直线的方程和两条直线的位置关系专题训练

合集下载

两直线的位置关系题目

两直线的位置关系题目

两直线的位置关系题目
1. 已知直线y = 2x + 1和直线y = -3x + 4,请问这两条直线是
否平行?
2. 给出两条直线的斜率和截距,判断它们的位置关系。

3. 已知两条直线的方程分别为2x - 3y = 6和4x + 5y = 10,请
问它们的位置关系是相交、平行还是重合?
4. 给出两条平行直线的方程,请求它们的间距。

5. 给出两条直线的斜率和截距,判断它们是否相交,并求出相交点的坐标。

6. 给出两条直线的斜率和截距,判断它们是否垂直。

7. 已知两直线的方程分别为y = 3x - 2和y = -1/3x + 4,请问它
们的位置关系是相交还是平行?
8. 给出两条直线的截距和过一个点的斜率,判断它们是否相交。

9. 给出两条直线的斜率和过两个不同点的截距,判断它们是否相交。

10. 给出两条直线的截距和斜率,判断它们是否平行或重合。

两直线的位置关系练习题

两直线的位置关系练习题

两直线的位置关系练习题两直线的位置关系练习题直线是几何学中最基本的概念之一,它是由无数个点连成的一条无限延伸的线段。

在几何学中,我们经常需要研究不同直线之间的位置关系,这不仅有助于我们理解几何学的基本原理,还能帮助我们解决实际问题。

下面,我们来练习一些关于两直线位置关系的题目。

1. 平行线与垂直线在平面几何中,平行线和垂直线是最常见的两种直线位置关系。

平行线是指在同一个平面内永远不会相交的两条直线,它们的斜率相等。

垂直线则是指两条直线在交点处互相垂直,它们的斜率互为相反数。

现在,我们来考虑以下问题:已知直线L1的斜率为m1,直线L2的斜率为m2,如何判断L1和L2的位置关系?首先,如果m1等于m2,那么L1和L2是平行线。

其次,如果m1乘以m2等于-1,那么L1和L2是垂直线。

这是因为两条直线的斜率乘积等于-1时,它们互为相反数,即互相垂直。

2. 相交线除了平行线和垂直线,两条直线还可以相交于一点。

在平面几何中,我们常常需要确定两条直线的交点坐标。

下面是一个练习题:已知直线L1过点A(x1,y1),直线L2过点B(x2,y2),如何求出L1和L2的交点坐标?首先,我们可以通过直线的斜率和截距来确定直线的方程。

设直线L1的方程为y = k1x + b1,直线L2的方程为y = k2x + b2。

然后,我们可以将L1和L2的方程联立,解出交点的坐标。

具体步骤如下:将L1和L2的方程联立,得到k1x + b1 = k2x + b2。

然后,将x的系数和常数项分别相等,得到k1 = k2,b1 = b2。

将k1代入其中一个方程,解出x的值。

再将x的值代入另一个方程,解出y的值。

这样,我们就求出了L1和L2的交点坐标。

3. 平行线之间的距离在几何学中,我们还经常需要计算两条平行线之间的距离。

下面是一个练习题:已知平行线L1和L2的方程分别为y = k1x + b1和y = k2x + b2,如何计算L1和L2之间的距离?首先,我们可以求出L1和L2的斜率之差的绝对值,即|k1 - k2|。

两条直线的位置关系(原卷版)

两条直线的位置关系(原卷版)

专题2.1 两条直线的位置关系1. 理解相交线的定义、对顶角的定义和性质、邻补角的定义,正确识别“三线八角”;2. 理解垂线的定义、点到直线的距离的定义,掌握垂线的性质;3. 熟练掌握利用垂线性质与角平分线综合运算;4.理解并掌握对顶角的概念及性质,会用对顶角的性质解决一些实际问题;5.理解并掌握补角和余角的概念及性质,会运用其解决一些实际问题。

知识点01. 对顶角的概念和性质1. 相交线的定义在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线,公共点称为两条直线的交点。

如图1所示,直线AB 与直线CD 相交于点O 。

图1 图2 图32. 对顶角定义:若一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角叫做对顶角。

如图2所示,∠1与∠3、∠2与∠4都是对顶角。

注意:两个角互为对顶角的特征是:(1)角的顶点公共;(2)角的两边互为反向延长线;(3)两条相交线形成2对对顶角。

性质:文字语言:对顶角相等。

符号语言:如图2,∵∠2和∠4是对顶角,∴∠2=∠4知识点02. 余角和补角的概念和性质1.余角定义:一般地,如果两个角的和等于90°,那么称这两个角互为余角,其中的一个角是另一个角的余角.性质:文字语言:同角(等角)的余角相等.OD C B A4321A B C D O 21CB A符号语言:∵∠1+∠2=90°,∴∠1与∠2互余∵∠1与∠2互余,∴∠1+∠2=90°.2.补角定义:一般地,如果两个角的和等于180°,那么称这两个角互为补角,其中一个角是另一个角的补角.性质:文字语言:同角(等角)的补角相等.符号语言:∵∠1+∠2=180°,∴∠1与∠2互补,∵∠1与∠2互补,∴∠1+∠2=180°.补充:①邻补角的定义如果把一个角的一边反向延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角。

高考数学 专题35 两条直线的位置关系热点题型和提分秘籍 理

高考数学 专题35 两条直线的位置关系热点题型和提分秘籍 理

专题35 两条直线的位置关系1.能根据直线的方程判断两条直线的位置关系。

2.能用解方程组的方法求两条相交直线的交点坐标。

3.掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离。

热点题型一 两条直线的平行与垂直例1、(1)若直线l 1:ax +2y -6=0与直线l 2:x +(a -1)y +a 2-1=0平行,则a =________。

(2)若直线l 3:(a +2)x +(2-a )y =1与直线l 4:(a -2)x +(3a -4)y =2互相垂直,则a 的值为________。

(2)当a =2时,l 3:x =14,l 4:y =1。

所以l 3⊥l 4。

当a =43时,l 3:y =-5x +32,l 4:x =-3。

所以l 3不垂直于l 4。

当a ≠2且a ≠43时,k 3=a +2a -2,k 4=2-a 3a -4。

由k 3k 4=-1可得a +2a -2·2-a3a -4=-1。

解得a =3。

综上可知:a =2或3。

【提分秘籍】由一般式确定两直线位置关系的方法【举一反三】已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8 解析:∵l 1∥l 2,∴k AB =4-mm +2=-2,解得m =-8,又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1,解得n =-2,∴m +n =-10。

答案:A热点题型二 直线的交点例2、经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________。

解析:方法一:先解方程组⎩⎪⎨⎪⎧3x +2y -1=05x +2y +1=0,得l 1、l 2的交点(-1,2),再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l :y -2=-53(x +1),即5x +3y -1=0。

