初中数学三角形全等常用几何模型及构造方法大全初二

合集下载

全等三角形的九大经典模型(学生版)

全等三角形的九大经典模型(学生版)

全等三角形的九大经典模型【题型1平移模型】【题型2轴对称模型】【题型3旋转模型】【题型4一线三等角模型】【题型5倍长中线模型】【题型6截长补短模型】【题型7手拉手模型】【题型8角平分线模型】【题型9半角全等模型】【知识点1平移模型】【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【题型1平移模型】1(2023春·陕西咸阳·八年级统考期末)如图,将△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,点C的对应点F在BC的延长线上,连接AD,AC、DE交于点O.下列结论一定正确的是()A.∠B=∠FB.AC⊥DEC.BC=DFD.AC、DE互相平分1.(2023·浙江·八年级假期作业)如图,△ABC的边AC与△CDE的边CE在一条直线上,且点C为AE的中点,AB=CD,BC=DE.(1)求证:△ABC≌△CDE;(2)将△ABC沿射线AC方向平移得到△A B C ,边B C 与边CD的交点为F,连接EF,若EF将CDE 分为面积相等的两部分,且AB=4,则CF=2.(2023春·重庆·八年级校考期中)如图,将△ABC沿射线BC方向平移得到△DCE,连接BD交AC于点F.(1)求证:△AFB≌△CFD;(2)若AB=9,BC=7,求BF的取值范围.3.(2023春·八年级课时练习)已知△ABC,AB=AC,∠ABC=∠ACB,将△ABC沿BC方向平移得到△DEF.如图,连接BD、AF,则BD AF(填“>”“<”或“=”),并证明.【知识点2轴对称模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【题型2轴对称模型】1(2023春·河北邯郸·八年级校考期末)如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME=α,∠ABE=β,则α与β之间的数量关系为()A.α+3β=180°B.β-α=20°C.α+β=80°D.3β-2α=90°1.(2023·全国·八年级专题练习)如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.BC边上的点,且∠EAF=122.(2023春·山东青岛·八年级统考期中)如图,在RtΔABC中,∠C=90°,将ΔABC沿AB向下翻折后,再绕点A按顺时针旋转α度(α<∠ABC).得到RtΔADE,其中斜边AE交BC于点F,直角边DE 分别AB、BC于点G,H1 请根据题意用实线补全图形;(不得用铅笔作图).2 求证:ΔAFB≅ΔAGE3.(2023春·山西临汾·八年级统考期末)阅读材料,并回答下列问题如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),.(2)如图2,前进小组把△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=5,则DC=.(3)如图3,圆梦小组展开了探索活动,把△ABC纸片沿DE折叠,使点A落在四边形BCDE内部点A′的位置,且得出一个结论:2∠A′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC纸片沿DE折叠,使点A落在四边形BCDE外部点A′的位置,此时∠A′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.【知识点3旋转模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.【常见模型】【题型3旋转模型】1(2023春·全国·八年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)1.(2023春·八年级课时练习)如图,等边△ABC中,∠AOB=115°,∠BOC=125°,则以线段OA,OB,OC为边构成的三角形的各角的度数分别为.2.(2023春·全国·八年级专题练习)已知,如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°.