活性氧化锌生产工艺
氨法浸出氧化锌烟尘制取活性氧化锌

氨法浸出氧化锌烟尘制取活性氧化锌孙强强;王书民【摘要】为实现冶锌废渣中锌资源的再利用,以商洛炼锌厂冶锌过程中产生的氧化锌烟尘为原料,采用氨法浸出-微波蒸氨-火法焙解工艺制得粒度分布均匀的球状活性氧化锌.对锌的浸出工艺及氧化锌前驱体的热解工艺进行研究,并利用TG/DTA、XRD、SEM等测试手段对产品进行结构及物相表征.研究表明,氨法浸出过程中总氨浓度为8 mol/L、pH为10.0、液固比为4:1、浸出温度为40℃时,锌的浸出率最高可达92.05%.浸出液经两段净化除杂后,80℃下蒸氨25 min时,制得前驱体碱式碳酸锌.在400℃焙解120 min制得平均粒径约为3μm,六方晶系的球状活性氧化锌.此法对设备要求不高,生产成本低,工艺流程短,具有较强的实用性.%For the purpose of reuse of zinc resources from zinc residues, spherical activated zinc oxide with uniform size distribution was synthesized from zinc oxide dust via ammonia leaching, ammonia distillation with microwave, and calcination, which was brought from zinc smelting process by Shangluo Smelter. Then, the process of zinc leaching and pyrolysis of precursor was studied, and the product was characterized by TG/DTA, XRD and SEM. The results indicated that with the total ammonia concentration of 8 mol/L, the pH value of 10.0, the liquid-solid ratio of 4:1, the leaching temperature of 40 ℃, the leaching efficiency could reach the maximum value of 92. 05%. Basic zinc carbonate, the precursor of activated zinc oxide, was precipitated from the leaching solution by two-stage purification and ammonia distillation by microwave for 25 min at the constant temperature of 80 ℃. Then, spherical activated zinc oxide, a kind of hexago nal sheetcrystal with average diameter of 3 μm , was formed under calcination temperature of 400 ℃ for 120 min. Because of the advantages of short flow, 1ow cost and low equipment requirement, the method was of great valuable, which provided a new approach for the reuse of secondary zinc resources.【期刊名称】《材料科学与工艺》【年(卷),期】2017(025)005【总页数】7页(P68-74)【关键词】氧化锌烟尘;氨法浸出;微波蒸氨;活性氧化锌【作者】孙强强;王书民【作者单位】陕西省尾矿资源综合利用重点实验室(商洛学院) ,陕西商洛726000;陕西省尾矿资源综合利用重点实验室(商洛学院) ,陕西商洛726000【正文语种】中文【中图分类】TQ031.2近年来,世界范围内镀锌及锌合金用量日益增大,而锌矿的储量却逐年下降.同时,锌尾矿及固体含锌废渣在环境中堆存量却呈几何级数增加,不仅危及周边环境,更造成了大量锌资源的浪费[1-2].因此,湿法炼锌矿渣的资源化利用和无害化处理成为当前的研究主题.含锌固体废料做为锌源在锌市场的应用愈发受到人们的重视,工业废渣氧化锌烟尘[3]因含有大量的锌、镉、铅等有价元素,其作为二次锌资源的再利用也成为研究的热点[4-9].诸荣孙[10]等将转炉产生的含锌烟尘作为原料,以硫酸浸出工艺回收锌,锌的浸出率超过了96%,并得到了高纯的硫酸锌浸出液.吕传涛[11]等以含锌废催化剂为原料,采用盐酸浸出工艺回收锌,碎的浸出率可以达到93%.胡慧萍[12]等釆用氛氧化钠溶液浸出含锌废催化剂,锌的浸出率可达90%,浸出液经净化后加入硫化钠溶液沉降,最终制得硫化锌产品.