垂足为D , 则在Rt △ABD 中,∠ABD =67°,AD =46,AB =

46

sin 67°

.

在△ABC 中,根据正弦定理得BC =AB sin 37°sin 30°=46×sin 37°

sin 67°sin 30°

≈60

变式9: 如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离,即AB =a 2+b 2-2ab cos α.

若测得CA =400 m ,CB =600 m ,∠ACB =60°,试计算AB 的长. 【解析】在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BCc os ∠ACB , ∴AB 2=4002+6002-2×400×600c os 60°=280 000,∴AB =2007(m ), 即A ,B 两点间的距离为2007 m . 求解距离问题的一般步骤

(1)画出示意图,将实际问题转化成三角形问题.(2)明确所求的距离在哪个三角形中,有几个已知元素. (3)使用正弦定理、余弦定理解三角形对于解答题,应作答.

必考点9: 角度问题

例题11:

如图所示,位于A 处的信息中心获悉:在其正东方向相距40 n mile 的B 处有一艘渔船遇险,

在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20 n mile 的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则c os θ的值为________.

【解析】在△ABC 中,AB =40,AC =20,∠BAC =120°,

由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·c os 120°=2 800,得BC =207 由正弦定理,得

AB sin ∠ACB =BC sin ∠BAC

,即s in ∠ACB =AB BC ·s in ∠BAC =21

7

由∠BAC =120°,知∠ACB 为锐角,则c os ∠ACB =27

7.由θ=∠ACB +30°

得c os θ=c os(∠ACB +30°)=c os ∠ACBc os 30°-s in ∠ACB s in 30°=21

14

变式10:

(2019·山西大同联考)在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力

的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20 km /h ;水的流向是正东,流速是20 km /h ,若

不考虑其他因素,救生艇在洪水中漂行的方向为北偏东________,速度的大小为________ km /h . 【解析】如图,

∠AOB =60°,由余弦定理知OC 2=202+202-800c os 120°=1 200,故OC =203,∠COy =30°+30°=60°. ]

解决测量角度问题的注意事项

(1)首先应明确方位角或方向角的含义.

(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步. (3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.

变式11:

(2019·河南安阳调研)如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)n mile 的B 处有

一艘走私船.在A 处北偏西75°方向,距A 处2 n mile 的C 处的我方缉私船奉命以10 3 n mile /h 的速度追截走私船,此时走私船正以10 n mile /h 的速度从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.

【解析】设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD = 103t n mile ,BD =10t n mile ,△ABC 中,由余弦定理,BC 2=AB 2+AC 2-2AB ·AC ·c os A =(3-1)2+22-2(3-1)×2×c os120°=6, 解得BC = 6. 又∵BC sin A =AC sin ∠ABC ,∴s in ∠ABC =AC ·sin A BC =2×sin120°6=22,

∴∠ABC =45°,故B 点在C 点的正东方向上,∴∠CBD =90°+30°=120°,

在△BCD 中,由正弦定理,得BD sin ∠BCD =CD sin ∠CBD ,∴s in ∠BCD =BD ·sin ∠CBD CD =10t ·sin120°103t =1

2.

∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.

在△BCD 中,∠CBD = 120°,∠BCD =30°,∴∠D =30°,∴BD =BC ,即10t =6,t =

6

10

小时≈15分钟 ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

解三角形题型汇总.docx

《解三角形》知识点归纳及题型汇总 1、①三角形三角关系: A+B+C=180°; C=180°— (A+B); ② . 角平分线性质 : 角平分线分对边所得两段线段的比等于角两边之比. ③ . 锐角三角形性质:若A>B>C则60 A 90 ,0 C 60 . 2、三角形三边关系: a+b>c; a-b