直线的方程与两直线的位置关系

直线的方程与两直线的位置关系

直线的方程与两直线的位置关系一,选择题1,过两点A(4,y),B(2,-3)的直线的倾斜角是π43,则y=A,-1 B,-5 C,1 D,52,直线l:143=+yx 的倾斜角是A,arctan 34 B,arctan(-34) C,π+arctan(-34) D,π-arctan(-34)3,两直线l 1:A 1x+B 1y+C 1=0与l 2: A 2x+B 2y+C 2=0垂直的充要条件是A,A 1A 2+B 1B 2=0 B,A 1A 2-B 1B 2=0 C,2121B B A A =-1 D,2121B B AA =1 4,若AC<0,BC<0,则直线l:Ax+By+C=0不通过A,第一象限期 B,第二象限 C,第三象限 D,第四象限 5,直线l 1:3x+5y+m=0与l 2:6x+ny+4=0的平行条件是A,n=-10,m=-2 B,n=-10,m=2 C,n=10,m ≠-2 D,n=10,m ≠2 6,直线l 1:2x+y-10=0,l 2⊥l 1,且过点(-10,0),则l 1,l 2的交点坐标是 A,(2,6) B,(-2,6) C,(6,-2) D,(6,2) 7,点P(2,m)到直线l:5x-12y+6=0的距离为4,则m=A,1 B,-3 C,1或35 D,-3或3178,∆ABC 顶点A(2,8),B(-4,0),C(6,0),则∠A 的平分线所在直线方程是 A,x-2y+4=0 B,x-2y-4=0 C,2x+y+4=0 D,2x+y-4=0 9,点A(3,3),B(-1,5),直线l:y=kx+1与线段AB 有公共点,则k 的取值范围是A,(-∞,-21) (-21,+∞) B,[-4,-21) (-21,32]C,[-4,32] D,(-∞,-4] [32,+∞)10,点A(3,0),B(0,4),动点P(x,y)在线段AB 上运动,则(xy)m ax = A,3 B,3 C,43 D,49144二,填空题11, 过点(1,0),且与直线x-4y+5=0平行的直线方程是 . 12,已知直线l 1:3x+y=0,l 2:kx-y+1=0,若l 1与l 2的夹角为600,则k= . 13,已知点P(x,y)在直线x+y-4=0上,O 为坐标原点,则|PO|的最小值是 . 14,直线l 1:y=kx+2k+1与l 2:y=-x+4的交点在第四象限,则k 的取值范围是 . 15,直线(2+m)x+(1-2m)y+(4-3m)=0必经过的定点坐标为 .三,解答题16, 已知直线l 1:(a-2)x+3y+a=0,直线l 2:ax+(a-2)y-1=0. (1)当l 1∥l 2时,求a 的值及垂足的坐标; (2)当l 1⊥l 2时,求a 的值.17,已知直线l 1:2x-3y+1=0,求与l 1关于直线3x+2y-5=0对称l 2的直线的方程.18,已知直线l 经过点P(3,4),且点A(4,-2)与B(-2,2)到直线l 的距离相等,求直线l 的方程.19,已知△ABC 的顶点A,B 的坐标分别为(-1,5),(3,1),点C 在直线2x-y+1=0上,若△ABC 的面积为12,求点C 的坐标.。

人教版高数必修二第9讲:两条直线的位置关系(教师版)

人教版高数必修二第9讲:两条直线的位置关系(教师版)