酸法浸出时,铅、镉、铜等元素都会进入到浸出液中,造成后续净化负担重,工艺流程复杂;用盐酸时,会产生大量含氯废水,污染环境.强碱浸出时,腐蚀性强,对设备要求较高,形成的氢氧化锌前驱体分解温度较高,产品易团聚.微波辐射[13]作为一种新型热解技术,热效率高,热损失小,加热均匀,微波场中温度梯度极小,解决了传统方法加热无法解决的“冷中心”问题,应用于热处理时,加热速率显著加快,大大缩短热解时间,降低了能耗,本身也不产生任何污染,有利于环境保护.因此,本文以商洛炼锌厂火法炼锌过程中产生的氧化锌烟尘为原料,通过氨法浸出-微波蒸氨-火法焙解的工艺制备活性氧化锌[14-15],在有限范围内可缓解冶锌废渣对环境的压力,更为锌资源的二次利用提供了新途径[16-17].试剂:氧化锌烟尘(商洛炼锌厂),过硫酸铵(南京盛庆和化工有限公司),氨水(上海埃彼化学试剂有限公司),碳酸氢铵(西安化学试剂厂),冰醋酸(南京盛庆和化工有限公司),锌粉(西安化学试剂厂),盐酸(南京盛庆和化工有限公司),无水乙醇(天津市天力化学试剂有限公司),所有试剂均为分析纯,蒸馏水为实验室自制二次蒸馏水.仪器:XH-8000型多用途微波化学合成仪(北京祥鹄科技发展有限公司),DF-101S集热式恒温加热磁力搅拌器(巩义市予华仪器有限责任公司),AA7002A火焰原子吸收光谱仪(北京东西电子有限责任公司),ICP-OES电感耦合等离子体发射光谱仪(美国安捷伦科技有限公司),X′Pert Powder PRO型X射线衍射仪(荷兰帕纳科公司),STA 449 F3同步热分析仪(DSC/DTA-TG)(德国耐驰公司),JSM-6510LV扫描电子显微镜(日本电子公司(JEOL)),DHG-9070A型电热恒温鼓风干燥箱(上海齐欣科技有限公司),FA1004电子天平(北京赛多利斯仪器有限公司)等.本文采用氨-碳酸氢铵法浸出氧化锌烟尘中的锌,其工艺流程如图1所示.1)浸出过程称取氧化锌烟尘3 g置于100 mL圆底烧瓶中,分别加入40 mL蒸馏水、12 mL 氨-碳酸氢氨溶液(总氨浓度为8 mol/L),在40℃、pH值为10.0、液固比4∶1、搅拌速度为400 r/min条件下反应1.5 h,减压抽滤,以蒸馏水洗涤滤饼3次,将滤液转入100 mL容量瓶定容.取锌氨浸出液20 mL,以原子吸收分光光度法测定锌离子的浓度并计算锌的浸出率.2)净化除杂净化除杂分两步进行:一次净化与浸出过程相结合,在浸出开始30 min后加入过硫酸铵除去铁、砷等;过滤后开始二次净化除杂,取80 mL氨浸液,缓慢加入足量的锌粉,在40℃条件下,以200 r/min搅拌1 h,减压抽滤,除去 Cd、Pb、Cu等,得到净化液.采用ICP-OES电感耦合等离子体发射光谱仪测定净化液中的Fe2+、Cu2+、Pb2+、Cd2+等杂质的含量,分析净化效果.蒸氨、焙解过程工艺流程图如图2所示.1)蒸氨过程量取40 mL上述净化后的锌氨溶液于三口烧瓶中,在80℃恒温下用微波蒸氨.蒸氨完毕,陈化10 min,过滤,加入无水乙醇多次洗涤滤饼,得到前驱体样品.在100℃恒温干燥箱烘干,得到前驱体粉末,准确称取质量,计算前躯体的产率. 2)焙解过程将盛有前驱体样品的瓷坩埚置于电阻炉中,在400℃下焙解60 min.焙解完毕,取出产物,盖上坩埚盖,于干燥器中冷却至室温,准确称量,计算产品产率.将制得的活性氧化锌样品密封于塑料容器中,留待后续分析表征.采用火焰原子吸收法对浸出液中锌的含量进行测定,浸出率计算公式为式中:x为锌在氨-碳酸氢铵溶液中的浸出率,%;c为浸出液中锌离子的浓度,mol/L;V为浸出液体积,L;ω为浸出前渣中锌的含量,%;m为浸出前加入的渣总量,g.按照国家标准(GB/T 19589-2004),采用EDTA络合滴定法(二甲酚橙为指示剂)对制备的活性氧化锌进行含量滴定.1)TG-DTA分析采用德国耐驰公司出产的STA449F3同步热分析仪对前驱体样品进行热失重分析,测试条件:升温速率为10℃/min,气氛条件为N2气氛,样品重量0.816 g.2)XRD分析采用荷兰帕纳科公司的X′Pert Powder PRO型X射线衍射仪对氧化锌粉体的物相及结晶性能进行表征.测试条件:CuKα靶,扫描管电流50 mA,管电压40 kV,扫描速度0.02°/s,测定范围8°~75°.3)SEM分析采用日本电子株式会社(JEOL)的 JSM- 6510LV型扫描电子显微镜检测氧化锌粉体的形貌特征.测定条件:加速电压20 kV,物距11 mm,束斑40 mm,喷铂金40 s.依据单因素变量法,控制氧化锌烟尘的用量3.0 g,总氨浓度8 mol/L、液固比为4∶1,在恒温水浴中以 400 r/min搅拌 90 min,研究浸出液pH(9.0~12.0)和浸出温度(30~70℃)对氧化锌烟尘中锌浸出率的影响,测定结果如图3所示.由图3(a)可知,锌离子浸出率随pH值的增大呈现先增大后减小的趋势.当浸出pH值小于10.0时,锌浸出率随着pH值的增大而增大,当浸出pH值大于10.0时,锌浸出率逐渐降低.