(1)在图1中,连接EF,为了证明结论“EF=BE+DF ”,小亮将ΔADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?3.(2023春·江苏·八年级专题练习)如图,在锐角ΔABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.【知识点4一线三等角模型】【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【题型4一线三等角模型】1(2023春·山东菏泽·八年级校联考阶段练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.1.(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于()A.3B.2C.94D.922.(2023春·上海·八年级专题练习)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.求证:BC=AE.[模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为.[深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.若BC=21,AF=12,则△ADG的面积为.3.(2023春·八年级课时练习)(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”,请直接写出此题答案:BE的长为.(2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD 上,且∠BED=∠CFD=∠BAC.求证:ΔABE≌ΔCAF.(3)拓展应用:如图③,在ΔABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠BED=∠CFD=∠BAC.若ΔABC的面积为15,则ΔACF与ΔBDE的面积之和为.(直接填写结果,不需要写解答过程)【知识点5倍长中线模型模型】【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.【常见模型】【题型5倍长中线模型】1(2023春·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D 为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED ≅△CAD 用到的判定定理是:(用字母表示);(2)AD 的取值范围是;(3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC 中,AD 为BC 边上的中线,且AD 平分∠BAC ,求证:AB =AC .1.(2023春·黑龙江哈尔滨·八年级哈尔滨风华中学校考期中)如图,△ABC 中,点D 在AC 上,AD =3,AB +AC =10,点E 是BD 的中点,连接CE ,∠ACB =∠ABC +2∠BCE ,则CD =.2.(2023春·全国·八年级阶段练习)如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,AM =3,DE =.3.(2023·江苏·八年级假期作业)【观察发现】如图①,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明的解法如下:延长AD 到点E ,使DE =AD ,连接CE .在△ABD 与△ECD 中BD =DC∠ADB =∠EDCAD =DE∴△ABD ≅△ECD (SAS )∴AB =.又∵在△AEC 中EC -AC <AE <EC +AC ,而AB =EC =7,AC =5,∴<AE <.又∵AE =2AD .∴<AD <.【探索应用】如图②,AB∥CD,AB=25,CD=8,点E为BC的中点,∠DFE=∠BAE,求DF的长为.(直接写答案)【应用拓展】如图③,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点,求证:AP⊥DP.【知识点6截长补短模型】【模型解读】截长补短的方法适用于求证线段的和差倍分关系。

