第二章核磁共振氢谱[优质文档]

第二章核磁共振氢谱[优质文档]
第二章核磁共振氢谱[优质文档]

第二章核磁共振氢谱[优质文档]

第二章核磁共振氢谱

1几乎所有的有机物分子中都含有氢,而且H在自然界的丰度

231达99.98,,远远大于其它两个同位素H和H。这样,H核磁共振最早和最广泛地应用,在20世纪70年代以前,核磁共振几乎就是指核磁共振氢谱。

核磁共振氢谱主要是通过测定有机物分子中氢原子的位置来推断有机物的结构的。从一张有机物的核磁共振氢谱图上,我们可得到有机物分子中氢原子的种类(根据化学位移S值)和

氢原子的数量(根据峰面积)。即核磁共振氢谱图上有多少个峰,就表明有机分子中有多少种类的氢,各个峰的面积积分比表示各种氢原子的

数目的比例。

图2.2是1-苯基-2,2-二甲基丙烷的核磁共振氢谱图。图中横坐标为化学位移,

图上有三个峰,则表明该有机物分子中的氢有三种类型:峰面积的积分比为9:5:2,表明该化合物的三种不同氢的数

目分别是9、5和2;化学位移S 7.2处的峰表示苯环上5个相同的氢,3 2.5 处的峰表示亚甲基上的2个相同氢,而3 0.9处的峰则表示三个甲基上的9个相同的氢。这样,能够判断出

有机物分子中氢的种类和数目就可以非常容易地推断出有机物的分子结构。

ZlQ C —CHi.

ppm"}图2.2 1-苯基-2,2-—甲基丙烷的核磁共振氢谱

2.1化学位移

化学位移是核磁共振最重要参数之一?前面我们已经讨论了影响化学位移的因素.这里不再讨论?根据上述各种影响氢核化学位移的因素和多年核磁共振测定有机物结构的经验,同样总结出了不同有机基团氢核的化学位移S值。根据S值,可

以进行相应有机基团的推断,常见的一些有机基团的氢核的化学位移总结于表 2.1

中。

表2.1常见有机基团的氢核化学位移

氢核类型示例化学位移S ppm

H环丙烷0.2 H

伯烷RCH 0.9 3

仲烷RCH 1.3 22

叔烷RCH 1.5 3

烯丙基取代C,C,CH 1.7 3

碘取代I,CH 2.0,4.0 3

酯基取代HC,COOR 2.0,2.2 3

羧基取代HC,COOH 2.0,2.6 3

酰基取代HC,COR 2.0,2.7 3

炔C?C,H 2.0,3.0

CH3苯基取代2.2,3.0

醚基取代R,O,CH 3.3,4.0 3

溴取代CHBr 2.5,4.0 3

氯取代CHCl 3.0,4.0 3

羟基取代CHOH 4.0,4.3 3

氟取代CHF 4.0,4.5 3

酰氧基取代RCOO,CH 3.7,4.1 3

胺RNH 1.0,5.0 2

醇ROH 1.0,5.5 烯C,C,H 4.6,5.9

H 苯6.0,8.5

醛RCHO 9.0,10.0 羧酸RCOOH 10.5,12.0

OH酚4.0,12.0

烯醇C,C,OH 15.0,17.0 各种含氢官能团的S值,大家要记牢,请参阅34~36

对于大部分有机化合物来说氢谱的化学位移值在0-10 ppm.大致可分以下几个0-0.8 ppm

很少见,典型化合物; 环丙烷,硅烷,以及金属有机化合物。

0.8-1.5 ppm

烷烃区域. 氢直接与脂肪碳相连,没有强电负性取代基。化学位移地次序

CH>CH>CH.如果有更多的取代基化学位移移向低场。23

1.5-

2.5 ppm 羰基区域

质子相邻羰基C=O, C=C or 苯环。

3.0-

4.5 ppm 醚区域. ( 同样醇,酯有CH-O group.) 质子直接邻氧,如果有更多的电负性取代基化学位移移向低场。

5.0-7.0 ppm 双键区域

. 氢直接与C=C 双键相连.

7.0-8.0 ppm 芳环质子区域. 磁各向异性作用,导致芳环质子处于去屏蔽区。同样现象发生在醛由于羰基地磁各向异性,醛质子化学位移在9-10 ppm

-OH Alcohols 可以出现在任何位置,谱线的性质由多重因此影响H 的交换:pH. 浓度,温度,溶剂等。一般芳环酚羟基更趋于低场。

大多数的-NHR, -NH和醇一样,可被交换,在2-3 ppm 区域显示宽2

峰。

-COH 可交换,象醇(>11 ppm) 2

化学位移的计算

某些基团或化合物的质子化学位移可以用经验公式计算. 这些经验公式是根据取代基对化学位移地影响具有加和性(additivity) 的原理由大量实验数据归纳总结出来的. 某些情况下估算具有较高准确度, 具有实用价值, 而在某些场合下, 虽然误差较大, 但依然有参考价值. 化学位移计算主要目的是:1). 对谱线进行归属;2). 为测定分子结构提供理论依据.