当浸出液初始pH值为10.0时,锌浸出率达最大值90.32%.这是因为浸出液的pH值较低时不利于锌氨络合物的形成,难以溶出;pH值过高又会生成氢氧化锌沉淀,溶出的锌难以完全转化为锌氨溶液.因此,本实验将浸出液初始pH值控制在10.0.由图3(b)可知,锌离子浸出率随温度的增大呈现先增大后减小的趋势.浸出温度从30℃升高到40℃时,随着浸出温度的升高,锌浸出率增大;浸出温度从40℃升高到70℃时,随浸出温度的升高,锌浸出率减小.这是由于初期温度升高有利于锌氨络合反应的进行,浸出率呈增大趋势;随着浸出温度的升高,浸出锌离子的水解反应速率增大,使溶液中与氨配合的锌离子的浓度又呈下降趋势.因此,本实验选择浸出温度为40℃,此时锌的浸出率最高可达92.35%.控制氧化锌烟尘的用量3.0 g,浸出液pH为10.0,在40℃恒温水浴中以 400r/min搅拌90 min,分别考察总氨浓度(6、7、8、9、10 mol/L)和液固比(3∶1、4∶1、5∶1、6∶1、7∶1)对氧化锌烟尘中锌离子浸出率的影响,测定结果如图4所示.由图4(a)可知,总氨浓度在8 mol/L时浸出率为92.08%;小于8 mol/L时,随着总氨浓度的增加,浸出率增大;总氨浓度过大时,反而增强氨与杂质金属离子的络合,不利于锌氨主络合反应的进行.综合考虑,本实验采用总氨浓度为8mol/L较为适宜.由图4(b)可知,随液固比增加,锌浸出率变化较小.当液固比为4∶1时,锌浸出率为91.72%.锌的溶出过程中,增加液固比会使浸出液中锌离子浓度相对减小,锌离子的浓度较低时将直接影响锌氨的络合,会造成氨的大量挥发,不利于氨的循环利用.因此,液固比为4∶1较为适宜.浸出液首先用理论量1.2倍的过硫酸铵除Fe、As,后加入理论量2.8倍的锌粉置换除去Cd、Pb、Cu等杂质.除杂前后的各离子含量如表1所示.以氧化锌烟尘为原料,氨水与碳酸氢铵混合溶液作浸出剂,按照单因素分析的最佳工艺条件(总氨浓度为 8 mol/L、液固比4∶1、浸出温度40℃、浸出pH值为10.0)进行浸出,平行3组实验,结果如表2所示.由表1数据可知,净化后的浸出液中杂质离子质量浓度均小于0.1 mg/L,说明得到的锌氨溶液较为纯净.由表2可知,较佳条件组合试验的实验结果与单因素实验结果大致相同,氧化锌烟尘中锌的浸出率平均值为92.05%,达到预期效果.量取40 mL净化后的锌氨溶液于微波蒸氨特定容器中,在微波恒温80℃分别蒸氨10、15、20、25、30 min,陈化10 min条件下,考察蒸氨时间对前驱体产率的影响,结果见图5.由图5可知,随着蒸氨时间的延长,锌氨络离子不断分解生成碱式碳酸锌,碱式碳酸锌的产率随蒸氨时间的延长而提高.当蒸氨时间超过25 min后,锌氨络离子的分解速度减小,碱式碳酸锌产率的增加也随之变缓.当蒸氨时间由25 min增至30 min,碱式碳酸锌的产率基本没有变化.因此,当蒸氨时间超过25 min后,除耗电量明显增大外,碱式碳酸锌的产量增加并不明显.因此,选择蒸氨25 min为宜.为了研究氧化锌前驱体的热解工艺,本实验采用同步热分析仪对前驱体样品进行热失重分析,测定结果如图6所示.由图6的DTA曲线可以发现,前驱体的热分解过程是吸热过程,在110℃出现一个强烈的吸热峰,对应结晶水的挥发过程;在200~270℃内出现一个吸热带,在260℃出现一个强吸热峰,对应前驱体分解生成ZnO的过程.由TG曲线可知,90~110℃有一定的质量损失,为样品表面的吸附水、结晶水及乙醇的脱附过程,在110℃处有一强的吸热峰对应脱附结晶水及乙醇的汽化挥发过程;160℃时前驱体开始分解,260℃有一吸热峰,对应碱式碳酸锌分解生成ZnO的吸热峰,大约至380℃时前驱体完全分解,在此热分解区间内,失重率为25.26%,与碱式碳酸锌理论失重率25.87%十分接近.达到400℃后,前驱体失重率基本不变,说明前驱体碱式碳酸锌已基本分解完全.因此,火法焙解前驱体碱式碳酸锌时焙解温度选择400℃为宜.碱式碳酸锌的焙解温度与时间将会影响产品的质量与活性[18].焙解的温度过高,时间过长,易使产品烧结,影响产品的活性;温度太低,时间过短,又不能使其完全分解,因此,应控制合理的焙解温度与时间.在400℃条件下,利用XRD研究了焙解时间(60、90、120 min)氧化锌结晶性能的影响,结果如图7所示.图7分别为焙解60、90、120 min时所得样品的XRD谱图,与纯氧化锌标准物相卡片(01-079-2205)的XRD谱中特征衍射峰完全相符.对照可知,制得的氧化锌晶型属六方晶系,谱图中几乎不存在杂质峰,说明纯度较高.氧化锌特征衍射峰明显,随着焙解时间的延长,峰型变尖,强度增强,说明氧化锌晶型趋于完整.因此,热解工艺中前驱体碱式碳酸锌的焙解时间以120 min为宜.为了观察氧化锌样品的微观形貌,对其进行SEM测定,所得不同放大倍数的SEM 形貌见图8.由图8(a)、(b)可知,制得的活性氧化锌颗粒呈近球形,分散性较好,只有少部分发生了团聚,粒度分布较均匀,平均粒径为3 μm.