八年级数学三角形全等辅助线构造总结

八年级数学三角形全等辅助线构造总结

三角形全等辅助线构造总结当题中出现等腰三角形的条件但是不好使用时,可以考虑利用旋转构造辅助线,通过构造等腰三角形得到手拉手全等,利用全等转移边角进行解题旋转三要素:旋转中心、旋转角、旋转方向旋转对象:一般是含已知条件或问题相关的边角所在三角形如何转:确定旋转三角形后,考虑由旋转三角形中的腰旋转至与另一腰重合,整个三角形进行同样的旋转旋转后的图形分析:1、从新构造的全等三角形进行分析;2、从新得到的等腰三角形进行分析板块一、常见旋转相关模型一、邻补模型(∠DAB+∠DCB=180°,AD=AB)条件构成:有两邻边相等的四边形,且四边形对角互补,且一般等腰三角形顶角为特殊角。

常见结论:1、有角平分线;2、有线段和差的倍数关系解题方法:1、作双垂;2、构造旋转全等①90°相关结论:1、AC平分∠BCD2、AC CD BC 2=+ ②60°相关结论:1、AC 平分∠BCD 2、AC CD BC =+ ③120°相关结论:1、AC 平分∠BCD 2、AC CD BC 3=+补充说明:对角互补、邻边相等、角平分线三个条件知到其中两个就可求另外第三个,辅助线的构造与三角形全等相同,但是全等判定会有差异,需要根据具体情况判断变式、不完整的邻补模型条件构成:有邻边相等或者对角互补,角平分线条件改成其中一个半角知道度数常见结论:与邻补模型一样解题方法:利用已知角构造等腰三角形得到手拉手全等二、邻八模型(∠CAD=∠CDB,AB=AC)条件构成:邻边相等、八字形、等腰三角形顶角为特殊角常见结论:1、外角平分线;2、线段的和差倍数关系解题方法:1、作双垂;2、构造旋转全等①90°相关结论:1、AD 为外角平分线 2、AD BD CD 2=-②120°相关结论:1、AD 为外角平分线2、AD BD CD 3=-变式、不完整的邻八模型条件构成:有邻边相等或者八字形,角平分线条件改成知道部分角度 常见结论:与邻补模型一样解题方法:利用已知角构造等腰三角形得到手拉手全等④一般角时(∠ADC=∠ABC)(∠ADB+∠ABC=180°)注:当等腰三角形不为等腰直角三角形或等边三角形时,利用作垂和翻折构造等腰三角形,如上第二图中,可过A 作DC 垂线,垂足F ,然后找E 使DF=EF ,连接则可得到目标等腰三角形三、等腰直角三角形相关旋转模型1、条件构成:△ABC 为等腰直角三角形,D 为直线BC 上任意一点常见结论:2222AD CD BD =+解题思路:构造旋转全等补充说明:2、夹半角模型条件构成:△ABC 是等腰直角三角形,且∠DAE 为45°或135°角常见结论:222DE CE BD =+解题思路:构造旋转全等,证两次全等补充说明:1、以上半角模型的辅助线构造思路都是将△ABD 绕A 逆时针转90°,先后证明AFE ADE ACF ABD ∆≅∆∆≅∆,,再用勾股得到结论2、120°等腰三角形相关夹半角也有类似解法,但结论不同,需要用到解三角形四、对角互余模型(BA=BC,∠BAC+∠BDC=90°) ①等边三角形 结论:222AD CD BD =+②等腰直角三角形结论:222BD=+2ADCD③120°等腰三角形结论:222+BD=CD3AD变式:向内时(∠ADC减等腰三角形底角=90°)结论:与相应对角互余模型相同一、拓展一:等腰+对角和为特殊角模型特点:四边形由一个顶角为特殊角的等腰三角形和一个任意三角形构成,其中一组对角和为特殊角。

最新初二数学全等三角形常见几何模型总结归类大全

最新初二数学全等三角形常见几何模型总结归类大全

图1
图2
①2 (提示:作 DE AB 交 AB 于点 E)
② 1 2 , PM PN , 3 4 , PN PQ , PM PQ, PA平分 BAC .
(2).模型巩固:
练习一:如图 3,在四边形 ABCD 中, BC>AB ,AD=CD ,BD 平分 BAC . .求证: A C 180
图3
练习二:已知如图 4,四边形 ABCD 中, B D 1800 , BC CD.求证: AC平分 BAD.
最新初二数学全等三角形常见几何模型总结归类大全
一、 角平分线模型应用 1.角平分性质模型: 辅助线:过点 G 作 GE 射线 AC
(1) .例题应用 : ①如图 1,在 ABC 中 , C 900, AD平分 CAB, BC 6cm, BD 4cm, 那么点 D 到直线 AB
的距离是
cm.
②如图 2,已知, 1 2 , 3 4 . 求证: AP平分 BAC .
图4 练习三:如图 5, Rt ABC中, ACB 900, CD AB,垂足为 D,AF平分 CAB, 交 CD 于点
E,交 CB 于点 F. (1)求证: CE=CF.
(2)将图 5 中的 △ADE 沿 AB 向右平移到 A'D 'E ' 的位置,使点 E ' 落在 BC 边上,其他条件不变,如 图 6 所示,是猜想: BE' 于 CF 又怎样的数量关系?请证明你的结论 .
图5
图6
练习四:如图 7, ∠ A 90 , AD ∥ BC , P 是 AB 的中点, PD 平分∠ ADC . 求证: CP 平分∠ DCB . A
P
D 2
1 4E
3
B

