(完整版)等差等比数列练习题含答案

合集下载

等比数列练习题(含答案)

等比数列练习题(含答案)

等比数列练习题(含答案)之勘阻及广创作一、选择题 1.(2009年广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = A. 21 B.22 C. 2 D.2【答案】B 【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =故21a a q ===,选B2、如果1,,,,9a b c --成等比数列,那么( )A 、3,9b ac ==B 、3,9b ac =-=C 、3,9b ac ==-D 、3,9b ac =-=- 3、若数列}{na 的通项公式是=+++-=1021),23()1(a a a n an n则(A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 1011S S =,则1a =( )A.18B.20C.22D.24 答案:B 解析: 20,100,1111111110=∴+==∴=a d a a a S S 5.(2008四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是()A.(],1-∞-B.()(),01,-∞+∞C.[)3,+∞D.(][),13,-∞-+∞ 答案 D6.(2008福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( )答案 C7.(2007重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A8.若等比数列{a n }满足a n a n +1=16n,则公比为 A .2 B .4 C .8 D .16答案:B9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6=(A )3 × 44(B )3 × 44+1(C )44(D )44+1答案:A解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A .10.(2007湖南) 在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( ) A .4122- B .2122-C .10122-D .11122-答案 B11.(2006湖北)若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,则a =A .4B .2C .-2D .-4 答案 D解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由,,a b c,,c a b310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D12.(2008浙江)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( )A.16(n --41)B.6(n--21)C.332(n --41)D.332(n--21)答案 C二、填空题:三、13.(2009浙江理)设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.答案:15解析 对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--14.(2009全国卷Ⅱ文)设等比数列{n a }的前n 项和为n s 。

等比数列练习题(含答案)

等比数列练习题(含答案)