按照GB/T 19589—2004,采用EDTA络合滴定法(二甲酚橙为指示剂)对氧化锌样品进行纯度分析,采用原子吸收分光光度法对氧化锌中存在的杂质离子进行测定,并将其化学成分与化工行业质量标准(HG/T2572-9)进行对比,结果如表3所示.由表3可知,本文制得的氧化锌符合化工行业活性氧化锌的质量标准.本文采用氨浸法对商洛炼锌厂冶锌过程中产生的氧化锌烟尘进行处理,经过蒸氨、焙解制得了纯度较高的活性氧化锌.1)总氨浓度控制在8 mol/L、液固比为4∶1、浸出温度是40℃、浸出pH值约10.0时,氧化锌烟尘中锌的浸出率可达92.05%.2)两段净化除杂后,浸出液中 Cd、Pb、As、Fe、Cu、Mg各杂质离子质量浓度均小于0.1 mg/L,说明净化效果较好,为氧化锌的制备提供了干净的锌源.3)锌氨净化液经微波蒸氨25 min,在400℃焙解120 min,即可制得目标产物氧化锌.4)通过氨法浸出-微波蒸氨-热解处理后,制得纯度为96.52%、平均粒径为3μm、六方晶系结构的球形活性氧化锌,可广泛应用于橡胶工业,实现含锌废料的高附加值转化.【相关文献】[1]罗文波,王吉坤,张忠益,等.次氧化锌粉回收锌铟的试验研究[J].矿冶,2016,25(3):54-57.DOI:10.3969/j.issn.1005-7854.2016.03.00.LUO W B,WANG J K,ZHANG Z Y,et al.Experimental study on recovering zinc and indium from second⁃rate zinc oxide powder [J].Mining &Metallurgy,2016,25(3):54-57.DOI:10.3969/j.issn.1005-7854.2016.03.00.[2]袁文辉,杨卜,李强.含锌烟灰回收利用研究进展[J].湿法冶金,2016,35(4):271-274.DOI:10.13355/ki.sfyj.2016.04.001.YUAN Wenhui,YANG bo,LI Qiang.Research progress on recycling of zinc metallurgical furnace dust[J].Hydrometallurgy of China,2016,35(4):271-274.DOI:10.13355/ki.sfyj.2016.04.001.[4]森维,孙红燕,李正永,等.氧化锌烟尘中氟氯脱除方法的研究进展[J].云南冶金,2013(6):42-45.DOI:10.3969/j.issn.1006-0308.2013.06.010.SEN Wei,SUN Hongyan,LI Zhengyong,et al.Research progress on the removal methods for chloride and fluoride in zinc oxide dust[J].YunNan Metallurgy,2013(6):42-45.DOI:10.3969/j.issn.1006-0308.2013.06.010.[5]佘雪峰,薛庆国,王静松,等.钢铁厂含锌粉尘综合利用及相关处理工艺比较[J].炼铁,2010,29(4):56-62.DOI:10.3969/j.issn.1001-1471.2010.04.016.SHE Xuefeng,XUE Qingguo,WANG Jingsong,et prehensive utilization of zinc⁃bearing dust and comparison of treatment processes[J].Iron Making,2010,29(4):56-62.DOI:10.3969/j.issn.1001-1471.2010.04.016.[6]LIU Y,ZHENG Y J,SUN Z M.Preparation of high purity cadmium withmicro⁃spherical architecture from zinc flue dust[J].Trans Nonferrous Met Soc China,2015,25:2073-2080.DOI:10.1016/S1003-6326(15)63817-1.[7]SUJARIDWORAKUN P, NATRCHALAYUTH K.Influence ofpH and HPC concentration on the synthesis of zinc oxide photocatalyst particle from zinc⁃dust waste by hydrothermal treatment[J].Advanced Powder Technology,2014,25:1266-1272.DOI:10.1016/j.apt.2014.03.002.[8]姜艳,孙丽达,黄卉,等.机械活化对高炉炼铁烟尘中锌浸出的影响[J].