两条直线的位置关系一、两直线平行、相交与重合的条件1.已知两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 2i +B 2i ≠0,i =1,2). (1)l 1与l 2相交的条件:A 1B 2-A 2B 1≠0或.(A 2B 2≠0)(2)l 1与l 2平行的条件:A 1B 2-A 2B 1=0而B 1C 2-B 2C 1≠0或A 2C 1-A 1C 2≠0; 或(A 2B 2C 2≠0(3)l 1与l 2重合的条件:A 1= A 2, B 1= B 2, C 1= C 2 ( ) 或.(A 2B 2C 2≠0)2.已知两直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2. (1)l 1∥l 2的条件:k 1=k 2且b 1≠b 2.(2)l 1与l 2重合的条件:k 1=k 2且b 1=b 2. (3)l 1与l 2相交的条件:k 1≠k . 二、两直线垂直的条件1.两直线垂直的条件 (1)l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 2i +B 2i ≠0), l 1⊥l 2⇔A 1A 2+B 1B 2=0.(2)l 1:y =k 1x +b 1,l 2:y =k 2x +b 2, l 1⊥l 2⇔k 1·k 2=-1. 类型一 两条直线平行例1:判断下列各组中两条直线的位置关系.(1)l 1:y =3x +4,l 2:2x -6y +1=0;(2)l 1:2x -6y +4=0,l 2:y =x 3+23;(3)l 1:(2-1)x +y =3,l 2:x +(2+1)y =2; (4)l 1:x =5,l 2:x =6.解析:有两条直线的位置关系判定公式判定直线的关系.答案:(1)A 1=3,B 1=-1,C 1=4;A 2=2,B 2=-6,C 2=1.∵A 1A 2≠B 1B 2,∴l 1与l 2相交.(2)A 1=2,B 1=-6,C 1=4;把l 2化为x -3y +2=0,∴A 2=1,B 2=-3,C 2=2. ∵A 1A 2=B 1B 2=C 1C 2,∴l 1与l 2重合. (3)A 1=2-1,B 1=1,C 1=-3;A 2=1,B 2=2+1,C 2=-2.∵A 1A 2=B 1B 2≠C 1C 2,∴l 1与l 2平行.(4)l 1与l 2平行.练习1:判定下列每组中所给两直线l 1与l 2的位置关系.(1)l 1:x +2y -3=0,l 2:2x +4y +1=0.(2)l 1:y =-3x +1,l 2:y =13x +2.(3)l 1:2x -3y +1=0,l 2:4x -6y +2=0. 答案:(1)平行 (2)相交 (3)重合 练习2:下列命题:①若直线1l 与2l 的斜率相等,则12//l l ;②若直线12//l l ,则两直线的斜率相等;③若直线12,l l 的斜率均不存在,则12//l l ;④若两直线的斜率不相等,则两直线不平行;⑤如果直线12//l l ,且1l 的斜率不存在,那么2l 的斜率也不存在.其中正确命题的序号为 ___ .答案:④⑤例2、已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当m 为何值时,直线l 1与l 2 (1)相交;(2)平行;(3)重合.解析:充分利用条件,但要考虑直线垂直于x 轴或平行于x 轴的情况. 答案: 当m =0时,则l 1:x +6=0,l 2:2x -3y =0,∴l 1与l 2相交;当m =2时,则l 1:x +2y +6=0,l 2:3y +4=0, ∴l 1与l 2相交;当m ≠0,m ≠2时,A 1A 2=1m -2,B 1B 2=m 3,C 1C 2=62m.当A 1A 2=B 1B 2时,1m -2=m3,解得m =-1,或m =3.当A 1A 2=C 1C 2时 ,1m -2=62m,解得m =3. 综上所述,(1)当m ≠-1,且m ≠3时,⎝ ⎛⎭⎪⎫A 1A 2≠B 1B 2方程组有惟一解,l 1与l 2相交; (2)当m =-1时,⎝ ⎛⎭⎪⎫A 1A 2=B 1B 1,A 1A 2≠C 1C 2方程组无解,l 1与l 2平行; (3)当m =3时,⎝ ⎛⎭⎪⎫A 1A 2=B 1B 2=C 1C 2方程组有无数组解,l 1与l 2重合. 练习1:(2014·辽宁大连市第三中学高一期末测试)已知直线l 1:ax +2y +6=0与l 2:x +(a -1)y +a 2-1=0平行,则实数a 的取值是( )A .-1或2B .0或1C .-1D .2答案:∵l 1∥l 2,∴a (a -1)-2=0, ∴a =-1或2.当a =2时,l 1与l 2重合,∴a =-1.练习2:已知两直线l 1:ax +3y -3=0,l 2:4x +(a +4)y +2=0,若l 1∥l 2,求a 的值. 答案:当a =-4时,l 1:4x -3y +3=0与l 2:4x +2=0不平行,∴a ≠-4.∵l 1∥l 2,∴-a 3=-4a +4,∴a 2+4a -12=0,∴a =2或a =-6.当a =-6时,l 1:-6x +3y -3=0,即2x -y +1=0,l 24x -2y +2=0,即2x -y +1=0, 此时l 1与l 2重合,∴a ≠-6.当a =2时,l 1:2x +3y -3=0,l 2:4x +6y +2=0,即2x +3y +1=0,∴l 1∥l 2. 综上可知,a =2.例3:试求三条直线ax +y +1=0,x +ay +1=0,x +y +a =0构成三角形的条件. 解析:三条直线构成三角形,则任两条直线都相交,且不能相交于一点. 答案:解法一:任两条直线都相交,则a 1≠1a ,a 1≠11,故a ≠±1. 且三条直线不共点,故⎩⎪⎨⎪⎧x +ay +1=0x +y +a =0的交点(-1-a,1)不在ax +y +1=0上,即a (-1-a )+1+1≠0,a 2+a -2≠0,(a +2)(a -1)≠0,∴a ≠-2且a ≠1,综合上述结果,此三条直线构成三角形的条件是a ≠±1,a ≠-2.解法二:∵三条直线能构成三角形,∴三条直线两两相交且不共点,即任意两条直线都不平行,且三线不共点,若l 1、l 2、l 3交于一点,则l 1:x +y +a =0与l 2:x +ay +1=0的交点P (-a -1,1)在l 3:ax +y +1=0上, ∴a ·(-a -1)+1+1=0,∴a =1或a =-2.若l 1∥l 2,则有1a =1,a =1.若l 1∥l 3,则有1a =1,a =1. 若l 2∥l 3,则有1a=a ,a =±1.∴l 1、l 2、l 3构成三角形时,a ≠±1,a ≠-2.练习1:三条直线l 1:x +y =2,l 2:x -y =0,l 3:x +ay -3=0能构成三角形,求实数a 的取值范围.答案:∵kl 1=-1,kl 2=1,∴当a =±1时,l 3与l 1、l 2中一条平行,此时三条直线不能构成三角形.又l 1与l 2交点为(1,1),若点(1,1)在l 3上,则a =2,综上可知:a ≠2,且a ≠±1时,三条线可构成三角形.练习2:直线l 经过2320x y -+=和3420x y --=的交点,且与两坐标轴围成等腰直角三角形,求直线l 的方程.答案:由23203420x y x y -+=⎧⎨--=⎩ 得410x y =⎧⎨=⎩∴交点坐标是()14,10∵直线l 与两坐标轴围成等腰直角三角形 ∴其斜率为1± ∴所求直线的方程为:()1014y x -=±- 即40x y --=或240x y +-=类型二 两条直线垂直例4:当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?解析:在利用k 1·k 2=-1判定垂直关系时,一定要注意直线的斜率是否有可能不存在这一情况.答案:解法一:①当1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直;②当2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直;③若1-a ≠0且2a +3≠0,则直线l 1、l 2的斜率k 1、k 2存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-a +21-a ·⎝ ⎛⎭⎪⎫-a -12a +3=-1,∴a =-1. 综上可知,当a =1或a =-1时,直线l 1⊥l 2.解法二:∵直线l 1⊥l 2,∴(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1. 故当a =1或a =-1时,直线l 1⊥l 2.练习1:判断下列各组中两条直线l 1与l 2是否垂直. (1)l 1:2x -y =0,l 2:x -2y =0;(2)l 1:2x -4y -7=0,l 2:2x +y -5=0; (3)l 1:2x -7=0,l 2:6y -5=0. 答案:(1)不垂直.∵k 1=2,k 2=12,∴k 1k 2=1,故l 1与l 2不垂直. (2)垂直.k 1=12,k 2=-2,∴k 1k 2=-1,故l 1⊥l 2.(3)l 1:x =72,l 2:y =56,故l 1⊥l 2.练习2:如图,直线l 1的倾斜角α1=30°,直线l 1⊥l 2,则l 2的斜率为( )A .-33B.33C .- 3D. 3 答案:C例5:若直线(a +2)x +(1-a )y =a 2(a >0)与直线(a -1)x +(2a +3)y +2=0互相垂直,则a 等于( )A .1B .-1C .±1D .2解析:由题意得,(a +2)(a -1)+(1-a )(2a +3)=0,即a 2=1, 又∵a >0,∴a =1. 答案:A练习1:若直线l 1:(2a +5)x +(a -2)y +4=0与直线l 2:(2-a )x +(a +3)y -1=0互相垂直,则( )A .a =2B .a =-2C .a =2或a =-2D .a =2,0,-2 答案:C练习2:已知直线2ax +y -1=0与直线(a -1)x +ay +1=0垂直,则实数a 的值等于( )A.12B.32C .0或12D .0或32答案:C1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0 答案:A 2.经过两条直线2x +y -4=0和x -y +1=0的交点,且与直线2x +3y -1=0平行的直线方程是( )A .2x +3y -7=0B .3x -2y +1=0C .2x +3y -8=0D .2x -3y +2=0 答案:C3.直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,则m 的值为( )A .2B .-3C .2或-3D .-2或-3 答案:C4.直线x +y =0和直线x -ay =0垂直,则a 的值为( )A .0B .1C .-1D .2 答案:B5.过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为( )A .2x +y -5=0B .2x +y -1=0C .x +2y -5=0D .x -2y +7=0 答案:B6. 以A (-2,1)、B (4,3)为端点的线段的垂直平分线的方程是( )A .3x -y +5=0B .3x -y -5=0C .3x +y -5=0D .3x +y +5=0 答案:C7. l 1过点A (m,1)、B (-3,4),l 2过点C (0,2)、D (1,1),且l 1∥l 2,则m =________. 答案:08.求过直线x -y -2=0和4x -2y -5=0的交点且与直线2x +3y +5=0垂直的直线方程.答案:由⎩⎪⎨⎪⎧x -y -2=04x -2y -5=0,得⎩⎪⎨⎪⎧x =12y =-32.∴过点(12,-32)且与直线2x +3y +5=0垂直的直线方程为y +32=32(x -12),即6x -4y -9=0._________________________________________________________________________________ _________________________________________________________________________________基础巩固1.若直线y =kx +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围为( )A.⎝⎛⎭⎫-16,12B.⎝⎛⎭⎫-12,12C.⎝⎛⎭⎫0,12D.⎝⎛⎭⎫-∞,-16∪⎝⎛⎭⎫12,+∞ 答案:A2.对于直线ax +y -a =0(a ≠0),以下说法正确的是( )A .恒过定点,且斜率与纵截距相等B .恒过定点,且横截距恒为定值C .恒过定点,且与x 轴平行D .恒过定点,且与x 轴垂直 答案:B3.和直线3x +4y -7=0垂直,并且在x 轴上的截距是-2的直线方程是________________. 答案:4x -3y +8=0 4.下列命题:①若两条直线平行,则其斜率必相等;②若两条直线垂直,则其斜率的乘积必是1-;③过点()1,1-且斜率为2的直线方程是121y x -=+;④同垂直于x 轴的两条直线都和y 轴平行或重合.其中真命题的由 .答案:④5.已知三角形三顶点A (4,0)、B (8,10)、C (0,6),求:(1)AC 边上的高所在的直线方程; (2)过A 点且平行于BC 的直线方程.答案:(1)k AC =6-00-4=-32,∴AC 边上的高所在的直线的斜率k =23,其方程为y -10=23(x -8),即2x -3y +14=0.(2)k BC =6-100-8=12,∴过A 点且平行于BC 的直线方程为y =12(x -4),即x -2y -4=0.能力提升6.设P 1(x 1,y 1)是直线l :f (x ,y )=0上一点,P 2(x 2,y 2)是不在直线l 上的点,则方程f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0所表示的直线与l 的关系是( )A .平行B .重合C .相交D .位置关系不确定 答案:A7. 设集合A =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -1=2,x 、y ∈R ,B ={(x ,y )|4x +ay -16=0,x ,y ∈R },若A ∩B =∅,则a 的值为( )A .4B .-2C .4或-2D .-4或2答案:C8. 已知直线3ax -y =1与直线⎝⎛⎭⎫a -23x +y +1=0互相垂直,则a 的值是( ) A .-1或13B .1或13C .-13或-1D .-13或1答案:D 由(2m +1)x -(m -2)y +5(m +2)=0,得m (2x -y +5)+(x +2y +10)=0,由⎩⎪⎨⎪⎧2x -y +5=0x +2y +10=0,解得⎩⎪⎨⎪⎧x =-4y =-3.故无论m 取何值,直线(2m +1)x -(m -2)y +5(m +2)=0都过定点(-4,-3).9. 无论m 取何值,直线(2m +1)x -(m -2)y +5(m +2)=0都过定点________.答案:(-4,-3)10. 已知直线ax +2y -1=0与直线2x -5y +C =0垂直相交于点(1,m ),则a =________,C =________,m =________.答案:∵直线ax +2y -1=0与直线2x -5y +C =0垂直,∴-a 2·25=-1,∴a =5.又∵点(1,m )在直线5x +2y -1=0上,∴m =-2.又∵点(1,-2)在直线2x -5y +C =0上, ∴C =-12.11. 平行四边形的两邻边的方程是x +y +1=0和3x -y +4=0,对角线的交点是O ′(3,3),求另外两边的方程.答案:建立如图所示的直角坐标系,根据⎩⎪⎨⎪⎧x +y +1=03x -y +4=0,得顶点A ⎝ ⎛⎭⎪⎫-54,14.因为O ′是对角线AC 的中点,且O ′为(3,3),所以顶点C 的坐标为⎝⎛⎭⎪⎫294,234.由x +y +1=0知,k AB =-1,所以k CD =-1,由点斜式得y -234=-⎝⎛⎭⎪⎫x -294,即x +y -13=0.因为k AD =3,所以k BC =3,由点斜式得y -234=3⎝⎛⎭⎪⎫x -294,即3x -y -16=0,∴另外两边的方程分别为x +y -13=0,3x -y -16=0.12.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0.求:(1)顶点C 的坐标; (2)直线BC 的方程.答案:(1)设点C 的坐标为(m ,n ),∵k BH =12,∴k AC =-2,∴n -1m -5=-2. 又点C (m ,n )在直线2x -y -5=0上, ∴2m -n -5=0.由⎩⎪⎨⎪⎧2m -n -5=0n -1m -5=-2,得⎩⎪⎨⎪⎧m =4n =3.∴点C 的坐标为(4,3).(2)设点B 的坐标为(a ,b ),则a -2b -5=0,AB 的中点M 的坐标为(a +52,1+b2),∴2×a +52-1+b2-5=0,即2a -b -1=0.由⎩⎪⎨⎪⎧a -2b -5=02a -b -1=0,得⎩⎪⎨⎪⎧a =-1b =-3.∴点B 的坐标为(-1,-3), ∴直线BC 的方程为y -3-3-3=x -4-1-4,即6x -5y -9=0.。