1. 亚甲基与次甲基的S计算

对于亚甲基可以用Shoolery公式加以计算S =1.25 +艺c (2 -1)

式中C为取代基的经验屏蔽常数?表中给出其数值.

表2.2 Shoolery 公式中的经验屏蔽常数取代基c

R 0.0

-C=C- 0.8

Ph

1.3

Cl

2.0

Br

1.9

I

1.4

OH

1.7

-OR

-OPh 1.5 -OCOR 2.3 -OCOPh 2.7 NH2 2.9 NR2 1.0 NO2 1.0 SR 3.0 -CHO 1.0 -COR 1.2 -COOH 1.2 -COOR 0.8 CN 0.7

1.2对于次甲基的S值依然可以用Shoolery经验公式计算,但常数项

改为1.5.

S =1.50 + —烯烃的化学位移计算

R顺H

CC

同RR反

S =5.25 + Z +Z +Z (2.2) C=C -H 同顺反

Z ,Z ,Z分别代表相应取代基的取代参数.参阅宁永成P40'41同顺反

ClH

CC

FCl

S=5.25 +1.08 +0.18 -1.02 =5.49 (5.56)

C

HbY

S =5.25+1.38+1.18 -1.02=6.79(6.81) 苯环质子化学位移的计算

取代苯环的氢化学位移可按照下式计算:S =7.26+工S (2.3)

7.26是未取代的苯环的S值,S是取代参数.(也有书本用Zi).

2.2. 偶合常数

偶合常数反映有机化合物结构的信息, 特别是反映立体化学的信息.

a)自旋偶合体系及核磁共振谱图的分类 2.3.1化学等价(chemical

equivalence)

化学等价是立体化学中的一个重要观念. 如果分子中两个相同原子(或两相同基团)处于相同化学环境时,它们是化学等价.化学不等价的两个基团,在化学反应中, 可以反映出不同的反应速度,在光谱,波谱的测量中,可能有不同的测量结果,因而可用谱学方法来研究化学等价性.

1. 考察分子各原子核相对静止状态可用对称操作分析两个基团能否相互交换来判断两个基

团(核)

是否化学等价. 可分为三种情况.

HaX

HbX

两个取代基完全相同,Ha,Hb可以用二次对称轴C2和对称平面相互交换.具有相同的化学位移, 它们是化学等价的.

O

HCH3

)CH(CH32

两个取代基不同, 但可以用对称平面, 或者二次旋转对称轴联系起来, 具有相同的化学位移, 它们是化学等价的. 反之则是化学不等价.

2. 分子内存在着快速运动

R1

RR56

R2R3

R4

Newman投影式

常见的分子内存在有链的旋转, 环的翻转. 由于分子内的快速运动, 一些不能通过对称操作而交换的基团有可能为化学等价, 但也不是两个相同的基团就一定成为化学等价基团?现以Newmai投影来讨论分子内旋转.RCH2-CXYZ

XXX

HbRRHaHaHb

YZYYZZ

HaHbR

1 2 3

从分子旋转的角度,分子总是处于1,2,3 三种构象之一,当温度升高,链的旋转速度加大,三种构象的分子逐步接近,当无论如何,Ha与Hb也不能是化学等价的.如果把R=H三个氢是完全等价的.所以甲基的三个氢总是在同一位置.

3. 前手性(prochirality)

在有机化合物中, 如果与某碳原子相连的四个基团相互不等同, 则是一手性中心, 如果连有

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。 (4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结

核磁共振氢谱解析方法

2.3 核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被 测样品的信号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I 是否有-CH3-O- 、CHCOC3NH=、 CH3C、RCOC2CHl 、RO-CH2-Cl 等基团。 g.确定有无芳香族化合物。如果在 6.5-8.5 范围内有信号,则 表示有芳香族质子存在。如出现AA'BB'的谱形说明有芳香邻位 或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关 系,确定有何种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I 相对照,确定是 何官能团,并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合 理。再对照已知化合物的标准谱图。

2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C3HNO。测定氢谱谱图如下所示, 推定其结构。 图3七0未知化合物C3H7NO3的图谱解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm 有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质 子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群 的积分强度为2: 2:3,可能有一CH—、一CH—、一CH —基 团。各裂分峰的裂距(J),低场三重峰为7Hz,高场三重峰为 8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互 作用。这六重峰的质子为2个,所以使两边信号各裂