有色金属(冶炼部分),2014(4):7-9.DOI:10.3969/j.issn.1007-7545.2014.04.003.JIANG Yan,SUN Lida,HUANG Hui,et al.Effects of mechanical activation on zinc leaching from blast furnace dust[J].NonferrousMetals (Extractive Metallurgy),2014(4):7-9.DOI:10.3969/j.issn.1007-7545.2014.04.003.[9]CHANG J,ZHANG L B,YANG C J,et al.Kinetics of microwave roasting of zinc slag oxidation dust with concentrated sulfuric acid and water leaching[J].Chemical Engineering and Processing,2015,97:75-83.DOI:10.1016/j.cep.2015.09.006.[10]诸荣孙,吴争,伊廷锋,等.硫酸浸出转底炉高锌铅粉尘的研究[J].矿冶工程,2012,32(3):103-106.DOI:10.3969/j.issn.0253-6099.2012.03.028.ZHU Rongsun,WU Zheng,YI Tingfeng,et al.Study on leaching high Zn-Pb dust from rotary hearth furnace by sulfuric acid solution[J].Mining and Metallurgical Engineering,2012,32(3):103-106.DOI:10.3969/j.issn.0253-6099.2012.03.028.[11]吕传涛,彭金辉,范兴祥,等.从废醋酸锌活性炭催化剂中提取锌[J],化工环保,2006,26(1):52-54.DOI:10.3969/j.issn.1006-1878.2006.01.014.LÜ Chuantao,PENG Jinhui,FAN Xingxiang,et al.Extraction of zinc fromwaste zinc acetate⁃activated carbon catalyst [J].Environmental Protection of Chemical Industry,2006,26(1):52-54.DOI:10.3969/j.issn.1006-1878.2006.01.014.[12]胡慧萍,谢丽芳,陈启元,等.碱法浸出含锌废催化剂制备硫化锌[J].有色金属(冶炼部分),2012,1:42-45.DOI:10.3969/j.issn.1007-7545.2012.01.012.HU Huiping,XIE Lifang,CHEN Qiyuan,et al.Preparation of zinc sulfide from waste zinc⁃bearing catalystby alkalinel leaching[J].Nonferrous Metals(Extractive Metallurgy),2012,1:42-45.DOI:10.3969/j.issn.1007-7545.2012.01.012.[13]佟志芳,毕诗文,杨毅宏.微波加热在冶金领域中应用研究现状[J].材料与冶金学报,2004,3(2):117-120.DOI:10.3969/j.issn.1671-6620.2004.02.008.TONG Zhifang,BI Shiwen,YANG Yihong.Present situation of study on microwave heating application in metallurgy[J].Journal of Materials and Metallurgy,2004,3(2):117-120.DOI:10.3969/j.issn.1671-6620.2004.02.008.[14]ZHANG L B,MA A Y,LIU C H,et al.Dielectric properties and temperature increase characteristics of zinc oxide dust from fuming furnace[J].Trans Nonferrous Met Soc China,2014,24:4004-4011.DOI:10.1016/S1003-6326(14)63562-7.[15]ROMCHAT C F,KATSUYA M,TAKAHIRO M,et al.The selective alkaline leachingof zinc oxide from Electric Arc Furnace dust pre⁃treated with calcium oxide[J].Hydrometallurgy,2016,159:120-125.DOI:10.1016/j.hydromet.2015.11.009 [16]路永锁,宁建平,阮海丰,等.