的外接圆的半径,则有 a b c 2R .sin sin sin C 5、正弦定理的变形公式: ①化角为边: a2Rsin, b2Rsin, c2Rsin C ; ②化边为角: sin a, sin b, sin C c ; 2R2R2R ③ a : b : c sin:sin:sin C ; ④a b c a b c=2R sin sin sin C sin sin sin C 6、两类正弦定理解三角形的问题: ①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角. 7、三角形面积公式: S C1 bc sin1 ab sin C1 ac sin.=2RsinAsinBsinC=abc 2 2224R = r (a b c) =p( p a)( p b)( p c) ( 海伦公式 ) 2 8、余弦定理:在 C 中, a2b2c22bc cos,b2a2c22ac cos , c2a2b22ab cosC .9、余弦定理的推论: cos b2c2 a 2, cos a2c2b2, cosC a2b2c2. 2bc2ac2ab 10、余弦定理主要解决的问题: ①已知两边和夹角,求其余的量. ②已知三边求角

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

必修五解三角形题型归纳

一. 构成三角形个数问题 1在ABC中,已知a x,b 2,B 45°,如果三角形有两解,则x的取值范围是( ) A. 2 x 2 2 B. x 2,2 C . 2 x 2 D. 0x2 2 ?如果满足ABC 60 , AC 12 , BC k的厶ABC恰有一个,那么k的取值范围是 3.在ABC中,根据下列条件解三角形,其中有两个解的是() A* CJ =S J =J = 45=B. a = 60 ;b -= 81; B = = 60°+J C” a —7 > b —5j八眇 D ?。二14 , b - 20, "4亍二. 求边长问题 4.在ABC 中,角A, B,C所对边a,b,c,若a 3,C1200,ABC的面积S 15血4 则c() A. 5 B .6 C . V39D7 5.在△ ABC 中,a1,B 450,S ABC 2,则b = 三. 求夹角冋题 6.在ABC中,ABC -,AB4V2, BC 3,则sin BAC( ) v'10V103^10<5 A. 10 B5 C . 10D5

7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若 1 2 2 2 bcosA csinC, S (b c a ),则/ B=( 4 B . 60° C . 45° D . 30° 四. 求面积问题 &已知△ ABC 中,内角A , B, C 所对的边长分别为 a,b,c .若 a ZbcosAB -, c 1 ,则 △ ABC 的面积等于 ( ) g 6 4 2 9.锐角 ABC 中,角A 、B 、C 的对边分别是a 、b 、 1 c ,已知 cos2C - 4 ([)求 sinC 的值; (□)当 a 2, 2si nA si nC 时,求 b 的长及 ABC 的面积. 10?如图,在四边形 ABCD 中,AB 3,BC 7.3,CD 14, BD 7, BAD 120 a cosB A. 90° (1 )求AD 边的长; (2)求ABC 的面积.

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?=u u u r u u u r ( ) A .23- B .32- C .32 D .2 3 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=, x x 6636223852??++ =,解得1=x ,3 7 -=x (舍去) 故BC =2,从而3 28 cos 2222= ?-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,

《解三角形》常见题型总结

《解三角形》常见题型总结 1、1正弦定理和余弦定理 1、1、1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形例1 在ABC中,已知 A:B:C=1:2:3,求a :b :c、 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。解: 【解题策略】 要牢记正弦定理极其变形形式,要做到灵活应用。例2在ABC 中,已知c=+,C=30,求a+b的取值范围。 【点拨】 此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。解:∵C=30,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150-A)、 ∴a+b=2(+)[sinA+sin(150-A)]=2(+)2sin75cos(75-A)= cos(75-A)① 当75-A=0,即A=75时,a+b取得最大值=8+4;② ∵A=180-(C+B)=150-B,∴A<150,∴0<A<150,∴-75<75-A<75, ∴cos75<cos(75-A)≤1,∴> cos75==+、综合①②可得a+b的

取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,tanB=tanA,判断三角形ABC的形状。 【点拨】 通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC的形状。解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,、∴为等腰三角形或直角三角形。 【解题策略】 “在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。例4在△ABC 中,如果,并且B为锐角,试判断此三角形的形状。 【点拨】 通过正弦定理把边的形式转化为角的形式,利用两角差的正弦公式来判断△ABC的形状。解:、又∵B为锐角,∴B= 45、由由正弦定理,得,∵代入上式得:考察点3:利用正弦定理证明三角恒等式例5在△ABC中,求证、 【点拨】 观察等式的特点,有边有角要把边角统一,为此利用正弦定理将转化为、证明:由正弦定理的变式得:同理 【解题策略】 在三角形中,解决含边角关系的问题时,常运用正弦定理进行边角互化,然后利用三角知识去解决,要注意体会其中的转化

