串联谐振频率和并联谐振频率

合集下载

论串联谐振与并联谐振区别

论串联谐振与并联谐振区别

论串联谐振与并联谐振区别在电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象、叫做串联谐振,其特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于O,抗阻Z等于电阻R。

此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称为电压谐振。

谐振电压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振时一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。

串联谐振和并联谐振区别一1. 从负载谐振方式划分,可以为并联逆变器和串联逆变器两大类型,下面列出串联逆变器和并联逆变器的主要技术特点及其比较:串联逆变器和并联逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。

(1)串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。

因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。

当逆变失败时,浪涌电流大,保护困难。

并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。

但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。

串联谐振和并联谐振区别二(2)串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。

并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。

这就是说,两者都是工作在容性负载状态。

(3)串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。

即应有一段时间(t )使所有晶闸管(其它电力电子器件)都处于关断状态。

5第五章习题解答

5第五章习题解答

习题解答5-1 电路中存在有正反馈,且AF >1,是否一定会发生自激振荡?说明理由。

解答:不一定。

因为AF>1仅满足了自激振荡的振幅起振条件,此时,只有当πϕϕn F A 2=+即同时满足相位起振条件时才会发生自激振荡。

5-2 为什么晶体管LC 振荡器总是采用固定偏置与自生偏置混合的偏置电路?解答:晶体管LC 振荡器采用固定的正向偏置是为了使振荡器起振时为软激励状态,无须再外加强的激励下能起振,也不致停振。

而采用自生反向偏置则可以稳幅。

若两者不结合,则两个优点不可兼而有之。

5-3 什么是间歇振荡现象?试分析间歇振荡产生的原因?简述如何防止和消除间歇振荡。

解答:间歇振荡是指振荡器工作时,时而振荡,时而停振的现象。

原因是振荡器的自偏压电路参数选择不当。

防止和消除间歇振荡的方法是正确选择工作点以及ReCe 的数值。

5-4 反馈式自激振荡器由哪几部分组成?各自的功能是什么? 解答:反馈型自激振荡器的电路由三部分组成:(1) 包含两个或两个以上储能元件的振荡回路,完成能量交换。

(2) 直流电源,补充振荡回路电阻产生的损耗,维持等幅振荡。

(3) 有源器件和正反馈电路,控制能量在正确的时间内补充到电路中。

5-5 LC 振荡器的工作频率是严格等于调谐回路的谐振频率吗?为什么?解答:LC 振荡器的工作频率近似等于调谐回路的谐振频率,严格说,它的工作频率还应该与管子的参数有关,如0h 、i h 等。

5-6 LC 振荡器的静态工作点应如何选择?根据是什么?解答:振荡器静态工作点设计在甲类工作状态,采用自给偏压电路,如下图所示:随着振荡幅度的增加,振荡管便由线性状态很快地过渡到甲乙类乃至丙类的非线性状态,这时放大器的增益会下降,最终达到平衡状态。

5-7 一个振荡器,因为某种原因,使反馈电压v f 比输入信号v s 滞后于340︒,试问该振荡器还能否振荡?若能振荡,则振荡频率比原来相比是升高了,还是降低了? 解答:若此时反馈电压分量,使得反馈系数F>A1时,即可振荡,因v f 滞后v s 340︒,即产生一个负相角ϕ∆,频率与相位的关系为dtd ϕω=,因此频率降低了。

串联谐振和并联谐振有什么区别?

串联谐振和并联谐振有什么区别?

串联谐振和并联谐振有什么区别?
华天电力为大家介绍串联谐振和并联谐振有什么区别?
RLC并联谐振电路:
在低频率下,电感器将具有较低的阻抗和将主导C和R.这意味着大多数的较高阻抗电流经过电感器。