等比数列演习题(含答案)一.选择题1.(2009年广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A. 21B. 22 C. 2 D.2【答案】B 【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a 的公比为正数,所以q =故21a a q ===,选B 2.假如1,,,,9a b c --成等比数列,那么( )A.3,9b ac ==B.3,9b ac =-=C.3,9b ac ==-D.3,9b ac =-=- 3.若数列}{na 的通项公式是=+++-=1021),23()1(a a a n an n则(A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公役d = -2,n S 1011S S =,则1a =( )A.18B.20C.22D.24 答案:B 解析: 20,100,1111111110=∴+==∴=a d a a a S S 5.(2008四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值规模是() A.(],1-∞- B.()(),01,-∞+∞ C.[)3,+∞ D.(][),13,-∞-+∞ 答案 D6.(2008福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) 答案 C7.(2007重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( )A .2B .3C .4D .8 答案 A8.若等比数列{a n }知足a n a n +1=16n,则公比为 A .2 B .4 C .8 D .16答案:B9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6=(A )3 × 44(B )3 × 44+1(C )44(D )44+1答案:A解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A .10.(2007湖南) 在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( ) A .4122- B .2122-C .10122-D .11122-答案 B11.(2006湖北)若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,则a =A .4B .2C .-2D .-4 答案 D解析 由互不相等的实数,,a b c 成等差数列可设a =b -d,c =b +d,由310a b c ++=可得b =2,所以a =2-d,c =2+d,又,,c a b 成等比数列可得d =6,所以a =-4,选D,,a b c,,c a b12.(2008浙江)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( )A.16(n --41)B.6(n--21)C.332(n --41)D.332(n--21)答案 C二、填空题:三、13.(2009浙江理)设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.答案:15解析 对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--14.(2009全国卷Ⅱ文)设等比数列{n a }的前n 项和为n s .若3614,1s s a ==,则4a =答案:3解析:本题考核等比数列的性质及乞降运算,由3614,1s s a ==得q 3=3故a 4=a 1q 3=315.(2007全国I) 等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为.答案 1316.已知等差数列}{n a 的公役0≠d ,且931,,a a a 成等比数列,则1042931a a a a a a ++++的值为 .答案 1316三、解答题17.(本小题满分12分)已知等差数列{a n }中,a 1=1,a 3=-3. (I )求数列{a n }的通项公式;(II )若数列{a n }的前k 项和S k =-35,求k 的值. 18:①已知等比数列{}n a ,1231237,8a a a a a a ++==,则n a = ②已知数列{}n a 是等比数列,且210,30m m S S ==,则3m S = ③在等比数列{}n a 中,公比2q =,前99项的和9956S =,则36999a a a a +++⋅⋅⋅+=④在等比数列{}n a 中,若394,1a a ==,则6a = ;若3114,1a a ==,则7a =⑤在等比数列{}n a 中,()5615160,a a a a a a b +=≠+=,则2526a a +=解:①212328a a a a == ∴22a = ∴1311335144a a a a a a +==⎧⎧⇒⎨⎨⋅==⎩⎩ 或 1341a a =⎧⎨=⎩当1231,2,4a a a ===时,12,2n n q a -==当1234,2,1a a a ===时,111,422n n q a -⎛⎫==⋅ ⎪⎝⎭②()()2232370m m m m m m S S S S S S -=⋅-⇒=③设114797225898336999b a a a a b a a a a b a a a a =+++⋅⋅⋅+=+++⋅⋅⋅+=+++⋅⋅⋅+ 则1223,b q b b q b ==,且12356b b b ++= ∴()21156b q q=++= 即1568124b ==++ ∴23132b b q ==④2639a a a =⋅ 62a =± 27311a a a =⋅ 72a =(-2舍去)∵当72a =-时,447340a a q q ==>⑤1015162526561516a a a a q a a a a ++==++ ∴()221516252656a a b a a a a a ++==+19.(本小题满分12分) 已知等比数列{}n a 中,113a =,公比13q =.(I )n S 为{}n a 的前n 项和,证实:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.20.某企业在第1岁首?年月购置一台价值为120万元的装备M,M 的价值在应用进程中逐年削减,从第2年到第6年,每岁首?年月M 的价值比上岁首?年月削减10万元;从第7年开端,每岁首?年月M 的价值为上岁首?年月的75%.(I )求第n 岁首?年月M 的价值n a 的表达式; (II )设12,nn a a a A n+++=若n A 大于80万元,则M 持续应用,不然须在第n岁首?年月对M 更新,证实:须在第9岁首?年月对M 更新.解析:(I )当6n ≤时,数列{}n a 是首项为120,公役为10-的等差数列.当6n ≥时,数列{}n a 是认为6a 首项,公比为34为等比数列,又670a =,所以是以,第n 岁首?年月,M的价值n a 的表达式为612010(1)13010,6370(),74n n n n n n a a n ---=-≤⎧⎪=⎨=⨯≥⎪⎩(II)设n S 暗示数列{}n a 的前n 项和,由等差及等比数列的乞降公式得 当16n ≤≤时,1205(1),1205(1)1255;n n S n n n A n n =--=--=-当7n ≥时,666786333()570704[1()]780210()4443780210()4.n n n n n n S S a a a A n ---=++++=+⨯⨯⨯-=-⨯-⨯=因为{}n a 是递减数列,所所以{}n A 递减数列,又86968933780210()780210()4779448280,7680,864996A A ---⨯-⨯==>==<21:①已知{}n a 等比数列,324202,3a a a =+=,求{}n a 的通项公式.②设等比数列{}n a 的公比为()0q q >,它的前n 项和为40,前2n 项和为3280,且前n 项和中最大项为27,求数列的第2n 项.③设等比数列{}n a 的公比1q <,前n 项和为n S ,已知3422,5a S S ==,求{}n a 的通项公式.解:①13q =或3q = 323n n a -=⨯ 或 323n n a -=⨯②当1q =时 1214023280n n S na S na ==⎧⎨==⎩ 无解当1q ≠时 ()()12121401132801n n n n a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩ 2182n nn S q S =+= ∴81nq =∴1112a q=-- ∵0q > 即81nq =1> ∴1q > ∴10a > ∴数列{}n a 为递增数列∴1112781n n a a a q q -===⋅ 解方程组1113112a q a q ⎧=⎪⎪⎨⎪=-⎪-⎩ 得113a q =⎧⎨=⎩ ∴2121213n n n a a q --==③由已知()1110,1nn a q a S q -≠=- 时 ()()214211211511a q a q a q q q ⎧=⎪--⎨=⨯⎪--⎩ 得()42151q q -=- ∵1q < ∴1q =- 或 2q =-当1q =-时,()112,21n n a a -==-当2q =-时,()()112111,21222n n n n a a ---==-=-22.数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}na b 是公比为64的等比数列,2264b S =.(1)求,n n a b ;(2)求证1211134n SS S +++<.解:(1)设{}n a 的公役为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d=+-,1n n b q -=依题意有1363(1)22642(6)64n nnda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一, 解①得2,8d q == 故132(1)21,8n n n a n n b -=+-=+=(2)35(21)(2)n S n n n =++++=+ ∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+。