第60练 两直线的位置关系 Word版含答案

1.直线ax +2y -1=0与x +(a -1)y +2=0平行,则a 等于( )A.32B .2C .-1D .2或-12.已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .83.设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0互相垂直,则ab 的最小值为( )A .1B .2C .2 2D .2 35.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710B.175 C .8 D .26.三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠17.已知点A (1,-2),B (m,2),且线段AB 垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .18.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .x +y -7=0 二、填空题9.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,则当l 1,l 2间的距离最大时,直线l 1的方程是______________.10.定义点P (x 0,y 0)到直线l :Ax +By +C =0(A 2+B 2≠0)的有向距离为d =Ax 0+By 0+C A 2+B 2.已知点P 1,P 2到直线l 的有向距离分别是d 1,d 2,给出以下命题:①若d 1-d 2=0,则直线P 1P 2与直线l 平行;②若d 1+d 2=0,则直线P 1P 2与直线l 平行;③若d 1+d 2=0,则直线P 1P 2与直线l 垂直;④若d 1·d 2<0,则直线P 1P 2与直线l 相交.其中正确命题的序号是________.11.已知等差数列{a n }的首项a 1=1,公差d =-12,若直线x +y -3a n =0和直线2x -y +2a n -1=0的交点M 在第四象限,则满足条件的a n 的值为________.12.已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,则2a +3b 的最小值为________.答案精析1.D [由题意得a (a -1)-2×1=0(a ≠1),即a 2-a -2=0,所以a =2或-1.故选D.]2.A [∵l 1∥l 2,∴k AB =4-m m +2=-2,解得m =-8. 又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1,解得n =-2,∴m +n =-10.] 3.C [当m =2时,代入两直线方程中,易知两直线平行,即充分性成立.当l 1∥l 2时,显然m ≠0,从而有2m=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立,故选C.]4.B [由已知两直线垂直得(b 2+1)-ab 2=0,即ab 2=b 2+1.两边同除以b ,得ab =b 2+1b =b +1b .由基本不等式,得b +1b ≥2 b ·1b =2,当且仅当b =1时等号成立.故选B.] 5.D [∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.故选D.] 6.C [由l 1∥l 3,得k =5;由l 2∥l 3,得k =-5;由x -y =0与x +y -2=0,得x =1,y =1,若(1,1)在l 3上,则k =-10.若l 1,l 2,l 3能构成一个三角形,则k ≠±5且k ≠-10,故选C.]7.C [由已知k AB =2,即4m -1=2,解得m =3.] 8.D [由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0.]9.x +2y -3=0解析 当两条平行直线与A ,B 两点连线垂直时,两条平行直线的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两条平行直线的斜率k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.10.④解析 当d 1=d 2=0时,命题①②③均不正确;当d 1·d 2<0时,P 1,P 2在直线的异侧,故命题④正确.11.0或-12解析 联立方程⎩⎪⎨⎪⎧ x +y -3a n =0,2x -y +2a n -1=0,解得⎩⎪⎨⎪⎧ x =a n +13,y =8a n -13,即两直线交点为M (a n +13,8a n -13),由于交点在第四象限,故⎩⎪⎨⎪⎧ a n +13>0,8a n -13<0,解得-1<a n <18, 由于a n =a 1+(n -1)d =-n 2+32, 所以-1<-n 2+32<18, 即114<n <5, 所以n =3,4,则a 3=0,a 4=-12. 12.25解析 由两直线互相平行可得a (b -3)=2b ,即2b +3a =ab ,2a +3b=1, 又a ,b 为正数,所以2a +3b =(2a +3b )·(2a +3b) =13+6a b +6b a ≥13+2 6a b ·6b a=25, 当且仅当a =b =5时等号成立,故2a +3b 的最小值为25.。