第三章 核磁共振氢谱习题

第三章 核磁共振氢谱 习题 一、判断题 [1] 核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。 [2] 质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。 [3] 自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。 [4] 氢质子子在二甲基亚砜中的化学位移比在氯仿中要小。 [5] 核磁共振波谱仪的磁场越强,其分辨率越高。 [6] 核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。 [7] 在核磁共振波谱中,耦合质子的谱线裂分数目取决于临近氢核的个数。 [8] 化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。 [9] 核磁共振波谱中出现的多重峰是由于临近核的核自旋相互作用。 [10] 化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。 [11] 苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。 [12] 氢键对质子的化学位移影响较大,所以活泼的氢的化学位移在一定范围内变化。 [13] 不同的原子核核产生共振条件不同,发生共振所必须的磁场强度B0和射频频率υ不同。 [14] (CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。 [15] 羟基的化学位移随氢键的强度变化而移动,氢键越强,化学位移值就越小。 二、选择题(单项选择) [1]氢谱主要通过信号特征提供分子结构信息,以下选项中不是信号特征的是()。 A. 峰的位置 B. 峰的裂分 C. 峰高 D. 积分线高度 [2]以下关于“核自旋弛豫”的标书中,错误的是()。 A. 没有弛豫,就不会产生核磁共振 B. 谱线宽度与弛豫时间成反比 C. 通过弛豫,维持高能态核的微弱多数 D. 弛豫分为纵向弛豫和横向弛豫 [3]具有以下自旋量子数的原子核中,目前研究最多用途最广的是()。 A. I=1/2 B. I=0 C. I=1 D. I>1 [4]进行已知成分的有机混合物的定量分析,宜采用()。 A. 极谱法 B. 色谱法 C. 红外光谱法 D. 核磁共振法 [5]CH3CH2COOH在核磁共振波谱图上有几组峰?最低场有几个氢?()。 A. 3(1H) B. 6(1H) C. 3(3H) D. 6(2H) [6]下列化合物中在核磁共振谱中出现单峰的是()。 A. CH3CH2Cl B. CH3CH2OH C. CH3CH3 D. CH3CH(CH3)2 [7]核磁共振波谱解析分子结构的主要参数是()。 A. 质荷比 B. 波数 C. 化学位移 D. 保留值 [8]分子式为C5H10O的化合物,其1H NMR谱上只出现两个单峰,最有可能的结构式为()。 A. (CH3)CHCOCH3 B. (CH3)C-CHO C. CH3CH2CH2COOH D. CH3CH2COCH2CH3

核磁共振氢谱解析方法

2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3, 可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰的裂距(J),低场三 重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂 分为三重峰。则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定的分 子式应为CH 3-CH 2 -CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结 构。

核磁共振氢谱解析图谱的步骤

核磁共振氢谱解析图 谱的步骤 -CAL-FENGHAI.-(YICAI)-Company One1

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节 未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢 原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。 8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。 9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现 AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。 10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。 11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。 12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。

核磁共振氢谱(1H-NMR)

第二章核磁共振氢谱(1H-NMR) §1 概述 基本情况 1H 天然丰度:99.9844%, I=1/2, γ=26.752(107radT-1S-1) 共振频率:42.577 MHz/T δ: 0~20ppm §2 化学位移 1.影响δ值的因素 A.电子效应 (1)诱导效应 a电负性 电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,δ值增大 b.多取代有加和性 c.诱导效应通过成键电子传递,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个以上碳的影响可以忽略不计 (2).共轭效应 氮、氧等杂原子可与双键、苯环共轭。 苯环上的氢被推电子基取代,由于p-π共轭,使苯环电子云密度增大, δ值向高场移动苯环上的氢被吸电子基取代,由于p-π共轭或π-π共轭,使苯环电子云密度降低, δ值向低场移动 (3). 场效应 在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响,使其化学

位移发生变化.这些通过电场发挥的作用称为场效应 (4). 范德华(Van der Waals)效应 在某些刚性结构中,当两个氢核在空间上非常接近,其外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,δ值向低场移动 B.邻近基团的磁各向异性 某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。磁各向异性产生的屏蔽作用通过空间传递,是远程的。 (1)芳环 在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。 (2)双键 >C=O, >C=C<的屏蔽作用与苯环类似。在其平面的上、下方各有一个锥形屏蔽区 (“+”),其它区域为去屏蔽区。 (3)三键 互相垂直的两个π键轨道电子绕σ键产生环电流,在外加磁场作用下产生与三键平行但方向与外加磁场相反的感应磁场。三键的两端位于屏蔽区(“+”),上、下方为去锥形屏蔽区(“-”)δ值比烯氢小。 (4)单键和环己烷 单键各向异性方向与双键相似,直立键质子的化学位移一般比平伏键小0.05-0.8 C.氢键 氢键的缔合作用减少了质子周围的电子云密度, δ值向低场移动。 氢键质子的δ值变化范围大,与缔合程度密切相关。 分子内氢键,质子的δ值与浓度无关 分子间氢键,质子的δ值与浓度有关,浓度大,缔合程度密切。 D.非结构因素 1.介质因素 2.浓度 3.温度 2.各类质子的化学位移 (1).sp3杂化(饱和烷烃) a.化学位移的范围 δ<-CH3 < CH2 < CH, 0-2ppm 与同碳上有强电子基团(O,N,CL,Br)相连, 或邻位有各项异性基团(=,=O,Ph),δ值上升,<5ppm b.化学位移的计算 1)-CH2- δ(CH2R1R2) =1.25+Σσ δ(CHR1R2R3) =1.50+Σσ