等差数列练习题(含答案)

等差数列练习题(含答案)

等差数列练习题(含答案)2019年04⽉12⽇数学试卷姓名:___________班级:___________考号:___________⼀、选择题1.在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S =( ) A.58 B.88 C.143 D.1762.设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S 等于( ) A.13 B.35 C.49 D.633在数列中,,则=( )A. B. C. D.4.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,则第5节的容积为( ) A. 1升 B.6766升 C.4744升 D.3733升5.若等差数列{}n a 的前5项和525S =,且23a =,则7a = ( )A.12B.13C.14D.156.已知{}n a 是等差数列, 311 40a a +=,则6?7?8 a a a -+等于( ).A.5B.6C.7D.不存在 7.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S 等于( ). A.5 B.7 C.9 D.118.已知{}n a 是等差数列, 311 40a a +=,则6?7?8 a a a -+等于( ).A.20B.48C.60D.72⼆、填空题9.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,220x x m x x n -+-+=的四个根组成⼀个⾸项为14的等差数列, 则m n -=__________.11.已知△A B C 的⼀个内⾓为120,并且三边长构成公差为4的等差数列,则△A B C 的⾯积为__________.12.在等差数列{}n a 中,若4681012240a a a a a ++++=,则91113a a -的值为__________.13.在等差数列{}n a 中, 315,a a 是⽅程2610x x --=的两根,则7891011a a a a a ++++=__________.14.已知数列{}n a 是等差数列,若1591317117a a a a a -+-+=,则315a a +=__________. 三、解答题15.已知等差数列{}n a 的前n 项和为n S ,等⽐数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.1).若335a b +=,求{}n b 的通项公式; 2).若321T =,求3S .16.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等⽐数列. 1).求d ,n a ;2).若0d <,求123n a a a a ++++.17.n S 为等差数列{}n a 的前n 项和,且1=1a ,728S =.记[]=lg n n b a ,其中[]x 表⽰不超过x 的最⼤整数,如[]0.9=0,[]lg 99=1.1).求1b ,11b ,101b ;2).求数列{}n b 的前1000项和.18.已知{}n a 为等差数列,且36a =-,60a = 1).求{}n a 的通项公式;2).若等⽐数列{}n b 满⾜18?b =-,2123b a a a =++,求{}n b 的前n 项和公式19.已知数列{}n a 的⾸项为1, n S 为数列{}n a 的前n 项和, 11n n S q S +=+其中0q >,*n N ∈若232,,2a a a +成等差数列,求n a 的通项公式.20.已知b 是,a c 的等差中项, ()lg 5b -是()lg 1a -与()lg 6c -的等差中项,⼜,,a b c 三数之和为33,求这三个数.21.4个数成等差数列,这4个数的平⽅和为94.第1个数与第4个数的积⽐第2个数与第3个数的积少18.求这四个数.22.已知{}n a 是等差数列,且12312a a a ++=,816a = 1).求数列{}n a 的通项公式2).若从列{}n a 中,⼀次取出第2项,第4项,第6项, 第2n 项,按原来顺序组成⼀个新数列{}n b ,试求出{}n b 的通项公式.23.设{}n a 是公差不为零的等差数列, n S 为其前n 项和,满⾜222223457,7a a a a S +=+=. 1).求数列{}n a 的通项公式及前n 项和n S ; 2).试求所有的正整数m ,使得12⼀、选择题1.答案:B解析:由等差数列性质可知, 4811116a a a a +=+=,所以1111111() 882a a S ?+==.2.答案:C解析:根据等差数列性质及求和公式得:故选C答案: A 解析:因为,数列在中,, ,,所以,, 从⽽有,,……,上述n-1个式⼦两边分别相加得,,所以,故选A 。