高考数学一轮复习专题训练—两直线的位置关系

两直线的位置关系考纲要求1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x2+b ,可求出x ′,y ′.1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在.2.两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( ) A.235 B .2310C .7D .72答案 D解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72. 3.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.4.(2021·银川联考)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( ) A .-2 B .-4 C .-6 D .-8答案 B解析 ∵直线ax +4y -2=0与直线2x -5y +b =0垂直,∴-a 4×25=-1,∴a =10,∴直线ax +4y -2=0的方程即为5x +2y -1=0. 将点(1,c )的坐标代入上式可得5+2c -1=0, 解得c =-2.将点(1,-2)的坐标代入方程2x -5y +b =0得2-5×(-2)+b =0,解得b =-12. ∴a +b +c =10-12-2=-4.故选B.5.(2020·淮南二模)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 当λ=-3时,两条直线的方程分别为6x +4y +1=0,3x +2y -2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件,故选A.6.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P到直线x +y =0的距离的最小值是________. 答案 4解析 法一 由题意可设P ⎝⎛⎭⎫x 0,x 0+4x 0(x 0>0), 则点P 到直线x +y =0的距离d =⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号. 故所求最小值是4.法二 设P ⎝⎛⎭⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.考点一 两直线的平行与垂直【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-a +1,解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧aa -1-1×2=0,a a 2-1-1×6≠0⇔⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-1≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23.法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2020·宁波期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A .6x -4y -3=0 B .3x -2y -3=0 C .2x +3y -2=0D .2x +3y -1=0(2)已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________. 答案 (1)A (2)1解析 (1)因为抛物线y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝⎛⎭⎫x -12,化为一般式,得6x -4y -3=0. (2)由题意知 m -4-2-m=1,所以m -4=-2-m ,所以m =1.考点二 两直线的交点与距离问题【例2】 (1)(2020·淮南模拟)已知直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限,则实数k 的取值范围为( ) A.⎝⎛⎭⎫-32,-1 B.⎝⎛⎭⎫-∞,-32∪(-1,+∞) C.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-13,12(2)(2021·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.答案 (1)D (2)[0,10]解析 (1)联立⎩⎪⎨⎪⎧kx -y +2k +1=0,2x +y -2=0,解得x =1-2k 2+k ,y =2+6k2+k(k ≠-2).∵直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限, ∴1-2k 2+k >0,且2+6k2+k >0. 解得-13<k <12.故选D.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10,所以a 的取值范围是[0,10].感悟升华 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)(2021·贵阳诊断)与直线2x +y -1=0的距离等于55的直线方程为( ) A .2x +y =0 B .2x +y -2=0C .2x +y =0或2x +y -2=0D .2x +y =0或2x +y +2=0(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________. 答案 (1)C (2)5x +3y -1=0解析 (1)设与直线2x +y -1=0的距离等于55的直线方程为2x +y +m =0(m ≠-1), ∴|-1-m |22+12=55,解得m =0或m =-2. ∴与直线2x +y -1=0的距离等于55的直线方程为2x +y =0或2x +y -2=0. (2)先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.考点三 对称问题角度1 点关于点对称【例3】 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.感悟升华 1.点关于点的对称:点P (x ,y )关于M (a ,b )对称的点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.角度2 点关于线对称【例4】 一束光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),则入射光线所在直线的方程为________. 答案 5x -4y +2=0解析 设点Q (1,1)关于直线l 的对称点为Q ′(x ′,y ′),由已知得⎩⎪⎨⎪⎧y ′-1x ′-1=1,x ′+12+y ′+12+1=0,解得⎩⎪⎨⎪⎧x ′=-2,y ′=-2, 即Q ′(-2,-2),由光学知识可知,点Q ′在入射光线所在的直线上,又k PQ ′=3--22--2=54, ∴入射光线所在直线的方程为y -3=54(x -2),即5x -4y +2=0.感悟升华 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ).(2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). (3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). 角度3 线关于线对称【例5】 (1)(2021·成都诊断)与直线3x -4y +5=0关于x 轴对称的直线的方程是( ) A .3x -4y +5=0 B .3x -4y -5=0 C .3x +4y -5=0D .3x +4y +5=0(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________.答案 (1)D (2)x -2y +3=0解析 (1)设所求直线上点的坐标(x ,y ),则关于x 轴的对称点(x ,-y )在已知的直线3x -4y +5=0上,所以所求对称直线方程为3x +4y +5=0,故选D. (2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.感悟升华 求直线l 1关于直线l 对称的直线l 2有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 对称的直线l ′的方程. 解 (1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,即A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧ a =613,b =3013,即M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.活用直线系方程具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用.一、相交直线系方程【例1】 已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0. 法二 设所求直线l 的方程为4x +3y +c =0,由法一可知P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0.二、平行直线系方程【例2】 已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为x -3y +c =0(c ≠6),令y =0,得x =-c ;令x =0,得y =c 3,依照题意有12×|-c |×⎪⎪⎪⎪c 3=8,c =±4 3.所以l 1的方程是x -3y ±43=0. 【例3】 已知直线方程3x -4y +7=0,求与之平行且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a =4, b =-3.故l 的方程为x 4-y 3=1,即3x -4y -12=0. 法二 根据平行直线系方程可设直线l 为3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c 4=1,知c =-12.故直线l 的方程为3x -4y -12=0. 三、垂直直线系方程【例4】 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +c =0,又直线过点A (2,1),所以有2-2×1+c =0,解得c =0,即所求直线方程为x -2y =0.思维升华 直线系方程的常见类型1.过定点P (x 0,y 0)的直线系方程是y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0);2.平行于已知直线Ax +By +C =0的直线系方程是Ax +By +λ=0(λ是参数且λ≠C );3.垂直于已知直线Ax +By +C =0的直线系方程是Bx -Ay +λ=0(λ是参数);4.过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ,但不包括l 2).A 级 基础巩固一、选择题1.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A. 2B .2- 2 C.2-1D .2+1答案 C解析 由题意得|a -2+3|1+1=1. 解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.2.(2021·郑州调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3 答案 C解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.3.已知直线l 过点(0,7),且与直线y =-4x +2平行,则直线l 的方程为( )A .y =-4x -7B .y =4x -7C .y =4x +7D .y =-4x +7 答案 D解析 过点(0,7)且与直线y =-4x +2平行的直线方程为y -7=-4x ,即直线l 的方程为y =-4x +7,故选D.4.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0垂直,则ab 的最小值为() A .1 B .2 C .2 2 D .2 3 答案 B解析 由已知两直线垂直可得(b 2+1)-ab 2=0,即ab 2=b 2+1,又b >0,所以ab =b +1b .由基本不等式得b +1b ≥2b ·1b =2,当且仅当b =1时等号成立,所以(ab )min =2.故选B.5.坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是( )A.⎝⎛⎭⎫-45,85 B .⎝⎛⎭⎫-45,-85C.⎝⎛⎭⎫45,-85 D .⎝⎛⎭⎫45,85答案 A解析 设对称点的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧ x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎨⎧ x 0=-45,y 0=85,即所求点的坐标是⎝⎛⎭⎫-45,85.6.(2020·上海浦东新区期末)直线x -2y +2=0关于直线x =1对称的直线方程是( )A .x +2y -4=0B .2x +y -1=0C .2x +y -3=0D .2x +y -4=0答案 A解析 设P (x ,y )为所求直线上的点,该点关于直线x =1的对称点为(2-x ,y ),且该对称点在直线x -2y +2=0上,代入可得x +2y -4=0.故选A.7.(2021·豫西五校联考)过点P (1,2)作直线l ,若点A (2,3),B (4,-5)到它的距离相等,则直线l 的方程为( )A .4x +y -6=0或x =1B .3x +2y -7=0C .4x +y -6=0或3x +2y -7=0D .3x +2y -7=0或x =1答案 C解析 若A ,B 位于直线l 的同侧,则直线l ∥AB .k AB =3+52-4=-4,∴直线l 的方程为y -2=-4(x -1),即4x +y -6=0;若A ,B 位于直线l 的两侧,则直线l 必经过线段AB 的中点(3,-1),∴k l =2--11-3=-32, ∴直线l 的方程为y -2=-32(x -1),即3x +2y -7=0. 综上,直线l 的方程为4x +y -6=0或3x +2y -7=0,故选C.8.(2020·宝鸡模拟)光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6 B .a =-3,b =16 C .a =3,b =-16D .a =-13,b =-6 答案 D解析 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称,所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y =-3x +b 上, 所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0,所以a =-13. 二、填空题 9.(2021·南昌联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.答案 x +2y -3=0解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0. 10.直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________.答案 x -2y +11=0解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0.11.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为________.答案 2910解析 因为36=48≠-125,所以两直线平行, 将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. 12.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 答案 25解析 因为k AB =5-11-4=-43,k DC =2--2-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形.又k AD ·k AB =-1,即AD ⊥AB ,故四边形ABCD 为矩形.故S 四边形ABCD =|AB |·|AD |=1-42+5-12×0-42+-2-12=25.B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( )A .y =3x +5B .y =2x +3C .y =2x +5D .y =-x 2+52 答案 C解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A ″(-1,3),由角平分线的性质可知,点A ′,A ″均在直线BC 上,所以直线BC 的方程为y =2x +5.故选C.14.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3B .10C .14D .215 答案 B解析 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x +2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.故选B.15.已知直线l 经过直线2x +y -5=0与x -2y =0的交点,若点A (5,0)到直线l 的距离为3,则l 的方程为________.答案 x =2或4x -3y -5=0解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x -2=0, 此时A 到直线l 的距离为3,符合题意;当斜率存在时,设其为k ,则所求直线方程为y -1=k (x -2),即kx -y +(1-2k )=0. 由点到线的距离公式得d =|5k +1-2k |k 2+1=3,解得k =43,故所求直线方程为4x -3y -5=0. 综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|2+λ2+1-2λ2=3,解得λ=2或λ=12. 所以l 的方程为x =2或4x -3y -5=0.16.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 2解析 因为点P 是曲线y =x 2-ln x 上任意一点,所以当点P 处的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小.因为直线y =x -2的斜率等于1,函数y =x 2-ln x 的导数y ′=2x -1x (x >0),令y ′=1,可得x =1或x =-12(舍去),所以在曲线y =x 2-ln x 上与直线y =x -2平行的切线经过的切点坐标为(1,1),所以点P 到直线y =x -2的最小距离为 2.。