第三章_核磁共振波谱法习题集及答案

第三章、核磁共振波谱法 一、选择题 ( 共80题 ) 1. 2 分 萘不完全氢化时,混合产物中有萘、四氢化萘、十氢化萘。附图是混合产物的核磁共 振谱图,A、B、C、D 四组峰面积分别为 46、70、35、168。则混合产物中,萘、四氢化萘,十氢化萘的质量分数分别如下:( ) (1) 25.4%,39.4%,35.1% (2) 13.8%,43.3%,43.0% (3) 17.0%,53.3%,30.0% (4) 38.4%,29.1%,32.5% 2. 2 分 下图是某化合物的部分核磁共振谱。下列基团中,哪一个与该图相符?( ) CH (1)CH3C CH2 O CH O CH3 (2)CH (3)CH3CH O 2 (4)C H3O CH O CH

H X :H M :H A =1:2:3 3. 2 分 在下面四个结构式中 (1) C CH 3 H R H (2)H C CH 3H CH 3 (3)H C CH 3CH 3 CH 3 (4) H C H H H 哪个画有圈的质子有最大的屏蔽常数 ? ( ) 4. 1 分 一个化合物经元素分析,含碳 88.2%,含氢 11.8%,其氢谱只有一个单峰。它是 下 列 可 能 结 构 中 的 哪 一 个 ? ( ) 5. 1 分 下述原子核中,自旋量子数不为零的是 ( )

(1) F (2) C (3) O (4) He 6. 2 分 在 CH3- CH2- CH3分子中,其亚甲基质子峰精细结构的强度比为 哪一组数据 ?() (1) 1 : 3 : 3 : 1 (2) 1 : 4 : 6 : 6 : 4 : 1 (3) 1 : 5 : 10 : 10 : 5 : 1 (4) 1 : 6 : 15 : 20 : 15 : 6 : 1 7. 2 分 ClCH2- CH2Cl 分子的核磁共振图在自旋-自旋分裂后,预计 ( ) (1) 质子有 6 个精细结构 (2) 有 2 个质子吸收峰 (3) 不存在裂分 (4) 有 5 个质子吸收峰 8. 2 分 在 O - H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ? ( ) (1) 2 (2) 1 (3) 4 (4) 3 9. 2 分 在CH3CH2Cl 分子中何种质子值大? ( ) (1) CH3- 中的 (2) CH2- 中的 (3) 所有的 (4)

核磁共振氢谱解析方法

WOIRD格式 2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH3-O-、CHCOC3N H=、CH3C、RCOC2H C l、 RO-CH2-Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照 已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C3H7NO2。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和 1.59ppm有小峰, 峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3,可能有-CH2-、-CH2-、-CH3-基团。各裂分峰的裂距(J),低场三重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们 与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂分为三重峰。则该化合物具有CH3-CH2-CH2-结构单元。参考所给定的分子式应为CH3-CH2-CH2-NO2,即1-硝基丙烷。 例2:已知某化合物分子式为C7H16O3,其氢谱谱图如下图所示,试求其结构。

核磁共振氢谱专项练习及答案

核磁共振氢谱专项练习及答案 (一)判断题(正确的在括号内填“√”号;错误的在括号内填“×”号。) 1.核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。( ) 2.质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。( ) 3.自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。( ) 4.氢质子在二甲基亚砜中的化学位移比在氯仿中要小。( ) 5.核磁共振波谱仪的磁场越强,其分辨率越高。( ) 6.核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。( ) 7.在核磁共振波谱中,耦合质子的谱线裂分数目取决于邻近氢核的个数。( ) 8.化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。( ) 9.核磁共振波谱中出现的多重峰是由于邻近核的核自旋相互作用。( ) 10.化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。( ) 11.苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。( ) 12.氢键对质子的化学位移影响较大,所以活泼氢的化学位移在一定范围内变化。( ) 13.不同的原子核产生共振条件不同,发生共振所必需的磁场强度(B0)和射频频率(v)不同。( ) 14.(CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。( ) 15.羟基的化学位移随氢键的强度变化而移动,氢键越强,δ值就越小。( ) 答案 (一)判断题 1.√2.×3.×4.×5.√6.×7.√8.×9.√l0.√11.√l2.√

l3.√l4.×l5.× (二)选择题(单项选择) 1.氢谱主要通过信号的特征提供分子结构的信息,以下选项中不是信号特征的是( )。 A.峰的位置;B.峰的裂分;C.峰高;D.积分线高度。 2.以下关于“核自旋弛豫”的表述中,错误的是( )。 A.没有弛豫,就不会产生核磁共振; B.谱线宽度与弛豫时间成反比; C.通过弛豫,维持高能态核的微弱多数;D.弛豫分为纵向弛豫和横向弛豫两种。 3.具有以下自旋量子数的原子核中,目前研究最多用途最广的是( )。 A.I=1/2;B.I=0;C.I=1; D.I>1。 4.下列化合物中的质子,化学位移最小的是( )。 A.CH3Br;B.CH4;C.CH3I;D.CH3F。 5.进行已知成分的有机混合物的定量分析,宜采用( )。 A.极谱法;B.色谱法;C.红外光谱法;D.核磁共振法。 6.CH3CH2COOH在核磁共振波谱图上有几组峰?最低场信号有几个氢?( ) A.3(1H); B.6(1H);C.3(3H);D.6(2H)。 7.下面化合物中在核磁共振谱中出现单峰的是( 九 A.CH3CH2C1;B.CH3CH20H;C.CH3CH3;D.CH3CH(CH3)2。 8.下列4种化合物中,哪个标有*号的质子有最大的化学位移?( ) 9.核磁共振波谱解析分子结构的主要参数是( )。