初中数学几何模型系列之(四)全等三角形模型

初中数学几何模型系列之(四)全等三角形模型

点评:公共边模型 一定要注意隐含条 件,即:公共边
Network Optimization Expert Team
基本模型
例题2、 已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ. 求证:HN=PM.
点评:此题为双垂直 模型,通常利用等角 的余角相等来进行等 角的证明
证明:∵MQ和NR是△MPN的高, ∴∠MQN=∠MRN=90° 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2
证明:图2成立; 证明图2:过点 作 DM⊥AC, BN⊥BC则 ∴∠DME=∠DNF =∠MDN =90°, 在△AMD和△DNB中,
∠AMD=∠DNB= 90°
∠A=∠B
AD=BD
∴△AMD≌△DNB(AAS)∴DM=DN
∵∠MDE+∠EDN=∠NDF+∠EDN=90°, 在△DME与△DNF中,
初中几何模型系列之(四)
全等三角形模型
全面完整版+例题解析
Network Optimization Expert Team
1、公共边模型
第一部分 基本模型
△ABD≌△ABC
△EFD≌△ABC
△E≌△FDC
Network Optimization Expert Team
△ ABC
Network Optimization Expert Team
基本模型
例题4、已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF. 求证:AB∥DC.
点评:从已知条件只能先证出 Rt△ADE≌Rt△CBF,从结 论又需Rt△CDE≌Rt△ABF. 我们可以从已知和结论向中 间推进,证出题目.
助线都是在射线ON上取点B,使OB= OA,从而使△OAC≌△OBC .

全等三角形中的常见五种基本模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

全等三角形中的常见五种基本模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、截长补短模型①截长:在较长的线段上截取另外两条较短的线段。

如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。

如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS),可得CF=FG=BN,∠DFC=∠BNC=135°,又知∠FGC=45°,可证BN∥FG,于是四边形BFGN为平行四边形,得BF=NG,所以BF=NG=NC+CG=DF+CG.模型二、平移全等模型模型三、对称全等模型模型四、旋转全等模型模型五、手拉手全等模型例题精讲模型一、截长补短模型【例1】.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C=.变式训练【变式1-1】.如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB =60°,且CA+AP=BC,则∠CAB的度数为()A.60°B.70°C.80°D.90°【变式1-2】.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【变式1-3】.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB 上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC 于F.(1)求△CDE的面积;(2)证明:DF+CF=EF.模型二、平移全等模型【例2】.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.变式训练【变式2-1】.如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.【变式2-2】.如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.(1)求证:△ABC≌△DFE;(2)求证:点O为BF的中点.【变式2-3】.如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,∠ADC=60°,求CD的长.模型三、对称全等模型【例3】.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠PAD的度数;(2)求证:P是线段CD的中点.变式训练【变式3-1】.如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.求证:AM=AN.【变式3-2】.如图,已知点E、F分别是正方形ABCD中边AB、BC上的点,且AB=12,AE=6,将正方形分别沿DE、DF向内折叠,此时DA与DC重合为DG,求CF的长度.【变式3-3】.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.模型四、旋转全等模型【例4】.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.变式训练【变式4-1】.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.【变式4-2】.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是3+4.模型五、手拉手全等模型【例5】.如图,△ABC与△ADE是以点A为公共顶点的两个三角形,且AD=AE,AB=AC,∠DAE=∠CAB=90°,且线段BD、CE交于F.(1)求证:△AEC≌△ADB.(2)猜想CE与DB之间的关系,并说明理由.变式训练【变式5-1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③DE=DP;④∠AOB=60°.恒成立的结论有几个()A.1个B.2个C.3个D.4个【变式5-2】.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【变式5-3】.(1)如图1,等腰△ABC 与等腰△DEC 有公共点C ,且∠BCA =∠ECD ,连接BE 、AD ,若BC =AC ,EC =DC ,求证:BE =AD .(2)若将△DEC 绕点C 旋转至图2、图3、图4情形时,其余条件不变,BE 与AD 还相等吗?为什么?实战演练1.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为()A .120︒B .135︒C .115︒D .125︒2.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.13.如图,在△ABC中,∠BAC=30°,且AB=AC,P是△ABC内一点,若AP+BP+CP的最小值为4,则BC2=.4.正方形ABCD中,AB=6,点E在边CD上,CE=2DE,将△ADE沿AE折叠至△AFE,=6;延长EF交BC于点G,连接AG,CF.下列结论:①△ABG≌△AFG;②S△FGC③EG=DE+BG;④BG=GC.其中正确的有(填序号).5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处.(1)求证:AF=CF(2)求AF的长度.6.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.7.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.(1)求证:AE=AF;(2)求证:CD=2BE+DE.8.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.(1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.(2)求证:BE2+CF2=EF2.(3)在(1)的条件下,求△DEF的面积.9.如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB 的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE 交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)线段AE与DB的数量关系为;请直接写出∠APD=;(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;(3)在(2)的条件下求证:∠APC=∠BPC.10.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D >∠B,所以∠C>∠B.感悟与应用:(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC 和AD、BC之间的数量关系,并说明理由;(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,①求证:∠B+∠D=180°;②求AB的长.11.如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.(1)李明同学作了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP',可说明△APP'是直角三角形从而问题得到解决.请你说明其中理由并完成问题解答.(2)如图丙,在正方形ABCD内有一点P,且AP=,BP=,PC=1:类比第一小题的方法求∠BPC的度数,并直接写出正方形ABCD的面积.12.在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为.(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=12,求CF的最大值.。