从次氧化锌烟尘中湿法回收锌及去除氟氯[J].湿法冶金,2016,35(5):422-426.DOI:10.13355/ki.sfyj.2016.05.013.LU Yongsuo,NING Jianping,RUAN Haifeng,et al.Hydrometallurgical recovery of zinc and removal of chlorine and fluorine from zinc oxide dust[J].Hydrometallurgy of China,2016,35(5):422-426.DOI:10.13355/ki.sfyj.2016.05.013.[17]徐素鹏,汤长青,李晓乐,等.低成本制备纳米氧化锌工艺条件研究[J].无机盐工业,2016,48(9):68-71.XU Supeng,TANG Changqing,LI Xiaole,et al.Study on processconditions of low cost preparation of nanometer zinc oxide [J].Inorganic Chemicals Industry,2016,48(9):68-71.[18]康俊峰.锌烟灰制取碱式碳酸锌及活性氧化锌[J].有色矿冶,2003,19(3):28-31.DOI:10.3969/j.issn.1007-967X.2003.03.009.KANG Junfeng.Preparing alkali zinc carbonate and active oxide zinc from zinc smoke ash[J].Non⁃Ferrous Mining and Metallurgy,2003,19(3):28-31.DOI:10.3969/j.issn.1007-967X.2003.03.009.。
氧化锌工艺流程

氧化锌工艺流程氧化锌工艺流程氧化锌是一种重要的无机化工原料,广泛应用于橡胶、陶瓷、涂料、塑料等行业。
下面是氧化锌的生产工艺流程。
原料准备:氧化锌的原料主要有锌矿石和重质石蜡。
锌矿石经过选矿和浸出等工艺,得到锌精矿。
重质石蜡是用于制备锌精矿的化学试剂。
浸出:将锌精矿和重质石蜡按一定比例放入浸出槽中,加入适量的硫酸和水,控制反应温度和时间,使锌溶解于硫酸中,生成锌硫酸溶液。
净化:将锌硫酸溶液通过过滤、脱铜等工艺,去除杂质,得到纯净的锌硫酸溶液。
沉淀:将纯净的锌硫酸溶液通过化学反应,加入适量的氢氧化钠或氧化铵,析出氧化锌沉淀。
过滤:将氧化锌沉淀与溶液分离,通过过滤设备进行固液分离,得到湿氧化锌。
干燥:将湿氧化锌通过干燥设备,进行干燥处理,去除水分,得到干燥的氧化锌。
煅烧:将干燥的氧化锌加入煅烧炉中,进行高温煅烧,使其晶体结构发生改变,提高其物理和化学性能。
粉碎:煅烧后的氧化锌经过粉碎设备进行粉碎,得到所需的粒度。
分选:将粉碎后的氧化锌通过分选设备进行筛分,分离出不同粒度的氧化锌产品。
包装:对氧化锌产品进行包装,标明产品名称、规格、批号等信息,并进行质量检验。
检验:对包装好的氧化锌产品进行质量检验,检验项目包括外观、纯度、颗粒度等。
储存:将质量合格的氧化锌产品进行存储,按照规定的条件进行储存,避免受潮、受热等损害。
以上就是氧化锌的生产工艺流程。
在整个工艺过程中,需要控制好各个环节的操作条件和参数,确保产品的质量符合要求。
此外,对于废气、废水等产生的污染物需要进行处理,以达到环保要求。
通过不断优化工艺流程和提高生产技术水平,可以进一步提高氧化锌的生产效率和质量,同时减少资源消耗和环境污染。
氧化锌生产工艺流程

氧化锌生产工艺流程
氧化锌是一种重要的无机化工产品,广泛用于橡胶、塑料、涂料、油漆、陶瓷、玻璃、电子、建筑材料等领域。
下面将介绍一种常用的氧化锌生产工艺流程。
首先,原料准备。
氧化锌的原料主要是锌矿石、锌精矿和废镀锌渣。
锌矿石经过破碎、筛分和浸出等步骤得到锌精矿。
废镀锌渣通过烧结、磁选和浸出等工艺处理得到锌精矿。
锌精矿经过浮选、重选和磁选等工艺,得到含锌精矿。
其次,炼锌工艺。
含锌精矿通过焙烧产生的氧化锌粉末与还原剂进行还原反应,得到粗锌。
然后,粗锌经过蒸馏熔炼,得到高纯度的锌。
接下来,氧化锌制备。
将高纯度的锌经过氧化反应,在气氛中进行燃烧,形成二氧化锌粉体。
这个过程可以通过热氧化法、湿法氧化法等不同的方法进行。
最后,氧化锌粉体的处理。
将得到的二氧化锌粉体进行筛分、磁选、分级和仓储等步骤,得到所需的氧化锌产品。
同时,对产品进行质量检验,以确保产品符合相关标准要求。
以上就是氧化锌生产的主要工艺流程。
当然,具体的工艺流程还需要根据不同的生产工艺和设备进行调整。
随着科技的进步和技术的创新,氧化锌生产工艺也在不断改进,以提高产品质量和生产效率。
同时,为了减少对环境的影响,还需要加强对废气、废水和废渣的处理,以实现可持续发展。
氧化锌生产工艺流程图

氧化锌生产工艺流程图