高三第一轮复习解三角形题型总结

2018高三第一轮复习解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则 =++++C B A c b a sin sin sin

7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______ 8.(2017全国卷2文16)ABC ?的内角C B A ,,的对边分别为c b a ,,,若 A c C a B b cos cos cos 2+=,则=B ________. 9.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 题型二:三角形解的个数的判断 1. 在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C === B 、60,48,60a c B === C 、7,5,80a b A === D 、14,16,45a b A === 2. 在ABC ?中,若30,4A a b ∠===,则满足条件的ABC ? A .不存在 B .有一个 C .有两个 D 不能确定 3.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 4.符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30°

解三角形题型总结很全面

解三角形 要点一、正弦定理和余弦定理的概念 ①正弦定理公式: 2sin sin sin a b c R A B C ===(其中R 表示三角形的外接圆半径) ②余弦定理公式: 第一形式: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 第二形式: 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-= +-= 要点二、三角形的面积公式 ① 111 222ABC a b c S a h b h c h ?=?=?=?; ②111 sin sin sin 222 ABC S bc A ab C ac B ?===; 要点三、利用正、余弦定理解三角形 已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理来解三角形.特别是求角时尽量用余弦定理来求,尽量避免分类讨论. 在ABC ?中,已知,a b 和A 时,解的情况主要有以下几类: ①若A 为锐角时:a bsin A a bsin A ()bsin A a b ()a b ()

一解 一解 b a A b <? 无解 一解锐角 要点四、三角形的形状的判定 特殊三角形的判定: (1)直角三角形 勾股定理:2 2 2 a b c +=, 互余关系:0 90A B +=,cos 0C =,sin 1C =; (2)等腰三角形 a b =,A B =; 用余弦定理判定三角形的形状(最大角A 的余弦值的符号) (1)在ABC ?中,222 222090cos 02b c a A A b c a bc +-<?+>; (2)在ABC ?中,222 22290cos 02b c a A A b c a bc +-=?= =?+=; (3)在ABC ?中,222 22290cos 02b c a A A b c a bc +-?>?>?< (2)互补关系:0 sin(A+B)=sin(180)sinC C -=, 0cos(A+B) cos (180)cosC C =-=-, 0tan(A+B) tan(180)tan C C =-=-;

解三角形高考真题汇总

2017高考真题解三角形汇编 1.(2017北京高考题)在△ABC 中,A ∠ =60°,c =3 7 a . (Ⅰ)求sin C 的值; (Ⅱ)若a =7,求△ABC 的面积. 2.(2017全国卷1理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为 2 3sin a A (1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长. 3.(2017全国卷1文科)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。已知 sin sin (sin cos )0B A C C +-=,a =2,c C =B A . π 12 B . π6 C . π4 D . π3 4.(2016全国卷2理科)ABC ?的内角,,A B C 的对边分别为,,a b c ,已知 2 sin()8sin 2 B A C +=. (1)求cos B (2)若6a c += , ABC ?面积为2,求.b 5.(2017全国卷2文科16)△ABC 的内角A,B,C 的对边分别为a,b,c,若 2b cosB=a cosC+c cosA,则B= 6.(2017全国卷3理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A cos A =0,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积. 7.(2017全国卷3文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。已知C =60°,b ,c =3,则A =_________。 8.(2017山东高考题理科)在C ?AB 中,角A ,B ,C 的对边分别为a ,b ,c .若 C ?AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A , 则下列等式成立的是( ) (A )2a b = (B )2b a = (C )2A =B (D )2B =A 9.(2017山东高考题文科)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 b =3,6AB AC ?=-u u u r u u u r ,S △ABC =3,求A 和a . 10.(2017天津高考题理科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结 1、①三角形三角关系:A+B+C=180°;C=180°—(A+B); ②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ?≤c; a-b

高考数学题型全归纳解三角形考点归纳

【考题回放】 1.设,,a b c 分别是ABC ?的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的( ) (A )充分条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件 2.在ABC ?中,已知C B A sin 2tan =+,给出以下四个论断: ① 1cot tan =?B A ② 2sin sin 0≤ +

相关文档
最新文档