【K12学习】等差等比数列练习题(含答案)以及基础知识点

【K12学习】等差等比数列练习题(含答案)以及基础知识点

【K12学习】等差等比数列练习题(含答案)以及基础知识点等差等比数列练习题(含答案)以及基础知识点一、等差等比数列基础知识点知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列{an}满足an1and(常数),则{an}称等差数列;2°.通项公式:ana1(n1)dak(nk)d; 3°.前n项和公式:公式:Snn(a1an)n(n1)na1d. 22②等比数列:1°.定义若数列{an}满足an1,则{an}称等比数列;2°.通项公式:q anana1qn1akqnka1anqa1(1qn)(q1),当q=1时Snna1. ;3°.前n项和公式:Sn1q1q2.简单性质:①首尾项性质:设数列{an}:a1,a2,a3,,an,1°.若{an}是等差数列,则a1ana2an1a3an2; 2°.若{an}是等比数列,则a1ana2an1a3an2. ②中项及性质:1°.设a,A,b成等差数列,则A称a、b的等差中项,且Aab; 22°.设a,G,b成等比数列,则G称a、b的等比中项,且Gab. ③设p、q、r、s为正整数,且pqrs, 1°. 若{an}是等差数列,则apaqaras; 2°. 若{an}是等比数列,则apaqaras;④顺次n项和性质:1°.若{an}是公差为d的等差数列,则a,a,akkk1kn12nk2n13nnkkn2n3nk组成公差为n2d的等差数2°. 若{an}是公差为q的等比数列,则偶数时这个结论不成立)⑤若{an}是等比数列。

a,a,ak1kn1k2n1k组成公差为qn的等比数列.;2°.若n为偶数,则S偶S奇nd. 2学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d≠0的等差数列的通项公式是项n的一次函数an=an+b;②公差d≠0的等差数列的前n项和公式项数n的没有常数项的二次函数Sn=an2+bn;③公比q≠1的等比数列的前n项公式可以写成“Sn=a(1-qn)的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m”②三数成等比数列,可设三数为“a,aq,aq2(或a,a,aq)”③四数成等差数列,可设四数为q “a,am,a2m,a3m(或a3m,am,am,a3m);”④四数成等比数列,可设四数为“a,aq,aq,aq(或23aa3,,aq,aq),”等等;类似的经验还很多,应在学习中总结经验. 3qq[例1]解答下述问111,,成等差数列,求证:abcbccaab,,成等差数列;abcbbba,,c 成等比数列.222已知[解析]该问题应该选择“中项”的知识解决。

(完整版)等差数列练习题有答案

(完整版)等差数列练习题有答案

数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。

11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。

{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。

n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。

1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。

n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。

n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。

(完整版)高二数学数列练习题(含答案)

(完整版)高二数学数列练习题(含答案)