氧化锌是一种重要的无机化工原料,广泛应用于橡胶、塑料、涂料、玻璃、陶瓷、橡胶制品、化学纤维、油墨、油漆、医药、电子工业等领域。
下面介绍一下氧化锌的生产工艺流程。
氧化锌的生产主要分为两个步骤,即氧化锌的预处理和氧化锌的煅烧。
首先,氧化锌的原料一般选择锌矿。
锌矿经过破碎、磨矿后,得到矿石粉末。
接下来,将矿石粉末与石灰石混合,加入适量的水进行浸泡,得到含锌的矿浆。
将矿浆经过脱水、干燥处理,得到含锌的矿渣。
然后,将含锌的矿渣与石灰以及其他添加剂一起,进行混合并研磨,得到矿渣混合料。
将矿渣混合料进入炉子,进行煅烧处理。
这一过程需要在高温条件下进行,使矿渣混合料发生化学反应,生成氧化锌。
煅烧后,得到的氧化锌经过破碎、磨矿,得到细粉末的氧化锌。
最后,将细粉末的氧化锌通过筛分、磁选去除杂质,得到纯度较高的氧化锌粉末。
氧化锌粉末可以按照客户的要求进行各种形式的包装,并进行贮存和运输。
需要注意的是,氧化锌生产过程中需要注意环境保护和安全。
煅烧过程中会产生大量的烟尘和废气,需要进行处理和净化,以避免对环境造成污染。
此外,工人需要佩戴防护用具,以保护自己的安全。
综上所述,氧化锌的生产工艺流程主要包括氧化锌的预处理和氧化锌的煅烧。
通过合理的原料选取、混合、煅烧和后处理等步骤,可以得到纯度较高的氧化锌。
随着氧化锌的广泛应用,氧化锌的生产工艺也在不断地改进和创新。
相信在未来的发展中,氧化锌的生产工艺将会更加高效、绿色和可持续。
氧化锌工艺流程

氧化锌工艺流程
《氧化锌工艺流程》
氧化锌是一种重要的无机化合物,在工业生产中有着广泛的应用。
它主要用于橡胶、涂料、化妆品、医药等领域,因此氧化锌的生产工艺流程也备受关注。
氧化锌的工艺流程主要包括原料准备、炼制、氧化与精制四个步骤。
首先是原料准备。
生产氧化锌的原料主要是氧化锌矿石,通过选矿、研磨等工序将矿石提炼出氧化锌粉。
同时还需要提前准备好煤、石灰石等辅助原料。
接下来是炼制。
在炼制工序中,将氧化锌粉和辅助原料按照一定的比例混合均匀,然后进入炉内进行熔炼。
熔炼时的温度、气氛和炉内压力都是需要严格控制的参数,以保证氧化锌的质量。
然后是氧化。
通过气固反应将熔融的氧化锌冷却成粉末状,这一过程需要在特定的氧化气氛下进行,以防止氧化锌在空气中继续氧化。
最后是精制。
在氧化之后,需要对氧化锌进行精制,去除掺杂物和杂质。
这一过程通常通过溶解、过滤、还原等步骤实现。
总的来说,氧化锌的生产工艺流程是一个复杂的炼制过程,需
要严格控制各个环节的参数,以确保最终产品的质量达到要求。
同时,工艺流程中的节能减排以及资源循环利用也是需要重点关注的方面。
氧化锌生产工艺流程

氧化锌生产工艺流程
氧化锌是一种重要的化工原料,广泛应用于橡胶、陶瓷、涂料、医药、化肥等行业。
氧化锌的生产工艺流程主要包括矿石选矿、熔炼、精炼和成品加工等环节。
下面我们将详细介绍氧化锌的生产工
艺流程。
首先是矿石选矿。
氧化锌的主要原料是锌矿石,包括氧化锌矿、硫化锌矿等。
矿石选矿的目的是将矿石中的有用成分与杂质分离,
一般采用浮选、重选等物理方法进行选矿,得到含锌的精矿。
接下来是熔炼环节。
将含锌的精矿进行熔炼,得到锌的粗品。
熔炼的过程中,需要加入适量的煤焦油或焦炭作为还原剂,使锌矿
石中的氧化锌还原成金属锌。
同时,熔炼还会产生大量的烟气和渣,需要进行处理和回收利用,以减少对环境的影响。
然后是精炼环节。
粗品锌经过精炼处理,去除杂质,得到纯度
较高的氧化锌。
精炼过程主要包括溶解、电解、蒸馏等步骤,其中
电解是最常用的方法。
通过电解,可以将锌粗品溶解在硫酸溶液中,然后经过电解析出纯度较高的氧化锌。
最后是成品加工。
经过精炼得到的氧化锌需要进行成品加工,
包括干燥、粉碎、筛分等步骤,最终得到符合要求的氧化锌产品。
成品加工过程中需要注意控制粒度、湿度等指标,以保证产品质量。
总的来说,氧化锌的生产工艺流程包括矿石选矿、熔炼、精炼
和成品加工等环节。
在实际生产中,需要严格控制各个环节的工艺
参数,加强能源和环境保护,提高产品质量,降低生产成本,以满
足市场需求。
希望本文能对氧化锌生产工艺流程有所帮助。
生产氧化锌的工艺介绍

氧化锌的几种生产方法氧化锌的几种生产方法1.直接法:用锌精矿为原料,经高温氧化焙烧再加煤还原为锌蒸气,锌蒸气与热空气氧化得氧化锌。