核磁共振氢谱碳谱各种溶剂峰

show their degree of variability.Occasionally,in order to distinguish between peaks whose assignment was ambiguous,a further1-2μL of a specific substrate were added and the spectra run again. Table1.1H NMR Data proton mult CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent residual peak7.26 2.05 2.507.16 1.94 3.31 4.79 H2O s 1.56 2.84a 3.33a0.40 2.13 4.87 acetic acid CH3s 2.10 1.96 1.91 1.55 1.96 1.99 2.08 acetone CH3s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 acetonitrile CH3s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 benzene CH s7.367.367.377.157.377.33 tert-butyl alcohol CH3s 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH c s 4.19 1.55 2.18 tert-butyl methyl ether CCH3s 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3s 3.22 3.13 3.08 3.04 3.13 3.20 3.22 BHT b ArH s 6.98 6.96 6.877.05 6.97 6.92 OH c s 5.01 6.65 4.79 5.20 ArCH3s 2.27 2.22 2.18 2.24 2.22 2.21 ArC(CH3)3s 1.43 1.41 1.36 1.38 1.39 1.40 chloroform CH s7.268.028.32 6.157.587.90 cyclohexane CH2s 1.43 1.43 1.40 1.40 1.44 1.45 1,2-dichloroethane CH2s 3.73 3.87 3.90 2.90 3.81 3.78 dichloromethane CH2s 5.30 5.63 5.76 4.27 5.44 5.49 diethyl ether CH3t,7 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2q,7 3.48 3.41 3.38 3.26 3.42 3.49 3.56 diglyme CH2m 3.65 3.56 3.51 3.46 3.53 3.61 3.67 CH2m 3.57 3.47 3.38 3.34 3.45 3.58 3.61 OCH3s 3.39 3.28 3.24 3.11 3.29 3.35 3.37 1,2-dimethoxyethane CH3s 3.40 3.28 3.24 3.12 3.28 3.35 3.37 CH2s 3.55 3.46 3.43 3.33 3.45 3.52 3.60 dimethylacetamide CH3CO s 2.09 1.97 1.96 1.60 1.97 2.07 2.08 NCH3s 3.02 3.00 2.94 2.57 2.96 3.31 3.06 NCH3s 2.94 2.83 2.78 2.05 2.83 2.92 2.90 dimethylformamide CH s8.027.967.957.637.927.977.92 CH3s 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3s 2.88 2.78 2.73 1.86 2.77 2.86 2.85 dimethyl sulfoxide CH3s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 dioxane CH2s 3.71 3.59 3.57 3.35 3.60 3.66 3.75 ethanol CH3t,7 1.25 1.12 1.060.96 1.12 1.19 1.17 CH2q,7d 3.72 3.57 3.44 3.34 3.54 3.60 3.65 OH s c,d 1.32 3.39 4.63 2.47 ethyl acetate CH3CO s 2.05 1.97 1.99 1.65 1.97 2.01 2.07 C H2CH3q,7 4.12 4.05 4.03 3.89 4.06 4.09 4.14 CH2C H3t,7 1.26 1.20 1.170.92 1.20 1.24 1.24 ethyl methyl ketone CH3CO s 2.14 2.07 2.07 1.58 2.06 2.12 2.19 C H2CH3q,7 2.46 2.45 2.43 1.81 2.43 2.50 3.18 CH2C H3t,7 1.060.960.910.850.96 1.01 1.26 ethylene glycol CH s e 3.76 3.28 3.34 3.41 3.51 3.59 3.65“grease”f CH3m0.860.870.920.860.88 CH2br s 1.26 1.29 1.36 1.27 1.29 n-hexane CH3t0.880.880.860.890.890.90 CH2m 1.26 1.28 1.25 1.24 1.28 1.29 HMPA g CH3d,9.5 2.65 2.59 2.53 2.40 2.57 2.64 2.61 methanol CH3s h 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH s c,h 1.09 3.12 4.01 2.16 nitromethane CH3s 4.33 4.43 4.42 2.94 4.31 4.34 4.40 n-pentane CH3t,70.880.880.860.870.890.90 CH2m 1.27 1.27 1.27 1.23 1.29 1.29 2-propanol CH3d,6 1.22 1.10 1.040.95 1.09 1.50 1.17 CH sep,6 4.04 3.90 3.78 3.67 3.87 3.92 4.02 pyridine CH(2)m8.628.588.588.538.578.538.52 CH(3)m7.297.357.39 6.667.337.447.45 CH(4)m7.687.767.79 6.987.737.857.87 silicone grease i CH3s0.070.130.290.080.10 tetrahydrofuran CH2m 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O m 3.76 3.63 3.60 3.57 3.64 3.71 3.74 toluene CH3s 2.36 2.32 2.30 2.11 2.33 2.32 CH(o/p)m7.177.1-7.27.187.027.1-7.37.16 CH(m)m7.257.1-7.27.257.137.1-7.37.16 triethylamine CH3t,7 1.030.960.930.960.96 1.050.99 CH2q,7 2.53 2.45 2.43 2.40 2.45 2.58 2.57 a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed;it appears at 2.81and 3.30ppm in acetone and DMSO,respectively.In the former solvent,it is often seen as a1:1:1triplet,with2J H,D)1Hz. b2,6-Dimethyl-4-tert-butylphenol.c The signals from exchangeable protons were not always identified.d In some cases(see note a),the coupling interaction between the CH2and the OH protons may be observed(J)5Hz).e In CD3CN,the OH proton was seen as a multiplet atδ2.69,and extra coupling was also apparent on the methylene peak.f Long-chain,linear aliphatic hydrocarbons.Their solubility in DMSO was too low to give visible peaks.g Hexamethylphosphoramide.h In some cases(see notes a,d),the coupling interaction between the CH3and the OH protons may be observed(J)5.5Hz).i Poly(dimethylsiloxane).Its solubility in DMSO was too low to give visible peaks. Notes https://www.360docs.net/doc/dc18250642.html,.Chem.,Vol.62,No.21,19977513