初中数学构造全等三角形常用方法

初中数学构造全等三角形常用方法

初中数学构造全等三角形常用方法
在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。

常见辅助线的作法有以下几种:
遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.
遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.
过图形上某一点作特定的平分线,构造全等三角形,利用的思维
模式是全等变换中的“平移”或“翻转折叠”
截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有
分享不当或侵权,请联系删除。

(完整版)全等三角形经典模型总结

(完整版)全等三角形经典模型总结全等三角形相关模型总结一、角平分线模型(一)角平分线的性质模型辅助线:过点G作GE⊥射线ACA、例题1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB 的距离是cm.2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC.B、模型巩固1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.(二)角平分线+垂线,等腰三角形必呈现A、例题辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F .求证:1()2BE AC AB=-.例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交AD的延长线于M. 求证:1()2AM AB AC=+.(三)角分线,分两边,对称全等要记全两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC .A、例题1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ .2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.B、模型巩固1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD 上任意一点(不与A重合).求证:AB-AC>PB-PC .2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D,求证:AD+BD=BC .3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D,求证:AC+CD=AB .二、等腰直角三角形模型(一)旋转中心为直角顶点,在斜边上任取一点的旋转全等:操作过程:(1)将△ABD逆时针旋转90°,得△ACM ≌△ABD,从而推出△ADM为等腰直角三角形.(2)辅助线作法:过点C作MC⊥BC,使CM=BD,连结AM.(二)旋转中心为斜边中点,动点在两直角边上滚动的旋转全等:操作过程:连结AD.(1)使BF=AE(或AF=CE),导出△BDF ≌△ADE.(2)使∠EDF+∠BAC=180°,导出△BDF ≌△ADE.A、例题1、如图,在等腰直角△ABC中,∠BAC=90°,点M、N在斜边BC上滑动,且∠MAN=45°,试探究BM、MN、CN之间的数量关系.2、两个全等的含有30°,60°角的直角三角板ADE和ABC,按如图所示放置,E、A、C三点在一条直线上,连接BD,取BD的中点M,连接ME、MC.试判断△EMC的形状,并证明你的结论.B、模型巩固1、已知,如图所示,Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,若M、N分别在线段AC、AB上移动,且在移动中保持AN =CM.(1)试判断△OMN的形状,并证明你的结论.(2)当M、N分别在线段AC、AB上移动时,四边形AMON的面积如何变化?2、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF为多少度.(三)构造等腰直角三角形(1)利用以上(一)和(二)都可以构造等腰直角三角形(略);(2)利用平移、对称和弦图也可以构造等腰直角三角形.(四)将等腰直角三角形补全为正方形,如下图:A、例题应用1、如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,P为三角形ABC内部一点,满足PB=PC,AP=AC,求证:∠BCP=15°.三、三垂直模型(弦图模型)A、例题已知:如图所示,在△ABC中,AB=AC,∠BAC=90°,D为AC 中点,AF⊥BD于点E,交BC于F,连接DF .求证:∠ADB=∠CDF .变式1、已知:如图所示,在△ABC中,AB=AC,AM=CN,AF⊥BM于E,交BC于F,连接NF .求证:(1)∠AMB=∠CNF;(2)BM=AF+FN .变式2、在变式1的基础上,其他条件不变,只是将BM和FN分别延长交于点P,求证:(1)PM=PN;(2)PB=PF+AF .