现在主要用的原材料为锌矿石,锌灰等.一般有以下几种窑炉结构:(一)平窑.高温氧化焙烧过程在一用耐火转建的立方体窑炉里面,炉渣从窑下面漏掉.原料:锌矿石,锌灰,要求锌含量30%以上.产量:炉体6平方左右的每天2到3吨左右.含量在85%-99%之间.设备投资40万左右.优点:由于是用无烟煤烧制,氧化锌颜色好,硫根,氯根含量低.原材料充沛,产品销路广.(二)转窑.高温焙烧过程在一倾斜20度左右长度40米左右的圆形铁筒里,从上方加料,下方出渣,蒸气收集氧化成氧化锌.原料:各种工业含锌废渣,一般含锌量16%以上就可以用,产量圆形铁筒一米左右的每天10吨货左右,含量在55%-92%之间,设备投资60万左右.优点:原材料要求不高,回收率高.产量高.氧化锌颜色有的发黄,有的发灰.硫根氯根含量高.一般作为原材料用于别的行业.(三)烟化炉.具体生产工艺不详.原料:工业含锌废渣,一般含锌量14%以上,产量每天20吨,含量在45-80%.设备投资100万.优点:回收率高,产量高.氧化锌颜色微黄色或灰色.生产工控制好的话硫根氯根不高.2.间接法:把锌锭熔入蒸发坩锅内,加热后气化遇空气氧化经过冷却用布袋捕集得到成品.产量每天5吨左右.含量99.7%,不过现在也有用锌渣自己炼成锌块代替锌锭,生产的氧化锌含量在99.5左右.设备投资40万.优点:产品含量高,产量高,工艺容易控制.氧化锌为白色微黄.活性好.不过由于原材料为锌锭,价格随锌锭价格起伏变化较大.3.化学法:次氧化锌、氨水与碳酸氢铵,按1(有效锌)∶8∶1~1.5(重量比)配比投放在浸取槽中,加热至50℃~80℃进行反应,调节PH值后除去杂质.蒸发5~8小时,而得碱式碳酸锌沉淀液固混合物,分解的氨气用吸收后,经氨循环系统导至工序(1)的浸取槽内循环利用,获得的碳酸锌经甩干,焙烧得到含量99.8%左右的氧化锌.原料:转窑或烟化炉生产的次氧化锌或别的低含量氧化锌.产量:每天4吨左右.设备投资100万.优点:产品纯度好,含铅,镉,坤等杂质少.由于次氧化锌都含有一定量的铅,生产过程中的废铅泥也可抵消部分生产成本.稳定的原料和开拓市场要掌握好.由于生产过程中氨气循环利用,也称为氨法生产氧化锌工艺.。
氧化锌有哪些生产方法

氧化锌有哪些生产方法氧化锌(ZnO)是一种重要的无机材料,广泛应用于橡胶、塑料、陶瓷、涂料、电子、军工、医药等领域。
氧化锌也是一种常用的工业催化剂和光催化材料。
本文将介绍氧化锌的几种生产方法。
热法热法是最早被应用于氧化锌生产的方法,主要包括直接烧结法、间接烧结法和水热法等。
其中,直接烧结法是最传统的方法,通常是将锌矿石矿石和燃料添加到炉中,再进行还原反应产生氧化锌。
间接烧结法是在间接还原氧化锌的基础上,结合其他处理方法得到氧化锌。
水热法一般是在高温、高压和碱性条件下,通过水热反应生成氧化锌颗粒。
热法优点是生产效率高,生产成本较低,但是操作条件要求较高,反应过程中需消耗大量能源,容易产生污染物,对环境造成不同程度的危害。
溶胶凝胶法溶胶凝胶法是一种新型的材料制备方法,其原理是通过化学反应产生氧化锌溶胶,再进行烘干、煅烧等处理得到氧化锌粉末。
该方法具有反应条件温和、产物分散性好、晶体粒度可调控等优点,但是较为复杂,需要多个步骤进行处理,生产周期较长,生产成本比热法高。
气相沉积法气相沉积法是在高温、高压条件下,在氧化锌前体气体流中通过化学反应生成氧化锌,在基底表面进行沉积形成氧化锌薄膜或粉末。
该方法具有高纯度、高制备尺度、金属表面涂层等特点,但是设备成本高,操作难度大,需要高度控制反应过程中的氧化锌前体气体流和基底温度等因素。
氨解法氨解法也称为沉淀氧化法,是通过将氨和氢氧化锌反应生成氧化锌沉淀。
该方法简单、易控制、成本低,但是产物颗粒大,颗粒形态分散性较差,适用于工业生产中大颗粒氧化锌的制备。
电沉积法电沉积法是在电化学工作电极中以合适的电位控制反应过程,使氧化锌在电极表面析出。
该方法操作简单、反应温度低、制备晶体或非晶体的氧化锌粉末或薄膜等,但是设备需要特殊的电化学反应设备,无法大规模生产。
结论以上就是氧化锌的几种生产方法,这些方法各有特点,可以根据实际需要选择适合自己的生产方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性氧化锌生产工艺
活性氧化锌(Active Zinc Oxide)是一种重要的无机功能材料,广泛应用于橡胶、涂料、塑料、化妆品和医药等领域。
下面是活性氧化锌的生产工艺简介。
活性氧化锌的生产工艺主要包括锌粉炼制、氧化锌合成和后处理三个步骤。
首先是锌粉炼制。
常用的方法是利用金属锌回收精锌,然后将其炼制成细粉末状的锌粉。
具体步骤如下:
1.选择合适的锌源,通常采用锌渣、锌渣粉或锌精矿等;
2.将锌源进行预处理,包括除杂、除水分和除氧等步骤;
3.将处理后的锌源放入高温电炉中进行冶炼,得到金属锌;
4.将金属锌进行滚粉或震荡粉碎,得到细粉末状的锌粉。
接下来是氧化锌合成。
锌粉通过氧化反应生成氧化锌。
具体步骤如下:
1.将锌粉放入反应釜中,加入氧化剂,如空气或氧气;
2.控制反应温度、压力和气体流速等条件,使锌粉与氧气充分
接触反应;
3.反应后的产物经过冷却、分离和洗涤等处理,得到湿块状的
氧化锌;
4.将湿块状的氧化锌进行过滤、干燥和研磨等处理,得到粉末
状的活性氧化锌。
最后是后处理。
活性氧化锌经过后处理可以改善其物化性能和应用性能。
后处理步骤如下:
1.对氧化锌粉末进行表面处理,如表面包覆或改性;
2.通过筛分和磁选等方法,控制活性氧化锌的颗粒大小和分布;
3.进行粉末性质测试,如比表面积、颗粒形态和晶型分析等;
4.进行包装和质检,确保产品符合标准要求。
以上是活性氧化锌的生产工艺简介。
通过科学的生产工艺和后处理技术,可以获得质量稳定、性能优越的活性氧化锌产品,满足不同领域的需求。