两直线的位置关系及有关公式的应用练习题及答案

两直线的位置关系及有关公式的应用练习一、以下命题中的真命题是( )A .平行直线的倾斜角相等B .平行直线的斜率相等C .相互垂直的两直线的倾斜角互补D .相互垂直的两直线的斜率互为相反二、两直线032=-+k y x 和012=+-ky x 的交点在y 轴上,那么k 的值是( )A .24-B .6C .6±D .不同于A 、B 、C 的截3、假设直线1l 到直线2l 的角为1θ,2l 到1l 的角为2θ,那么)22cos(21θθ+的值为( ) A .1- B .1 C .0 D .不能确信4、点),(y x P 在直线04=-+y x 上,O 是原点,那么|OP|的最小值是( )A .10B .22C .6D .2五、过两直线013=-+y x 与072=-+y x 的交点,而且与第一条直线垂直的直线方程是( )A .073=+-y xB .0133=+-y xC .072=+-y xD .053=--y x六、若是直线022=++y ax 与直线023=--y x 平行,那么系数a 为( )A .23-B .6-C .3-D .32 7、已知直线1l 和2l 的夹角的平分线为x y =,若是1l 的方程为)0(0>=++ab c by ax ,那么2l 的方程是( )A .0=++c ay bxB .0=+-c by axC .0=-+c ay bxD .0=+-c ay bx八、菱形ABCD 的相对极点)3,2(),2,1(---C A ,那么对角线BD 所在的直线方程为( )A .043=++y xB .043=-+y xC .013=+-y xD .013=--y x九、已知直线1l :221+=x y ,直线2l 过点)1,2(-P ,且1l 到2l 的角为 45, 则2l 的方程为( )A .1-=x yB .3531+=x y C .73+-=x y D .73+=x y10、设直线1l :022=--y x 与2l 关于直线042=--y x 对称,那么直线2l 的方程( )A .022211=++y xB .022211=-+y xC .0115=-+y xD .02210=-+y x1一、已知点)1,1(P 和直线l :02043=--y x ,那么过P 与直线l 平行的直线方程是 ,过点P 与l 垂直的直线方程是1二、直线1l :022=+-y bx 和直线2l :062=++c y x 相交于点),1(m ,且1l 到2l 的角为43π,那么________________,_______,===m c b 13、直线1=y 与直线33+=x y 的夹角为14、、直线x y 2=关于x 轴对称的直线方程为1五、求垂直于直线0743=--y x ,且与两坐标轴组成周长为10的三角形的直线方程1六、一条光线从点)4,6(P 射出,与x 轴相交于点)0,2(Q ,通过x 轴反射,求入射光线和反射光线所在的直线的方程17、求直线1l :012=++y x 关于点)0,1(对称的直线2l 的方程1八、求通过点)2,1(A 且到原点的距离等于1的直线方程两直线的位置关系及有关公式的应用练习答案一、A 二、C 3、C 4、B 五、B 六、B 7、A 八、A 九、D 10、B1一、0143=+-y x ,0734=-+y x 1二、1,23,11- 13、3π 14、x y 2-= 1五、解:由所求直线能与坐标轴围成三角形,那么所求直线在座标轴上的截距不为0,故可设该直线在x 轴、y 轴上的截距别离为b a ,,又垂直于直线0743=--y x ,且与两坐标轴组成周长为10的三角形,故有⎪⎩⎪⎨⎧=+++=10||||3422b a b a a b解得:=a 25±,=b 310±,因此所求直线方程为0103y 4x =-+或0103y 4x =++ 1六、解:光线从点)4,6(P 射出,与x 轴相交于点)0,2(Q ,说明入射光线通过点)4,6(P ,)0,2(Q ,因此反射光线所在直线方程为02=--y x ,因此该直线与x 轴的夹角为 45,因此反射光线所在直线的倾斜角为135,且通过点)0,2(Q ,因此反射光线所在直线的方程为02=-+y x17、解:设直线2l 上任意一点),(y x P ,那么),(y x P 关于点)0,1(的对称点为),2(y x P --',又P '在1l 上,且有01)()2(2=+-+-y x ,即052=-+y x 为2l 的方程1八、解:(1)当过点)2,1(A 的直线与x 轴垂直时,那么点)2,1(A 到原点的距离为1,因此1=x 为所求直线方程(2)当过点)2,1(A 且与x 轴不垂直时,可设所求直线方程为)1(2-=-x k y 即:02=+--k y kx原点到此直线的距离为1,∴有11|2|2=++-k k ,解得43=k 故所求的直线方程为)1(432-=-x y ,即0543=+-y x 综合(1)和(2)得所求直线方程为1=x 或0543=+-y x说明:解该类型题必需考虑直线的斜率是不是存在。