第三章 核磁共振氢谱 习题

第三章核磁共振氢谱习题 一、判断题 [1] 核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。 [2] 质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。 [3] 自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。 [4] 氢质子子在二甲基亚砜中的化学位移比在氯仿中要小。 [5] 核磁共振波谱仪的磁场越强,其分辨率越高。 [6] 核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。 [7] 在核磁共振波谱中,耦合质子的谱线裂分数目取决于临近氢核的个数。 [8] 化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。 [9] 核磁共振波谱中出现的多重峰是由于临近核的核自旋相互作用。 [10] 化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。 [11] 苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。 [12] 氢键对质子的化学位移影响较大,所以活泼的氢的化学位移在一定范围内变化。 [13] 不同的原子核核产生共振条件不同,发生共振所必须的磁场强度B0和射频频率υ不同。 [14] (CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。 [15] 羟基的化学位移随氢键的强度变化而移动,氢键越强,化学位移值就越小。 二、选择题(单项选择) [1]氢谱主要通过信号特征提供分子结构信息,以下选项中不是信号特征的是()。 A. 峰的位置 B. 峰的裂分 C. 峰高 D. 积分线高度 [2]以下关于“核自旋弛豫”的标书中,错误的是()。 A. 没有弛豫,就不会产生核磁共振 B. 谱线宽度与弛豫时间成反比 C. 通过弛豫,维持高能态核的微弱多数 D. 弛豫分为纵向弛豫和横向弛豫 [3]具有以下自旋量子数的原子核中,目前研究最多用途最广的是()。 A. I=1/2 B. I=0 C. I=1 D. I>1 [4]进行已知成分的有机混合物的定量分析,宜采用()。 A. 极谱法 B. 色谱法 C. 红外光谱法 D. 核磁共振法 [5]CH3CH2COOH在核磁共振波谱图上有几组峰?最低场有几个氢?()。 A. 3(1H) B. 6(1H) C. 3(3H) D. 6(2H) [6]下列化合物中在核磁共振谱中出现单峰的是()。 A. CH3CH2Cl B. CH3CH2OH C. CH3CH3 D. CH3CH(CH3)2 [7]核磁共振波谱解析分子结构的主要参数是()。 A. 质荷比 B. 波数 C. 化学位移 D. 保留值 [8]分子式为C5H10O的化合物,其1H NMR谱上只出现两个单峰,最有可能的结构式为()。 A. (CH3)CHCOCH3 B. (CH3)C-CHO C. CH3CH2CH2COOH D. CH3CH2COCH2CH3