高二《数列》专题1.与的关系: ,已知求,应分时 ;时,n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =2≥n = 两步,最后考虑是否满足后面的.n a 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d --=2n ≥*1()n na q n N a +=∈通项,d n a a n )1(1-+=(),()n m a a n m d n m =+->,中项如果成等差数列,那么叫做与的等差中,,a A b A a b 项.。

2a bA +=等差中项的设法:如果成等比数列,那么叫做与,,a G b G a 的等比中项.b 等比中项的设法:,,aqa aq 前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=若*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+,则2m p q =+若,则q p n m +=+2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An Bd d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为一个常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (3)通项公式:为常数)()(,n a kn b k b =+*N ∈n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)中项:证明21nn a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0(,nna cq c q =3.数列通项公式求法。

(完整版)等比数列练习题(含答案)

(完整版)等比数列练习题(含答案)

等比数列练习题(含答案)一、选择题1.(2009年广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A. 21B. 22C. 2D.2【答案】B 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以q =故212a a q ===,选B 2、如果1,,,,9a b c --成等比数列,那么( )A 、3,9b ac ==B 、3,9b ac =-=C 、3,9b ac ==-D 、3,9b ac =-=-3、若数列}{na 的通项公式是=+++-=1021),23()1(a a a n a n n则(A )15 (B )12 (C )-12 D )-15 答案:A4.设{na }为等差数列,公差d = -2,nS 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.24 答案:B 解析: 20,100,1111111110=∴+==∴=a d a a a S S5.(2008四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是()A.(],1-∞-B.()(),01,-∞+∞ C.[)3,+∞D.(][),13,-∞-+∞答案 D6.(2008福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C7.(2007重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A8.若等比数列{a n }满足a n a n +1=16n,则公比为 A .2 B .4 C .8 D .16 答案:B9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6=(A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A .10.(2007湖南) 在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( )A .4122-B .2122-C .10122-D .11122-答案 B11.(2006湖北)若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4答案 D解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D12.(2008浙江)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( )A.16(n--41) B.6(n--21)C.332(n --41)D.332(n--21)答案 C二、填空题:三、13.(2009浙江理)设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = . 答案:15解析 对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--14.(2009全国卷Ⅱ文)设等比数列{na }的前n 项和为ns 。

等差数列等比数列练习题

等差数列等比数列练习题

等差数列等比数列练习题等差数列和等比数列是数学中常见的序列类型,对于学习数学的同学来说,掌握并理解这两种序列的性质和运算规律十分重要。

本文将为大家提供一些关于等差数列和等比数列的练习题,帮助大家巩固相关知识。

一、等差数列练习题1. 已知等差数列的首项为3,公差为4,求该等差数列的第10项和第20项。

2. 某等差数列的前五项分别为1,4,7,10,13,求公差及该等差数列的第50项。

3. 设等差数列的前n项和为Sn,已知S7=56,公差为3,求n及Sn。

4. 在等差数列中,已知a1=5,an=23,求公差及n。

5. 某等差数列的前三项和为12,前五项和为30,求公差及前十项和。

二、等比数列练习题1. 已知等比数列的首项为2,公比为3,求该等比数列的前四项。

2. 某等比数列的前两项分别为3,6,求公比及该等比数列的第7项。

3. 设等比数列的前n项和为Sn,已知S5=242,公比为2,求n及Sn。

4. 在等比数列中,已知a1=4,an=256,求公比及n。

5. 某等比数列的前三项和为14,前五项和为126,求公比及前十项和。

三、等差数列与等比数列混合练习题1. 某等差数列的首项为1,公差为2,某等比数列的首项为1,公比为3,求这两个序列的第n项,并判断它们的大小关系。

2. 设Sn表示等差数列的前n项和,作如下等比数列:1,1/2,1/4,…,计算Sn的值。

3. 在等差数列中,已知前n项和S5=25,而在等比数列中,Sn=15,求n及该等差数列和等比数列的首项。

4. 某等差数列的前三项和为12,而某等比数列的前三项和为21,求这两个序列的第n项,并判断它们的大小关系。

通过以上练习题,我们可以对等差数列和等比数列的性质和运算规律进行巩固和理解。

在解答题目的过程中,要注意计算方法的正确性和步骤的清晰性,以免出现错误。

同时,可以尝试使用递推公式或通项公式来简化计算过程,提高解题效率。

希望以上练习题可以对大家的数学学习有所帮助,同时也希望大家能够多加练习,深入理解等差数列和等比数列的知识,为数学学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D)不存在 2。