四、手拉手模型1、△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC .(2)∠BOE=∠BAE=60°.(3)OA平分∠EOF .(四点共圆证)拓展:△ABC和△CDE均为等边三角形结论:(1)AD=BE;(2)∠ACB=∠AOB;(3)△PCQ为等边三角形;(4)PQ∥AE;(5)AP=BQ;(6)CO平分∠AOE;(四点共圆证)(7)OA=OB+OC;(8)OE=OC+OD .((7),(8)需构造等边三角形证明)例、如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA 的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC 的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M 即为△ABC的费尔马点.试说明这种作法的依据.2、△ABD 和△ACE 均为等腰直角三角形结论:(1)BE =CD ;(2)BE ⊥CD .3、四边形ABEF 和四边形ACHD 均为正方形结论:(1)BD =CF ;(2)BD ⊥CF .变式1、四边形ABEF 和四边形ACHD 均为正方形,AS ⊥BC 交FD 于T ,求证:(1)T 为FD 中点;(2)ABC ADF S S V V .变式2、四边形ABEF和四边形ACHD均为正方形,T为FD中点,TA交BC于S,求证:AS⊥BC .4、如图,以△ABC的边AB、AC为边构造正多边形时,总有:360 12180n∠=∠=?-五、半角模型条件:1,+=1802αββθβ=?且,两边相等 . 思路:1、旋转辅助线:①延长CD 到E ,使ED=BM ,连AE 或延长CB 到F ,使FB=DN ,连AF②将△ADN 绕点A 顺时针旋转90°得△ABF ,注意:旋转需证F 、B 、M 三点共线结论:(1)MN =BM +DN ;(2)=2CMN C AB V ;(3)AM 、AN 分别平分∠BMN 、∠MND .2、翻折(对称)辅助线:①作AP ⊥MN 交MN 于点P②将△ADN 、△ABM 分别沿AN 、AM 翻折,但一定要证明M 、P 、N 三点共线 .A 、例题例1、在正方形ABCD 中,若M 、N 分别在边BC 、CD 上移动,且满足MN =BM +DN ,求证:(1)∠MAN =45°;(2)=2CMN C AB V ;(3)AM 、AN 分别平分∠BMN 和∠DNM .变式:在正方形ABCD 中,已知∠MAN =45°,若M 、N 分别在边CB 、DC 的延长线上移动,AH ⊥MN ,垂足为H ,(1)试探究线段MN 、BM 、DN 之间的数量关系;(2)求证:AB =AH例2、在四边形ABCD中,∠B+∠D=180°,AB=AD,若E、F 分别为边BC、CD上的点,且满足EF=BE+DF,求证:12EAF BAD ∠=∠.变式:在四边形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分别为边BC、CD上的点,且12EAF BAD∠=∠,求证:EF=BE+DF .。

最新初二数学全等三角形经典模型及例题详解

辅助线模型考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。

判断三角形全等的公理有 SAS、ASA、AAS、SSS 和 HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。

一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。

典型例题人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,Δ A BC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC交AC 于点D,CE 垂直于 BD,交BD 的延长线于点E。

求证:BD=2CE。

思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用,可用加倍法,延长短边,又因为有 BD 平分2)解题思路:要求证 BD=2CE,可用加倍法,延长短边,又因为有∠ABC 的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:证明:延长BA,CE 交于点F,在ΔBEF 和ΔBEC 中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

初中数学经典几何模型02-倍长中线模型构造全等三角形(含答案)

初中数学经典几何模型专题02 倍长中线模型构造全等三角形【专题说明】倍长中线是指加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。

常用于构造全等三角形。

中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS ”证明)(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。