两条直线的位置关系综合练习题及答案

两条直线的位置关系综合练习题及答案(一)知识梳理:1、两直线的位置关系(1)平行的判断:①当l i」2有斜截式(或点斜式)方程h : y = :y = k?x • b2,则1l//* 二 _k i =k2,b i =6丄②当h, l2有一般式方程:l1: A1x B1y G = 0,12: A2x B2y C2= 0,则h // 丨2 = _ AB2「民 3 = 0,C1B2「C2B^- 0 .(2)垂直的判断:①当丨1,丨2有斜截式(或点斜式)方程丨 1 : y二«x • 4,丨 2 : y二k?x • b2,贝V h _ 丨2 = — 11: y = k1x d,丨2: y = k2x b2_•②当丨1,丨2有一般式方程:丨1 : Ax B』C = 0,丨 2 : A?x B?y C2 = 0 ,则h _ 丨2二_ AA B1B2=0丄2、两条直线的交点:右丨 1 : A1X ' B1 y ' C1 —0, 1 2 : A2X ' B2 y ' C2 —0l A,x B1y C^ 0 sr则11,12的交点为方程2 1的解.Ax B?y C2 =03、点到直线的距离:(1)点到直线的距离公式:点P(x°,y°)到直线Ax + By+C=0的距离为^l Ax^By^C J _.JA2十B2(2)两平行直线间的距离求法:一|c2-C」两平行直线:11: Ax By C^0,12: Ax By C^0,则距离d = d 2.VA2+ B2(二)例题讲解:考点1 :直线的平行与垂直关系例1、(1)已知直线丨的方程为3x 4y -1^0,求与丨平行且过点-1,3的直线方程;(2)已知直线h :2x-3y • 10 =0,丨 2 :3x • 4y-2 =0,求过直线11和丨2的交点,且与直线l3:3x-2y ' 4 = 0 垂直的直线I方程•易错笔记:解:(1 )设与直线I平行的直线h的方程为3x・4y・C=0,则点-1,3在直线3x 4y ^0上,将点-1,3代入直线3x 4y C =0的方程即可得:3 -1 4 3^0,C - -9,所求直线方程为:3x 4y -9 =0.(2)设与直线|3:3x -2y 4=0垂直的直线I方程为:2x 3y ^0,方程2x-3y 10-0的解为:x=—2 彳,3x +4y-2 =0 “2.直线h:2x-3y 10=0」2:3x 4y-2=0 的交点是-2,2 ,.直线I 过直线h :2x-3y 10 =0,l2 :3x 4y-2 =0的交点-2,2,2 -23 2 C =0,C - -2,直线I 方程为:2x 3y-2=0.考点2:直线的交点问题例2、已知直线方程为2 • m x • 1 - 2m y • 4 - 3m = 0,(1)求证:无论m取何值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这定点平分,求这条直线方程解:(1)设直线方程为2A B 二-4 2 m x 亠〔1 -2m y 4 -3m = 0过定点A, B ,A= -1A -2B =3 8 = -2-直线方程为2 m x ^2m y • 4 - 3m = 0过定点-1, -2 .⑵由题意知,直线I在x轴上的截距a = 0,在y轴上的截距b = 0,■设直线I的方程为:- —=1,-直线1在x轴上的交点坐标为M a,0,直线I在y轴上的交点坐标为a bN 0,b,直线I夹在两坐标轴间的线段被点-1, -2平分, •点-1, -2是线段MN的中点,口「120 b22直线I的方程为:易错笔记:——=1,即2x y 4=0. -2 -4(三) 练习巩固:、选择题1、直线3x y ^0和直线6x 2y ^0的位置关系是;直线3x ,4y -3 =0与直线6x 8y 1^0的距离等于直线 3x ,4y -3 =0与直线3x 4y 0之间的距A .重合B.平行C2、点21到直线3x -4y • 2 =0的距离是A. 4B. 554.相交但不垂直± D 2525 4 3、如果直线x - 2ay =0与直线(3a -1)x - ay -1 =0平行,则a 等于 .0或丄61解:1 人—a ;-2a 3a -1 = 0①,且 2a 1i • a 0 ②,由①得:a =0或 a,由②得:a = 0 , a = 0.6A. 0C. 0 或 1 D4、若三条直线2x 3y • 8 = 0, x 「y 「1 = 0和x ky =0相交于一点,则k 二A. -2解:;方程2x 3y ^0的解为:_y _1 =0x =—1y 一2■直线 2x • 3y • 8 = 0,x - y -1 = 0 的交点是 -1, -2 ,三条直线 2x 3y 8=0,x -y 「1=0 和 x ky = 0 相交于一点 -1,-2 , •直线 x k^ 0过点 -1,-2 , ■ -1k -2 =0,,故选 B.5、已知点M 4,2与M 2,4关于直线I 对称,则直线I 的方程为A. x y 6=0 B . x y_6=0 C . x y=0 D . X-y=06、已知直线3x 4y -3 =0与直线6x my 1^=0平行,贝U 它们间的距离是A17 厂17 厂cA.B.C . 810 5解::直线3x • 4y -3 =0与直线6x my 1^0平行,3m-4 6=0二 2,二 m =8,二直线 6x + my+14=0 的方程为 6x +8y + 14 = 0 ,即 3x+4y+74 14 -i —3 m = 0直线3x Vy-3=0与直线3x 4y ^0之间的距离C 2 _C 1 7一 一3 =2. A 2 B 2. 32 ' 4210、设直线 h :3x+4y —2=0,l 2 :2x+y+2=0,l 3:3x —4y+2=0,则直线 l 1 与 l 2的交点到 l 3 的距离为―125解:;方程3x '4y-2=0的解为:(2x + y+2 = 0x = _2 y =2直线2x 3y •8=0,x -y-1=0的交点是 -2,2,•点-2,2至煩线I 3的距离为:x |Ay +By 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国名校高考数学复习优质专题、学案汇编(附详解)
直线的方程和两条直线的位置关系
【巩固练习】