随着频率增加,L的阻抗增加,电流减小。

在高频率下,电容器将具有较低的阻抗和将主导L的更高的阻抗和R.这意味着大部分的电流通过所述电容器。

随着频率增加,C的阻抗减小,电流增加。

在共振时,L的阻抗等于C的阻抗,除非它们彼此异相180度,然后取消以创建无限阻抗,而您将R保留为阻抗。

这意味着所有电流都流经电阻。

这是针对并联RLC谐振的阻抗与频率的关系图。

RLC系列串联谐振电路:
在低频率下,电容器将具有更高的阻抗和将主导下将L的阻抗和R.这意味着电容器确定的电流流过电路的量。

随着频率增加,C的阻抗减小,电流增加。

在高频率下,电感器将具有更高的阻抗和将主导下的C和R的阻抗这意味着,电感器确定的电流流过电路的量。

随着频率增加,L的阻抗增加,电流减小。

在共振时,L的阻抗等于C的阻抗,只有它们彼此异相180度,然后抵消以创建零阻抗,并且剩下R作为阻抗。

这是串联谐振的阻抗与频率的关系图(忽略高频处的怪异扭结)。

并联谐振频率

并联谐振频率

并联谐振频率
你有没有想过,为什么在听收音机的时候,有时候能清晰地收到某个电台,而有时候却充满杂音呢?这背后其实和并联谐振频率有着神秘的联系。

我们来想象一下这样一个场景:有一个音乐派对,派对上有很多乐器在演奏。

把每个乐器想象成一个电阻或者电感、电容之类的元件。

比如,电吉他就像电感,它能储存和释放能量;鼓就像电阻,消耗能量;而电子琴就像电容,可以储存电荷。

当这些“乐器”(元件)并联在一起的时候,就如同在电路中并联的元件。

在一定的条件下,会出现一种神奇的现象——并联谐振。

这时候就涉及到并联谐振频率这个概念啦。

并联谐振频率简单来说,就是在并联的电路中,当电流和电压达到一种特殊的关系时的频率。

就像在音乐派对中,当所有乐器的声音在某个节奏点(类似频率)上达到一种和谐的状态。

从原理上讲,在并联谐振时,电路总的阻抗会达到一个最大值或者最小值(这取决于具体的电路情况)。

阻抗你可以理解为对电流流动的阻碍程度。

当阻抗达到特殊值时,电路中的能量传输等情况就会发生变化。

而且,不同的元件组合、参数设置等都会影响并
联谐振频率。

比如改变电吉他的弦(类似改变电感值),或者调整电子琴的音色设置(类似改变电容值),这个特殊的“和谐”频率就会改变。

就像收音机调台,只有当调到合适的频率,也就是和电台发射频率达到谐振的时候,才能清晰地接收到信号。

所以,并联谐振频率在很多电子设备、电路系统中都起着至关重要的作用。

下次当你再听音乐或者使用电子设备的时候,说不定就会想起这个神奇的并联谐振频率哦!。

RLC串联谐振的频率及计算公式

RLC串联谐振的频率及计算公式

RLC串联谐振频率及其计算公式2021-04-21 09:51串联谐振是指所研究的串联电路局部的电压和电流到达同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大.1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收一样之能量,即此两电抗组件间会产生一能量脉动。

2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。

3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。

4. 串联谐振电路之条件如图1所示:当Q=Q ? I2X L = I2 X C也就是X L =X C 时,为R-L-C 串联电路产生谐振之条件。

图1 串联谐振电路图5. 串联谐振电路之特性:(1) 电路阻抗最小且为纯电阻。

即Z =R+jX L?jX C=R(2) 电路电流为最大。

即(3) 电路功率因子为1。

即(4) 电路平均功率最大。

即P=I2R(5) 电路总虚功率为零。

即Q L=Q C?Q T=Q L?Q C=06. 串联谐振电路之频率:(1) 公式:(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其到达谐振频率f r ,而与电阻R完全无关。

7. 串联谐振电路之质量因子:(1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率之比,称为谐振时之品质因子。