、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D)3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21(B )2- (C )2 (D) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n (B )28-=n a n (C)12-=n n a(D )n n a n -=26、已知))((4)(2z y y x x z --=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=nn a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A)4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( ) (A)97 (B)78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}na 的前10项和为 ( )(A )56 (B )58 (C )62 (D)6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( )A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n abaD .如果一个数列{}n a 的前n 项和c ab S nn +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n na S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 三、解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。

18、已知等差数列{}n a 的公差与等比数列{}n b 的公比相等,且都等于d )1,0(≠>d d ,11b a = ,333b a =,555b a =,求n n b a ,.19、有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.20、已知{}n a 为等比数列,324202,3a a a =+=,求{}n a 的通项式.21、数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T22、已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )若数列{}n b 满足121114.4...4(1)()nnb b b b n a n N ---*=+∈,证明:{}n b 是等差数列;数列综合题二、13。

251+ 14. 2926 15. n )31(34- 16。

±63 三、解答题17。

a 1b =a 1,a 2b =a 10=a 1+9d ,a 3b =a 46=a 1+45d由{a bn }为等比数例,得(a 1+9d )2=a 1(a 1+45d )得a 1=3d ,即a b 1=3d ,a b 2=12d ,a b 3=48d 。

∴q =4 又由{a bn }是{a n }中的第b n a 项,及a bn =a b 1·4n —1=3d ·4n —1,a 1+(b n -1)d =3d ·4n -1∴b n =3·4n —1-218.∴ a 3=3b 3 , ∴a 1+2d =3a 1d 2 , ∴a 1(1—3d 2)=-2d ①a 5=5b 5, ∴a 1+4d =5a 1d 4 , ∴a 1(1—5d 4)=-4d ②错误!,得243151d d --=2,∴ d 2=1或d 2=51,由题意,d =55,a 1=—5。

∴a n =a 1+(n —1)d =55(n -6) b n =a 1d n -1=-5·(55)n —119。

设这四个数为a aq aq a qa-2,,,则⎪⎩⎪⎨⎧=-++=⋅36)3(216·a aq aq a aq a q a②① 由①,得a 3=216,a =6 ③ ③代入②,得3aq =36,q =2 ∴这四个数为3,6,12,1820.解: 设等比数列{a n }的公比为q , 则q ≠0, a 2=错误! = 错误! , a 4=a 3q =2q 所以 错误! + 2q =错误! , 解得q 1=错误! , q 2= 3, 当q 1=错误!, a 1=18。

所以 a n =18×(错误!)n -1=错误! = 2×33-n。

当q =3时, a 1= 错误!, 所以a n =错误!×3n -1=2×3n -3.21。

解:(I )由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥又21213a S =+= ∴213a a =故{}n a 是首项为1,公比为3得等比数列 ∴13n n a -=(Ⅱ)设{}n b 的公差为d由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+ 又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+ 解得122,10d d ==∵等差数列{}n b 的各项为正,∴0d > ∴2d =∴()213222n n n T n n n -=+⨯=+ 22(I ):*121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列。

12.n n a ∴+=即 2*21().n a n N =-∈ (II )证法一:1211144...4(1).n n b b b b n a ---=+12(...)42.n n b b b n nb +++-∴=122[(...)],n n b b b n nb ∴+++-= ① 12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+= ③21(1)20.n n nb n b ++-++= ④④-③,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列.。

相关文档
最新文档