核磁共振氢谱和碳谱讲解

核磁共振氢谱 核磁共振---NMR 1945年美国斯坦福大学的 F. Block 和哈佛大学的 E. M. Purcell 同时发现了核磁共振现象,并因此荣获了1952年的 Nobel 物理奖。 核磁共振谱可为化合物鉴定提供下列信息: 1.磁核的类型:由化学位移来判别,如在1HNMR 中,可判别甲基氢、芳氢、烯氢、醛氢等。 2.磁核的化学环境:由偶合常数和自旋-自旋裂分来判别,如在 1H-NMR 中可判定甲基是与-CH 2-相连,还是与苯环相连。 3.各类磁核的相对数量:氢谱中,通过积分面积或积分曲线来判断。 4 .核自旋弛豫时间:13CNMR 可提供 T 1,并用于结构归属指定,构象的测定,以及窥测体 系的运动情况。 5 .核间相对距离:通过核的 Overhause 效应可测得。 3.1核磁共振的基本原理 3.1.1原子核的磁矩 原子核是带正电荷的粒子,自旋将产生磁矩,但并非所有同位素的原子核有自旋,只有有自旋才有磁矩。 具有自旋运动的原子核具有一定自旋量子数(I ),I=1/2 *n ,那1,2,3··· 1. 核电荷数和和质量数均为偶数的原子核没自旋。 2. 核电荷数为奇数或偶数,核质量数为奇数,有自旋现象。 3. 核电荷数为奇数,核质量数为偶数,I 为整数的原子核有自旋现象。 对于自旋不为零的核来说,当其自旋时由于形成环电流,故而产生一个小磁场,这个小磁场可用核磁矩 μ 表示。 μ 是矢量,其大小由下式确定: πγγμ2)1(h I I p +== 式中 γ ---核的磁旋比 p---自旋角动量 不同的核有不同的 γ 值,是确定同位素核的特征常数。

3.1.2自旋核在磁场中的取向和能级 对于I 不为零的核来说,如果不受外来磁场的干扰, 其自旋轴的取向将是任意的。当它们处于外加静磁场(磁场强 度为H0)中时,根据量子力学理论,它们的自旋轴的取向不 再是任意的,而只有(2I+1)种,这叫核自旋的空间量子化。每 一种取向可用一个磁量子数m 表示,则m=I,I-1,I-2,…-I+1, -I。 以1H为例,有两种取向:m1/2 和m-1/2 核磁矩μ和外加磁场H0 的相互作用能E由下式确定: E = -μ· H0 我们把外加磁场引起的核自旋能级的分裂称为核的赛曼效应。 3.1.3核的回旋和核磁共振 当一个原子核的核磁矩处于磁场H0中,核自身有一旋 转,而外加磁场又力求它取向于磁场方向,在这两种力的作 用下,核会在自旋的同时绕外加磁场的方向进行回旋,这种 运动称为Larmor(拉莫尔)进动。 在外加磁场H0的作用下,自旋量子数为I 的核,其自旋能级分裂为(2I+1) 个,任意相邻 的两能级间的能量差都等于γhH0/2π。用一个 频率为ν射的射频波(电磁波)照射磁场中的自 旋核时,如果电磁波的能量hν射与该能级差相 等,即 E射=hν射=ΔE= hν回=γ hH0/2π ν射=ν回=γ ·H0/2π 时,低自旋能态的核即可吸收电磁波的能量而跃迁到高自旋能态,这就是核磁共振。 3.1.4核的自旋弛豫 如果核平均分布在高低能态,由低能态跃迁到高能态释放能量回到低能态速度相等,无静吸收,即无核磁共振。若低能态核跃迁后,不能释放能量回到低能态,低能态核数减少,则不会有静吸收,即无NMR信号。实际上则是有自旋弛豫过程帮助回到低能态。 弛豫过程分为两种类型:自旋-晶格弛豫和自旋-自旋弛豫。 自旋-自旋弛豫:又称横向弛豫。一些高能态的自旋核把能量转移给同类的低能态核,同时一些低能态的核获得能量跃迁到高能态,因而各种取向的核的总数并没有改变,全体核的总能量也不改变。 自旋-晶格弛豫:也叫纵向弛豫。是处于高能态的核自旋体系与其周围环境之间的能量交换过程(通常习惯于将“环境”称为“晶格”)。

第二章 核磁共振氢谱[优质文档]

第二章核磁共振氢谱[优质文档] 第二章核磁共振氢谱 1几乎所有的有机物分子中都含有氢,而且H在自然界的丰度 231达99.98,,远远大于其它两个同位素H和H。这样,H核磁共振最早和最广泛地应用,在20世纪70年代以前,核磁共振几乎就是指核磁共振氢谱。 核磁共振氢谱主要是通过测定有机物分子中氢原子的位置来推断有机物的结构的。从一张有机物的核磁共振氢谱图上,我们可得到有机物分子中氢原子的种类(根据化学位移δ值)和氢原子的数量(根据峰面积)。即核磁共振氢谱图上有多少个峰,就表明有机分子中有多少种类的氢,各个峰的面积积分比表示各种氢原子的数目的比例。 图2.2是1-苯基-2,2-二甲基丙烷的核磁共振氢谱图。图中横坐标为化学位移,图上有三个峰,则表明该有机物分子中的氢有三种类型:峰面积的积分比为 9:5:2,表明该化合物的三种不同氢的数 目分别是9、5和2;化学位移δ 7.2处的峰表示苯环上5个相同的氢,δ2.5处的峰表示亚甲基上的2个相同氢,而δ0.9处的峰则表示三个甲基上的9个相同的氢。这样,能够判断出有机物分子中氢的种类和数目就可以非常容易地推断出有机物的分子结构。