1.(2015春 宜春校级期中)若<α<π,则直线+=1必不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.若直线xy上的点Q到点)2,0(P的距离为2,则点Q的坐标为( )

.(2,2).(2,2).(0,0)22.2222ABCD
或(,)(,)或(,)

3.若要点A(1,2)、B(3,1)和C(2,3)到直线xmy的距离平方和达到最大,
那么m等于( )

A.0 B.-1 C.1 D.2

4.已知直线1:23lyx,直线2l与1l关于直线yx对称,则直线2l的斜率

A.12 B.12 C.2 D.-2
5.方程|x|-|y|=1的图像是下图中所示的( )

6. (2015 武昌区模拟)已知直线l1:ax+2y+6=0,l2:x+(a﹣1)y+a2﹣
1=0,若l1⊥l2,则a= .
7.过点P(1,2)且在x轴,y轴上截距相等的直线方程是_________________.

8.已知0m,则过点(1,-1)的直线320axmya的斜率为________.
9.(1)求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;
(2)求垂直于直线x+3y-5=0,且与点P(-1,0)的距离是3105的直线的方程.

10.已知两直线1110axby和2210axby的交点为(2,3)P,求过两点

11(,)Aab、22
(,)Bab
的直线方程.

11.已知两直线1:40laxby,2:(1)0laxyb,求分别满足下列条
件的a、b的值.
全国名校高考数学复习优质专题、学案汇编(附详解)
(1)直线1l过点(-3,-1),并且直线1l与直线2l垂直;
(2)直线1l与直线2l平行,并且坐标原点到12ll、的距离相等.
12. (2015春 长春校级期末)已知直线l的方程为3x+4y﹣12=0,
(1)若l′与l平行,且过点(﹣1,3),求直线l′的方程;
(2)求l′与坐标轴围成的三角形面积..
(2)由l′的方程,分别令x=0,y=0可得直线的截距,代入面积公式计算可得.

13.设直线l的方程为(1)20()axyaaR.
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.

14.已知三直线1:20(0)lxyaa,直线2:4210lxy和

3
:10lxy
,且1l与2l的距离是7510.
(1)求a的值;
(2)能否找到一点P,使P同时满足下列三个条件:①P是第一象限的点;

②P点到1l的距离是P点到2l的距离的12;③P点到1l的距离与P点到3l的距离之

比是2:5.若能,求P点坐标;若不能,说明理由.
【参考答案与解析】
1.【答案】B

【解析】:∵<α<π,
∴sinα>0,cosα<0,
∴直线+=1必经过第一、三、四象限,
因此比不经过第二象限.故选B.
2.【答案】C

【解析】设),(aaQ,利用两点间的距离公式.
3.【答案】B
【解析】代入求和,转化为关于m的一元二次函数.
4. 【答案】A

解析:∵ 2l、1l关于yx对称,

∴ 2l的方程为23xy,即1322yx,
∴ 2l的斜率为12,故选A.
5.【答案】A
全国名校高考数学复习优质专题、学案汇编(附详解)
【解析】由|x|=|y|+1≥1x≥1或x≤-1,故选A.
6.【答案】
【解析】:∵直线l1:ax+2y+6=0,l2:x+(a﹣1)y+a2﹣1=0,且l1⊥l2,
∴a×1+2(a﹣1)=0,即a+2a﹣2=0,解得a=.
7.x+y-3=0或2x-y=0; 提示:不要忽视截距为0的情况.
8.13

【解析】∵ 点(1,-1)在直线320axmya上,
∴ 320ama,∴ 0ma,
∴ 133akm.
9. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0.
【解析】(1)设直线方程为340xy

127123552347
,


∴所求直线方程为3x+4y+23=0或3x+4y-47=0;
(2)设直线方程为30xy

331051093.


或-
∴所求直线方程为3x-y+9=0或3x-y-3=0.
10.解法一:∵ (2,3)PP是两条直线的交点

∴ 11222310,2310,abab两式相减,得

1212
2()3()0aabb
.
即12122.3bbaa

故所求直线的方程为12111122()().3bbybxaxaaa
∴ 1123(32)0.xyba又11231ab,
全国名校高考数学复习优质专题、学案汇编(附详解)
∴ 2310.xy
故过11(,)Aab、22(,)Bab两点的直线方程为2310.xy
解法二:∵ 点P是已知两直线的交点

∴ 11222310,2310.abab

可见11(,)Aab、22(,)Bab都满足方程2310.xy
故过A、B两点的直线方程为2310.xy
11.解析:(1)∵ 12ll, ∴ (1)()10.aab
即20.aab ①
又点(3,1)在1l上,
∴ 340.ab ②
由①②解得2,2.ab

(2)∵ 12//ll且2l的斜率为1a,
∴ 1l的斜率也存在为1aab,.1aba
故1l和2l的方程可分别表示为4(1)(1)0aaxya和
(1)0.1aaxya

∵ 原点到1l和2l的距离相等,

∴ 14.1aaaa

∴ 2a或23a.因此2,2,ab或2,32.ab
12.【解析】(1)由平行关系可设l′的方程为3x+4y+c=0,
∵l′过点(﹣1,3),∴3×(﹣1)+4×3+c=0,
解得c=﹣9,∴直线l′的方程为3x+4y﹣9=0;
(2)由(1)知直线l′的方程为3x+4y﹣9=0,

令x=0可得y=,令y=0可得x=3,
全国名校高考数学复习优质专题、学案汇编(附详解)
∴l′与坐标轴围成的三角形面积S=××3=
13. 解析:
(1)当直线过原点时,该直线在x轴和y轴上的截距为零,∴ a=2,方程

即为30xy.
∵ 当直线不经过原点时,由截距存在且均不为0,
∴ 221aaa,即11a,

∴ a=0,方程即为20xy.
(2)解法一:将l的方程化为(1)2yaxa,

∴ (1)0,20aa或(1)0,20,aa
∴ 1a.
综上可知a的取值范围是1a.

解法二:将l的方程化为(2)(1)0()xyaxaR.

它表示过1:20lxy与2:10lx的交点(1,-3)的直线系(不包括
1x).由图象可知l的斜率为(1)0a,即当1a
时,直线l不经过第二象
限.
14.解:(1)2l为1202xy,

∴ 1l与2l距离为2212751021ad.
∵ a>0,
∴ a=3.

(2)设存在点00(,)Pxy满足②,则P点在与1l、2l平行的直线:20lxyc上

且1|3|12255cc,
即132c或116c,
∴ 0013202xy或0011206xy.
若P点满足条件③,则点到直线的距离公式有:

相关文档
最新文档