(2) 公式:(3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。

一般Q值在10~100 之间。

8. 串联谐振电路阻抗与频率之关系如图(2)所示:(1) 电阻R 与频率无关,系一常数,故为一横线。

(2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。

(3) 电容抗与频率成反比,故为一曲线。

(4) 阻抗Z = R+ j(X L ?X C)当f = f r时,Z = R 为最小值,电路为电阻性。

串联谐振和并联谐振等效电路

串联谐振和并联谐振等效电路

串联谐振和并联谐振等效电路说到电路,大家是不是都会想起那些复杂的电学公式、元器件,脑袋里瞬间就冒出一堆符号,简直让人眼花缭乱。

别急,今天咱们来聊聊一个很“接地气”的话题:串联谐振和并联谐振的等效电路。

别看它们的名字一听就好像有点高深,其实它们一点儿都不难懂,掌握了之后,简直就是“开挂”一样,轻松搞定电路分析。

咱们先从串联谐振开始说。

哎,说到串联,大家可能就知道了,就是电流必须通过每一个元件,绕来绕去,一环扣一环。

那你能想象,在串联谐振电路里,电流和电压就像是一对夫妻,形影不离,紧紧相依。

这里面最主要的就是一个电感(L)和一个电容(C)。

电感就像一个“铁公鸡”,想要抵抗电流的变化,电容则是个“海绵”,不断吸收和释放电能。

两者相互博弈,导致了谐振现象。

什么意思呢?就是在特定的频率下,这两个家伙配合得天衣无缝,电流就会达到最大,电压也会呈现出一种特殊的规律。

你可以把它想象成两个人跳舞,跳到一个最默契的时刻,动作完美配合,就不会出错,整个电路也“嗨”了。

这时候的电路就有个特别的特点了,叫做“共振频率”。

在这个频率下,电感和电容的作用互相抵消,好像是两股力拉扯平衡,电流在这个点上最强,电压也最“震撼”。

而如果你换个频率,电流就会瞬间掉得无影无踪,简直就像“抽掉了支撑”,电路就不再“跳舞”了。

再来聊聊并联谐振,这一类就和串联谐振完全不同了。

并联嘛,咱们平时一想到就是好像大家都分头行动,各干各的。

其实并联谐振电路里的电感和电容也是如此,虽然它们在同一电路中,电流却是分开流动的。

你可以理解为它们在各自的“赛道”上,各有各的节奏。

电感和电容本身的性质不变,但它们就像两匹“孤狼”,在电流流动的世界里各自独立,不依赖于对方。

但是,它们依然有一种神奇的共振现象。

你说奇不奇,像两台车子,虽然开在不同的轨道上,但有个时刻,它们刚好撞到一起,发生了某种“碰撞”,电路在这个点上就变得最“热血沸腾”。

串联和并联谐振这两种方式就是在找一个“频率的高峰”,这个频率一到,电路就会全程“爆发”。

rlc并联谐振电路的谐振频率公式

rlc并联谐振电路的谐振频率公式

rlc并联谐振电路的谐振频率公式RLC并联谐振电路是电路中常见的一种电路,其在信号处理、滤波等领域中有着广泛的应用。

在进行选型、设计和应用时,了解RLC并联谐振电路的谐振频率公式是非常重要的。

本文将为大家详细介绍RLC 并联谐振电路的谐振频率公式。

RLC并联谐振电路由电源、电感、电容和电阻四部分组成。

其中电感L和电容C串联在一起,构成振荡回路。

在特定的条件下,电路会对输入信号产生共振放大,从而起到滤波器的作用。

RLC并联谐振电路的谐振频率公式如下:
f0=1/2π√(LC)
公式中,f0表示电路的谐振频率,L表示电感的感值,C表示电容器的电容值,π为圆周率,√为平方根符号。