【知识总结】题干中出现三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC 中 AD 是BC 边中线延长AD 到E , 使DE =AD ,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD1、如图,已知在△ABC中,D为AC中点,连接BD.若AB=10cm,BC=6cm,求中线BD的取值范围。

(AB+AC)2、已知,如图△ABC中,AM是BC边上的中线,求证:AM<123、如图,在△AB C中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交EF于点G,若BG=CF,求证:AD为△ABC的角平分线.4、如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F,求证:BE+CF>EF.5、在Rt△ABC中,∠A=90°,点D为BC的中点,点E,F分别为AB,AC上的点,且ED⊥FD,以线段BE,EF,FC 为边能否构成一个三角形?若能,请判断三角形的形状?【基础训练】1、如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,延长BE交AC于F,AF=EF,求证:AC=BE.2、如图所示,已知△AB C中,AD平分∠BAC,E,F分别在BD,AD上,DE=CD,EF=AC.求证EF∥AB.3、已知△ABC中,AB=AC,CF是AB边上的中线,延长AB到D,使BD=AB,求证:CD=2CE.4、如图,在正方形ABCD 中,AD ∥BC ,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,且AG =1,BF =2.若GE ⊥EF ,则GF 的长为多少?5、如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,求证:AB =AC .G FEAD BC CDBA【巩固提升】1、如图,在△ABC中,AD为BC边上的中线.(1)按要求作图:延长AD到点E,使DE=AD;连接BE.(2)求证:△ACD≌△EBD.(3)求证:AB+AC >2AD.(4)若AB=5,AC=3,求AD的取值范围.AD2、如图,在△ABC 中,AD 平分∠BAC ,且BD =CD . 求证:AB =AC .DCBA3、如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC . 求证:①CE =2CD ;②CB 平分∠DCE .D CB A3、 如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F ,求证:∠AEF =∠EAF .F ED CBA4、 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CA 的延长线于点F ,交AB于点G ,BG =CF ,求证:AD 为△ABC 的角平分线.GFE DCBA5、 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长.FEDC BA6、如图,在正方形ABCD中,CD=BC,∠DC B=90°,点E在CB的延长线上,过点E作EF⊥BE,且EF=BE.连接BF,FD,取FD的中点G,连接EG,CG.求证:EG=CG且EG⊥CG.G FE D CB A初中数学经典几何模型专题02 倍长中线模型构造全等三角形 答案【专题说明】倍长中线是指加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学 三角形全等
常用几何模型及构造方法大全
掌握它轻松搞定 全等 题!
全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,
这次整理了常用的各大模型,一定要认真掌握~
全等变换类型:
(一) 平移全等:平行等线段(平行四边形)
(二)对称全等模型:角平分线或垂直或半角
1:角平分线模型;
2:对称半角模型;
(三)旋转全等模型:相邻等线段绕公共顶点旋转
1. 旋转半角模型
2. 自旋转模型
3. 共旋转模型
4. 中点旋转
一、平移 全等变换
如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE
分析:将△ACE平移使EC与BD重合。B\D,上方交点,左右两个三角形,两边和 大于 第三边!
二、对称全等模型
1:角平分线模型:
说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产
生联系。垂直也可以做为轴进行对称全等。
2:对称半角模型
说明:上图依次是45°、 30°、 45+ 22.5°、对称(翻折)
15°+30°直角三角形 对称(翻折) 30+60+90直角三角形对称(翻折)
翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
三、旋转全等模型
1. 半角:有一个角含1/2角及相邻线段
2. 自旋转:有一对相邻等线段,需要构造旋转全等
3. 共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)
4. 中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)
1、旋转半角模型
说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,
成对称全等。
2、自旋转模型
构造方法:
遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角
遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称
3、共旋转模型
说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。
(接上------共旋转模型 ) 模型变形
说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等
线段,分组组成三角形证全等。
4、中点旋转:
说明:
两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外
两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形
(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
附件:

相关文档
最新文档