图2.2 1-苯基-2,2-二甲基丙烷的核磁共振氢谱 2.1 化学位移 化学位移是核磁共振最重要参数之一.前面我们已经讨论了影响化学位移的因素.这里不再讨论.根据上述各种影响氢核化学位移的因素和多年核磁共振测定有机物结构的经验,同样总结出了不同有机基团氢核的化学位移δ值。根据δ值,可以进行相应有机基团的推断,常见的一些有机基团的氢核的化学位移总结于表2.1中。 表2.1 常见有机基团的氢核化学位移 氢核类型示例化学位移δppm H环丙烷 0.2 H 伯烷 RCH 0.9 3 仲烷 RCH 1.3 22 叔烷 RCH 1.5 3 烯丙基取代 C,C,CH 1.7 3 碘取代 I,CH 2.0,4.0 3 酯基取代 HC,COOR 2.0,2.2 3 羧基取代 HC,COOH 2.0,2.6 3 酰基取代 HC,COR 2.0,2.7 3

第二章 核磁共振氢谱

第二章核磁共振氢谱 几乎所有的有机物分子中都含有氢,而且1H在自然界的丰度达99.98%,远远大于其它两个同位素2H和3H。这样,1H核磁共振最早和最广泛地应用,在20世纪70年代以前,核磁共振几乎就是指核磁共振氢谱。 核磁共振氢谱主要是通过测定有机物分子中氢原子的位置来推断有机物的结构的。从一张有机物的核磁共振氢谱图上,我们可得到有机物分子中氢原子的种类(根据化学位移δ值)和氢原子的数量(根据峰面积)。即核磁共振氢谱图上有多少个峰,就表明有机分子中有多少种类的氢,各个峰的面积积分比表示各种氢原子的数目的比例。 图2.2是1-苯基-2,2-二甲基丙烷的核磁共振氢谱图。图中横坐标为化学位移,图上有三个峰,则表明该有机物分子中的氢有三种类型:峰面积的积分比为9:5:2,表明该化合物的三种不同氢的数

目分别是9、5和2;化学位移δ 7.2处的峰表示苯环上5个相同的氢,δ2.5处的峰表示亚甲基上的2个相同氢,而δ0.9处的峰则表示三个甲基上的9个相同的氢。这样,能够判断出有机物分子中氢的种类和数目就可以非常容易地推断出有机物的分子结构。 图2.2 1-苯基-2,2-二甲基丙烷的核磁共振氢谱 2.1 化学位移 化学位移是核磁共振最重要参数之一.前面我们已经讨论了影响化学位移的因素.这里不再讨论.根据上述各种影响氢核化学位移的因素和多年核磁共振测定有机物结构的经验,同样总结出了不同有机基团氢核的化学位移δ值。根据δ值,可以进行相应有机基团的推断,常见的一些有机基团的氢核的化学位移总结于表2.1中。

表2.1 常见有机基团的氢核化学位移 氢核类型示例化学位移δppm 0.2 环丙烷H H 伯烷RCH30.9 仲烷R2CH2 1.3 叔烷R3CH 1.5 烯丙基取代C=C-CH3 1.7 碘取代I-CH3 2.0-4.0 酯基取代H3C-COOR 2.0-2.2 羧基取代H3C-COOH 2.0-2.6 酰基取代H3C-COR 2.0-2.7 炔C≡C-H 2.0-3.0 苯基取代CH3 2.2-3.0 醚基取代R-O-CH3 3.3-4.0 溴取代CH3Br 2.5-4.0 氯取代CH3Cl 3.0-4.0 羟基取代CH3OH 4.0-4.3 氟取代CH3F 4.0-4.5 酰氧基取代RCOO-CH3 3.7-4.1 胺RNH2 1.0-5.0 醇ROH 1.0-5.5 烯C=C-H 4.6-5.9

核磁共振氢谱解析方法

2、3核磁共振氢谱解析方法 1、核磁共振氢谱谱图得解析方法 a、检查整个氢谱谱图得外形、信号对称性、分辨率、噪声、被测样品得 信号等。 b、应注意所使用溶剂得信号、旋转边带、C卫星峰、杂质峰等。 c、确定TMS得位置,若有偏移应对全部信号进行校正。 d、根据分子式计算不饱与度u。 e、从积分曲线计算质子数。 f、解析单峰。对照附图I就是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g、确定有无芳香族化合物。如果在6、5-8、5范围内有信号,则表示有芳 香族质子存在。如出现AA`BB`得谱形说明有芳香邻位或对位二取代。 h、解析多重峰。按照一级谱得规律,根据各峰之间得相系关系,确定有何 种基团。如果峰得强度太小,可把局部峰进行放大测试,增大各峰得强度。 i、把图谱中所有吸收峰得化学位移值与附图I相对照,确定就是何官能团, 并预测质子得化学环境。 j、用重水交换确定有无活泼氢。 k、连接各基团,推出结构式,并用此结构式对照该谱图就是否合理。再对 照已知化合物得标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结构。

解析计算不饱与度u=1,可能存在双键,1、50与1、59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群得积分强度为2:2:3,可能 有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰得裂距(J),低场三重峰为7Hz, 高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰得质子为2个,所以使两边信号各裂分为三重峰。 则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定得分子式应为CH 3 -CH 2-CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结构。

相关文档
最新文档