从公式来看,谐振频率与电感和电容的乘积成正比,与它们的平方根的倒数成反比。

换句话说,感值增大电容值减小,均会导致谐振频率变高。

反之则会使谐振频率趋向于降低。

了解RLC并联谐振电路的谐振频率公式,可以帮助我们更好地完成电路的选型和设计。

在实际应用中,根据电路的工作需求以及所需的频率范围,可以选择合适的电感和电容值,从而得到所需的谐振频率。

此外,在使用RLC并联谐振电路时,还需要注意避免电感和电容
的过度共振,以及防止过度放大和损耗。

因此,在电路的设计和应用
过程中,需要根据具体情况合理进行调整和优化,从而达到最佳效果。

总之,了解RLC并联谐振电路的谐振频率公式是电路设计和应用
中必不可少的基础知识。

通过深入理解公式原理,我们可以更好地掌
握电路的特性和工作原理,为电路的选型和设计提供更加有力的支持。

串联谐振变换器和并联谐振变换器

串联谐振变换器和并联谐振变换器

串联谐振变换器和并联谐振变换器好嘞,今天咱们就聊聊串联谐振变换器和并联谐振变换器。

听起来是不是挺高大上的?听起来复杂,实际也就是个简单的电气玩意儿。

想象一下,你在参加一个聚会,现场音乐嘈杂,结果你却被一首歌吸引住了,浑身心都跟着那旋律起伏。

这种现象就跟谐振器的工作原理类似,好的谐振器能把特定频率的信号“放大”,让你听得特别清晰。

而串联和并联的区别呢,就像不同的聚会风格,有些是个别聊天,有些是大家一起热闹。

先说说串联谐振变换器。

想象一下,几个人排成一排,听到一个有趣的笑话,每个人都跟着这个笑话笑,笑声连成一片。

这个时候,笑声就是电流,笑的频率就是电压。

串联的好处在于,当一个部分被激活,整个队伍都跟着一起动。

哎呀,真是“众人拾柴火焰高”,同样的道理,串联谐振变换器能将输入信号的频率增强,使输出信号更加稳定。

但这可不是说简单的连接哦,它们可得有个特定的频率,才能“玩”得开心。

再说并联谐振变换器。

想象一下,一个大圆桌,大家围坐着,各自聊着自己的话题。

每个人的声音虽小,却可以在合适的时机瞬间形成一股强大的力量。

并联谐振变换器就是这样的一个大家庭。

每个部分都独立工作,但又能够在合适的频率下集体合作。

它的强大之处在于,如果其中一个部分出了问题,其他部分还能继续保持运转。

就像聚会上,大家各自交流,没有人会因为某个人的冷场而停下来。

相对来说,它的稳定性更高,可以容忍一定的“骚动”。

说到这里,可能有人会问,为什么要分成串联和并联呢?每种方式都有自己的适用场景,就像人生中,有人喜欢热闹,有人更享受安静。

串联谐振变换器适合需要高增益和频率选择的场合,比如一些高频信号的放大。

而并联谐振变换器则更适合需要高效率和低损耗的场合,比如电源管理,保证系统稳定运行。

使用这些变换器的时候,也得注意“对症下药”。

每种场合都有它的“黄金法则”,可不能随便换。

就像喝酒,开车不喝,喝酒不开。

否则,事儿可就大了。

实际上,理解这些原理并不难,关键在于多做实验,多动手操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

串联谐振频率和并联谐振频率谐振是物理学中的一个概念,指的是一个振动体在受到周期性的外力作用下,会发生共振现象,其振幅达到最大值的状态。

谐振频率是指在谐振状态下,振动体的振动频率。

串联谐振和并联谐振是两种常见的谐振方式,下面我将分别介绍串联谐振频率和并联谐振频率,并且比较它们之间的差异。

我们来看串联谐振频率。

串联谐振是指在一个电路中,电感和电容以串联的形式连接,然后通过交流电源进行激励,使电路发生谐振现象。

当电路处于谐振状态时,电感和电容的阻抗之和与电源电压的阻抗相等。

串联谐振电路的频率与电感和电容的数值有关,可以通过下面的公式来计算:
f = 1/(2π√(LC))
其中,f是电路的谐振频率,L是电感的感值,C是电容的容值。

接下来,我们来看并联谐振频率。

并联谐振是指在一个电路中,电感和电容以并联的形式连接,同时接入交流电源进行激励,使电路发生谐振现象。

与串联谐振不同的是,当电路处于谐振状态时,电感
和电容的阻抗之和与电源电压的阻抗之和相等。

并联谐振电路的频率
与电感和电容的数值有关,可以通过下面的公式来计算:
f = 1/(2π√(LC))
与串联谐振的公式相同,频率的计算方法也相同。

从上面的公式可以看出,串联谐振和并联谐振的频率计算公式是
完全相同的,即它们在频率计算上没有区别。

这是因为无论是串联谐
振电路还是并联谐振电路,在谐振状态下,电感和电容的阻抗之和都
等于电源的阻抗,因此其频率是相同的。

尽管串联谐振和并联谐振的频率计算方法相同,但是它们之间在
电路结构和性质上有很大的差异。

首先,串联谐振电路中,电感和电
容的电压是串联连接的,电流是相同的;而在并联谐振电路中,电感
和电容的电流是并联连接的,电压是相同的。

其次,串联谐振电路中,电感和电容的阻抗是相加的,而并联谐振电路中,电感和电容的阻抗
是分别倒数再相加的。

串联谐振和并联谐振在应用中也有一些差别。

串联谐振电路常用
于调谐电路、滤波电路等,用于滤除或选择特定频率的信号。

而并联
谐振电路则常用于振荡电路、共振电路等,用于产生特定频率的信号。

综上所述,串联谐振和并联谐振的频率计算方法相同,但是它们
在电路结构和性质以及应用上存在差异。

了解并理解串联谐振和并联
谐振的频率特性,可以帮助我们更好地设计和应用相关电路。

相关文档
最新文档